
Testing Quantum Gravity

Johan Hansson∗ & Stephane Francois
Division of Physics

Lule̊aUniversity of Technology
SE-971 87 Lule̊a, Sweden

Abstract

The search for a theory of quantum gravity is the most funda-
mental problem in all of theoretical physics, but there are as yet no
experimental results to guide this endeavor. In this article we show
a potential way out of this deadlock, utilizing macroscopic quantum
systems; superfluid helium, gaseous Bose-Einstein condensates and
“macroscopic” molecules. It turns out that true quantum gravity ef-
fects could and should be seen (if they occur in nature) using existing
technology, making quantum gravity enter the realm of testable, po-
tentially falsifiable theories, i.e. becoming real physics after almost a
century of pure theorizing.

The “holy grail” of fundamental theoretical physics is quantum gravity - the
goal of somehow reconciling gravity with the requirement of formulating it
as a quantum theory, i.e. “explaining” how gravity as we presently know it
emerges from some more fundamental microscopic theory. The most serious
obstacle - from the point of view that physics is supposed to be a natural
science telling us something about the real world - is the total lack of ex-
periments guiding us. Today there are as yet no detected observational or
experimental signatures of quantum gravitational effects. Naively, essentially
from pure dimensional analysis arguments, quantum gravity experimentally

requires an energy of roughly EP =
√
h̄c5/G ≃ 1028 eV, the “Planck En-

ergy” (or equivalently, the means for exploring length-scales of the order of
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the “Planck Length”, lP =
√
h̄G/c3 ≃ 10−35 meters). Using existing tech-

nology, this would require a particle accelerator larger than our galaxy - so
direct tests of quantum gravity seems, at first sight, impossible.

However, as quantum theory is supposed to be universal - no maximum
length built into its domain of applicability - a low-energy, large length-scale,
formulation of the theory should still apply. A falsification of the low-energy
limit, in the experimentally accessible weak-field regime, would also falsify
the full theory of quantized gravity [1], hence making it possible to test, and
potentially rule out, quantum gravity with existing or near-future technolo-
gies. In fact, direct tests of the high-energy limit of general quantum gravity
may never be possible. In that case high-precision laboratory tests of weak-
field quantum gravity will be the only possibility to make quantum gravity
a physical (testable/falsifiable) theory instead of merely a mathematical one
(as it has been until now).

But how can a quantum theory be applied to the fairly large bodies
needed?1 The answer lies in macroscopic systems still obeying the rules and
laws of quantum theory - in essence those described by macroscopic wave-
functions. For a free-falling, effectively two-body problem, it should then in
principle be possible to measure, e.g., the resulting quantum gravitational ex-
citation energies [1]. We can immediately think of four such candidates (and
combinations of them, and more fundamental electrically neutral particles
like neutrons ∼ 10−27 kg):

i) Superfluid helium-II.
ii) Gaseous Bose-Einstein condensates (≤ 109 u ∼ 10−17 kg, presently).
iii) Buckyballs or other “macroscopic” molecules known to still obey quan-

tum mechanics (≤ 104 u ∼ 10−22 kg, presently).
iv) Neutron stars, believed to contain a substantial portion of their mass

as superfluid neutrons [4], which should give very significant quantum gravity
effects, for instance potentially measurable as quantized (discrete) gravita-
tional redshift, the normal component acting incoherently (where each neu-
tron interacts individually with the test particle - adding probabilities not
amplitudes), not screening the effect.

For superfluids, as the temperature decreases below the λ-transition the
superfluid component rapidly approaches 100%. The helium atoms then

1Previous work purporting to having seen quantum gravity effects have in reality only
probed the “correspondence limit” of extremely high excitation [1], in the classical gravi-
tational field of the whole earth, e.g. [2], [3].
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condense into the same lowest energy quantum “groundstate” (losing their
individual identities) and it becomes the state of the macroscopic superfluid.
Hence, the superfluid is described by a single quantum wavefunction, even
though macroscopic in size and mass [5], and the same applies for gaseous
Bose-Einstein condensates. It can then only behave in a completely ordered
way, in which the action of any atom is correlated with the action of all the
others, and thus has extreme sensitivity to ultraweak forces.

So, if superfluid systems, dominated by the superfluid state, interact
solely/mainly through gravity with other quantum systems, we can obtain
a test of low-energy quantum gravity. As the whole quantum “object” is
described by a single wavefunction, quantum gravity affects, and is affected
by, its whole mass.

We may consider several such possibilities:
A superfluid (M) gravitationally binding a mass (m) of either a) a neutral

quantum particle such as a neutron, b) an atomic Bose-Einstein condensate
or c) a “macroscopic” quantum molecule. The system being in free-fall, inside
a spherical Faraday cage, either in an evacuated drop-tower experiment on
earth, in parabolic flight, or, ultimately, in permanent free-fall in a satellite
experiment, e.g. at the International Space Station, or a dedicated satellite
similar to the European Space Agency “STE-Quest” space mission proposal
(Space-Time Explorer and QUantum Equivalence principle Space Test).

Also, a neutron star (M) plus ”test-particle” (m) should exhibit substan-
tial quantum gravity effects. Unfortunately, the formalism in [1] is strictly
applicable only to weak fields where the static (potential) gravitational con-
tribution overwhelms the dynamical.

However, just like newtonian gravity is the weak-field/low-energy limit of
general relativity, newtonian quantum gravity must be the weak-field/low-
energy limit of general (presently unknown) quantum gravity. The main
advantage being that newtonian quantum gravity is known and well-defined,
and hence, in principle, testable today. If newtonian quantum gravity is
falsified (in the regime where it should apply), we know that general quantum
gravity is falsified too, meaning that gravity is then a strictly macroscopic
phenomenon absent at the quantum level.

The quantum-gravitational energy levels are [1]

En(grav) = −G
2µm2M2

2h̄2
1

n2
= −Eg

1

n2
, (n = 1, 2, 3, ...), (1)
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where

µ =
mM

m+M
, (2)

is the reduced mass, introduced to facilitate any combination of masses (µ
giving just m for m≪M , and µ = m/2 if m =M), and

Eg =
G2µm2M2

2h̄2
, (3)

is the quantum gravitational binding energy, i.e. the energy required to
totally free the mass m from M in analogy to the Hydrogen case, whereas
the most probable radial distance is

r̃grav ≃
n2h̄2

GµmM
. (4)

All analytical solutions to the normal Schrödinger equation, the hydrogen
wavefunctions, carry over to the gravitational case with the simple substitu-
tion e2/4πϵ0 → GmM , which is equivalent to replacing the reduced Bohr-
radius, a∗0, with the reduced “gravitational Bohr-radius” [1]

b∗0 =
h̄2

GµmM
(5)

in the wavefunctions

ψnlm = R(r)Θ(θ)Φ(ϕ) = NnlmRnlYlm. (6)

Here Nnlm is the normalization constant, Rnl the radial wavefunction, and
Ylm the spherical harmonics containing the angular parts of the wavefunction.
The gravitational Bohr-radius, b∗0, also gives the distance where the proba-
bility density of the ground state ψ100 peaks (and also the innermost allowed
radius of orbits in the old semi-classical Bohr-model, equivalently, the radius
where the circumference 2πr equals exactly one deBroglie wavelength).

If we introduce the Planck mass

mP =
√
h̄c/G ≃ 2.2× 10−8 kg, (7)

conventionally believed to be fundamental in quantum gravity, we can rewrite
the quantum gravitational binding energy and the reduced gravitational Bohr
radius as

Eg =
µc2

2

m2M2

m4
P

, (8)
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b∗0 =
h̄

µc

m2
P

mM
, (9)

where h̄/µc in the last equation is just the reduced Compton wavelength for
µ. With m = M = mP this yields Eg = EP/4, i.e. 1/4th the Planck energy,
and b∗0 = 2lP , twice the Planck length, consistent with the naive expectation.

The quantum gravitational energy-levels of the system are as quoted
above. For example, for a mass m =M = 8.6×10−14 kg the first few excited
states above the groundstate would require E1−2 = 2.2 eV, E1−3 = 2.6 eV,
E1−4 = 2.8 eV.

One possibility (but by no means the only one) to investigate “quantum
jumps” between these gravitational quantum states, and hence potentially
detect the fundamental quantization of the gravitational field, would be to
use a laser calibrated to these energy frequencies to experimentally detect
and manipulate them. The system should not “jump” until the laser is in
resonance with the possible quantum gravitational states of the system. It
should be noted that the excitation of the states are then effected by electro-
magnetism, whereas the decay towards the ground state would be gravita-
tional transitions with graviton emission. Even if the gravitational decay is
incredibly slow/improbable (depending on the combinations of m and M) it
is sufficient to observe photon absorption at the predicted resonance frequen-
cies to verify the quantum gravity effect. (This being somewhat analogous
to the fast production of e.g. strange particles, via the strong interaction,
and their subsequent slow decay via the weak interaction.) An absorption
spectrum will thus give the “fingerprint” of quantum gravity in the system
under consideration. If the masses could be chosen to give well separated
energy-states in the energy range of visible light (1.7 eV < E < 3.2 eV), this
would be completely analogous to optical absorption spectra in cold gases.
As it nowadays is possible to identify single quanta with essentially 100% ef-
ficiency, having just one system (instead of billions of atoms in gases) should
not be an impossible obstacle in principle. For ease of visualization and anal-
ogy with familiar physics we have so far concentrated on visible light. As
seen in Table 1, and Figures 1 & 2, maser energies hold more promise. Still,
it turns out that it is rather hard to find the “sweet-spot” where both Eg

and b∗0 simultaneously are physically reasonable and potentially measurable.
Fortunately, one can, however, tailor m andM so as to avoid coinciding with
naturally occurring electromagnetic (i.e. not quantum gravitational) spec-
tral lines, in principle giving a unique “smoking-gun” signal for quantum
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gravity.
An independent, qualitative argument indirectly implying the existence

of quantum gravity - assuming the equivalence principle holds for rotating
superfluid helium - is the effect in an annular “torus-shaped” container of
radius R and annular width d ≪ R. The frequency of rotation is then
quantized, and consequently the energy of rotation is

Ej = j2
h̄2

2mR2
, (10)

where j = (0, 1, 2, ...). For m = m4He ≃ 6 × 10−27 kg, and R ≃ 10−3 m,
h̄2/2mR2 ≃ 5× 10−18 eV.

According to the equivalence principle, the backbone of general relativity,
gravitation is equivalent to acceleration, which in this case is

a = j2
h̄2

m2R3
, (11)

and as the acceleration is quantized, so is the equivalent gravitation. For the
same parameter-values as above h̄2/m2R3 ≃ 3× 10−7 m/s2.

However, we immediately see that the groundstate (j = 0) does not ac-
celerate at all, i.e. the equivalent quantum gravitational groundstate is un-
affected and cannot “fall”, just like an electron cannot fall into the nucleus
of an atom, which may resolve singularity problems arising in the classical
theory. (Giving an innermost allowed gravitational “orbit” in the old inter-
pretation of Bohr, its circumference being exactly one deBroglie wavelength,
while h̄ → 0 in Eqs. (3) and (5) gives back the classical singularity, averted
by the quantum condition h̄ ̸= 0 really valid in nature.)

In a simply connected vessel (no “hole”) the total angular momentum is
still quantized, but there can no longer be any bulk rotation as the superfluid
is irrotational (the hole in the torus being what allows this in such non-simply
connected vessels). Below the first critical angular velocity the superfluid
is stationary. As the circulation reaches κ = h/m ≃ 10−7 m2/s a first
quantum vortex will form, at 2h/m a second one will appear, and so on.
The resulting quantum vortices, N individual ones all with j = 1 as higher j
are unfavourable energetically [5], should also be directly related to quantum
gravity through the equivalence principle. As the core of the quantum vortex
is of the order R ∼ 1Å, the energy and acceleration for a single “fundamental”
vortex is E1 ∼ 10−4 eV and a ∼ 1014 m/s2. The non-rotating groundstate has
no circulation, so no acceleration and again no equivalent effective gravity.
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Figure 1: The quantum gravitational binding energy Eg in eV, as a function
of the masses (“gravitational charges”) m and M , given in kg.

In conclusion, we have seen how quantum gravity in principle can be
tested today, e.g. using the quantum gravitational behavior of combina-
tions of macroscopic superfluids, large molecules, Bose-Einstein condensates
and neutrons. Indirectly, the observed quantized rotation/acceleration of su-
perfluids already hints at the existence of quantum gravity. However, this
assumes that the equivalence principle is still valid at the quantum level,
which is far from proven.
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Figure 2: The “gravitational Bohr-radius” b∗0 in meters, as a function of the
masses m and M , given in kg.
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M (kg)
m (kg) 10−20

BEC 10−23
BB 10−27 neutron

Eg (eV) b∗0 (m) Eg (eV) b∗0 (m) Eg (eV) b∗0 (m)
103 SF 10−9 10−7

10−1
SF 10−5 10−11

10−2
SF 10−7 10−10

10−4
SF 10−2 10−14

10−6
SF 10−6 10−12

Table 1: Orders of magnitude for the quantum gravitational binding energy
Eg in eV, and the “gravitational Bohr-radius” b∗0 in meters, for a few po-
tentially physically, i.e. experimentally, interesting combinations of masses
m and M , given in kg. SF = superfluid helium, BEC = gaseous Bose-
Einstein condensate, BB = Buckyball (C60) or similar “macroscopic” quan-
tum molecule. These are all known and well-studied objects in their own
right. More speculatively (and outside the weak-field limit), an electron
(m ∼ 10−30 kg) gravitationally bound to a Preon Star [6] with massM ∼ 1012

kg tentatively gives [Eg ∼ 1 eV, b∗0 ∼ 10−10 m]; a neutrino (m ∼ 10−36 kg)
bound to a Preon Star of M ∼ 1020 kg gives [Eg ∼ 10−2 eV, b∗0 ∼ 10−6 m].
The characteristic size of a Preon Star is comparable to its Schwarzschild ra-
dius: Rs(10

12 kg) ∼ 10−15 m, Rs(10
20 kg) ∼ 10−7 m. The cosmic microwave

background has an energy of ∼ 10−4 eV.
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