
RESEARCH REPORT

Luleå University of Technology
Department of Computer Science and Electrical Engineering

2006:14 • ISSN: 1402-1528 • ISRN: LTU - FR -- 06 ⁄ 14 -- SE

2006:14

Computing Maximum-Scoring
Segments in Almost Linear Time

Fredrik Bengtsson and Jingsen Chen

Computing Maximum-Scoring Segments in Almost

Linear Time

Fredrik Bengtsson and Jingsen Chen

Department of Computer Science and Electrical Engineering

Lule̊a University of Technology

S-971 87 Lule̊a

SWEDEN

August 10, 2006

Abstract

Given a sequence, the problem studied in this paper is to find a
set of k disjoint continuous subsequences such that the total sum of
all elements in the set is maximized. This problem arises naturally in
the analysis of DNA sequences. The previous best known algorithm re-
quires Θ(n log n) time in the worst case. For a given sequence of length
n, we present an almost linear-time algorithm for this problem. Our
algorithm uses a disjoint-set data structure and requires O(nα(n, n))
time in the worst case, where α(n, n) is the inverse Ackermann func-
tion.

1 Introduction

In the analysis of biomolecular sequences, one is often interested in find-
ing biologically meaningful segments, e.g. GC-rich regions, non-coding RNA
genes, transmembrane segments, and so on [11, 12, 13]. Fundamental algo-
rithmic problems arising from such sequence analysis are to locate consecu-
tive subsequences with high score (given a suitable scoring function on the
subsequences). In this paper, we present an almost linear time algorithm
that takes a sequence of length n together with an integer k and computes
a set of k non-overlapping segments of the sequence that maximizes the to-
tal score. If a general segment scoring function (other than the sum of the
segments as in this paper) is used, then the problem of finding a k-cover
with maximum score can be solved in O(n2k) time [1, 4]. When the score
of a segment is the sum of the elements in the segment, the previous best
known algorithm runs in Θ(n log n) time [11]. Our new algorithm requires
O(nα(n, n)) time in the worst case, where α(n, n) is the inverse Ackermann
function.

1

The problem studied can be viewed as a generalization of the classical
maximum sum subsequence problem introduced by Bentley [6]. The latter is
to find the continuous segment with largest sum of a given sequence and can
be solved in linear time [7, 16]. Several other generalizations of this classical
problem have been investigated as well. For example when one is interested
in not only the largest, but also k continuous largest subsequences (for some
parameter k) [2, 3, 5, 14]. Other generalizations arising from bioinformatics
is to look for an interesting segment (or segments) with constrained length
[8, 9, 15].

The paper is organized as follows. In Section 2 the problem is defined
and Csűrös work on this problem [11] is discussed. Some minor flaws of his
algorithm are also investigated. Section 3 gives an overview of our algorithm
while the details of the algorithm is presented in Section 4. Finally, the
analysis of our algorithm appears in Section 5 and the paper is concluded
with some open problems in Section 6.

2 Preliminaries

After introducing the problem to be studied and some notations, we will
describe Csűrös’ algorithm [11] for finding maximum-scoring segments and
fix some minor flaws in his paper.

2.1 Problem and Notations

Given a sequence X = 〈x1, x2, . . . , xn〉 of real numbers, let Xi,j denote the
subsequence of consecutive elements of X starting at index i and ending
at index j; i.e. the segment Xi,j = 〈xi, xi+1, . . . , xj〉. A segment Xi,j is

positive (negative) if its score (sum or value)
j

∑

ℓ=i

xℓ > 0 (< 0). Call Xi,j a

non-negative run (negative run) of X if

• xℓ ≥ 0 (or < 0) for all i ≤ ℓ ≤ j;

• xi−1 < 0 (or ≥ 0) if i > 1; and

• xj+1 < 0 (or ≥ 0) if j < n.

Given an integer 1 ≤ k ≤ n, a k-cover for the sequence X is a set of k
disjoint non-empty segments of X. The score (sum or value) of a k-cover is
determined by adding up the sums of each of its segments.

Definition 1. An optimal k-cover for a given sequence X is a k-cover of
X whose score is the maximum over all possible k-covers of X.

2

2.2 Csűrös Algorithm

By adapting Kadane’s linear-time algorithm for the maximum-scoring
segments problem (where k = 1) [7], Csűrös [11] presented an O(nk)-time
algorithm for the general k. Moreover, he showed that an optimal k-cover
can be created from an optimal (k + 1)-cover by removing a segment with
minimum absolute value or concatenating that segment with its neighbors.
Therefore, after a segmentation of the input sequence, an optimal k-cover
can be produced by a series of concatenations of neighboring segments with
current minimum absolute values. More precisely, the following algorithm
is proposed by Csűrös [11]:

Input: A sequence X of n real numbers and an integer 1 ≤ k ≤ m.
(Where m is the length of Y , as described shortly.)

1. Partition X into runs and let each run be replaced by its sum. Let
the sequence obtained be Y = 〈y1, y2, . . . , ym〉, where m ≤ n. That is,
each run computed in X corresponds to an element of Y .

2. while ‖{y ∈ Y : y > 0}‖ > k do

• Select the element yj with minimum absolute value of Y . During
this selection, let y1 = ym =∞, so that these two elements never
get selected.

• Replace elements yj−1, yj and yj+1 in Y with one single element
having value yj−1 + yj + yj+1.

3. Return the segments of X corresponding to all the positive elements
in Y .

The above algorithm runs in Θ(n log n) in the worst case [11]. This
can be done by storing the blocks at the leaves of a balanced binary search
tree where each block has a pointer to its successor and predecessor. The
correctness of this algorithm was shown by Csűrös [11]. However, some
observations about this algorithm will be made here.

First, this algorithm does not consider the case (although trivial) when
k > m, where m is the the number of positive runs in the input sequence.
However, this can be solved by preprocessing the input data. We will show
in the next section how this can easily be accomplished.

Next, this algorithm contains a minor flaw when smallest elements (with
respect to their absolute values) are the first or the last element of the current
sequence. It is claimed [11] that these elements should be avoided and never
selected (by assigning ∞ to them). However, this can lead to an incorrect
solution in some cases. Consider the sequence X = 〈2,−5, 8,−1, 4,−7, 6〉
and k = 2. Csűrös’ algorithm will first replace 〈8,−1, 4〉 with 8− 1+ 4 = 11

3

(since the element (−1) has the minimum absolute value), obtaining a new
sequence 〈2,−5, 11,−7, 6〉. Then, the smallest absolute value in the new
sequence is 2, but the algorithm avoids selecting this element, due to the
fact that it lies at the first position of the sequence. Instead, the next
smallest element (which is −5) is selected and the sequence 〈8,−7, 6〉 is the
outcome of this round (since 2− 5 + 11 = 8). Now, the number of positive
elements in the sequence 〈8,−7, 6〉 is 2, which equals k, and we are done.
Thus, the score of an optimal 2-cover of X is claimed to be 8 + 6 = 14.
Observe that the following 2-cover, {〈8,−1, 4〉, 〈6〉}, has a total sum of 17
which is larger than the previous of 14. Hence, it is not correct to just
avoid selecting the first and last elements. Instead, these elements should
be selected in the same way as for other elements.

For such special cases, say y1 has the current smallest absolute value,
we will replace 〈y1, y2〉 with 〈y〉, where y = y1 + y2. The soundness of this
correction will be presented together with the analysis of our algorithm.

3 The Algorithm

By generalizing the recursive relation between maximum-scoring segments
[11], we are able to design an algorithm that computes an optimal k-cover
in almost linear time; the complexity of our algorithm is independent of the
parameter k. The main idea is to transform the input sequence into a series
of sequences of decreasing lengths under cover-preserving. We employ the
union-find algorithmic technique to achieve the efficiency.

Our algorithm consists of three phases: Preprocessing, Partitioning, and
Concatenating. The preprocessing phase deals with some trivial cases of the
problem and simplifies the input for the rest of the algorithm. The latter
two phases choose subsequences of which candidate segments to the optimal
k-cover are examined and will be executed in an iterative fashion.

A special class of sequences plays an important role in our algorithm
design, namely alternating sequences.

Definition 2. A sequence Y = 〈y1, y2, . . . , ym〉 of real numbers is an alter-
nating sequence if m is odd, y1, y3, . . . , and ym are positive, and y2, y4, . . . ,
and ym−1 are negative. An alternating sequence is an a-sequence if its ele-
ments are mutually distinct.

The following fact implies that finding an optimal k-cover in some alter-
nating sequence needs only constant time.

Observation 1. All the positive elements of an alternating sequence of
length 2k − 1 represent an optimal k-cover of the sequence.

4

3.1 Preprocessing

This phase processes special cases of the problem and, if needed, finds the
segmentation of the input into runs. The segmented input will be of al-
ternating type and work as input for the two phases of our algorithm that
follows. We treat the preprocessing step here separately from the other
two steps of the algorithm, which simplifies the presentation of the latter.
However, it does not make the problem to be solved simple.

The special cases of the problem for finding an optimal k-cover are in-
vestigated with respect to the number m1 of the non-negative elements, the
number m2 of the non-negative runs, and the number m3 of the negative
runs in the input. For a given sequence X of length n and an integer k,
1 ≤ k ≤ n, we proceed as follows.

1. Scan the sequence X and compute m1, m2, and m3.

2. If k ≥ m1, then compute the (k −m1) largest elements among all the
negative ones. Now, all the non-negative elements together with the
negative elements just computed form an optimal k-cover, where each
member of the cover is of length 1.

3. If m2 ≤ k < m1, then all the non-negative runs represent an optimal
solution by splitting the runs until the number of non-negative blocks
equals k. Moreover, we can, in this case, delete any subsequence (prefix
or suffix of X) containing only zeroes according to the value of k
without affecting the optimal solution.

4. If 1 ≤ k < m2 a segmentation of X will be performed.

The segmentation of the input produces a new sequence that serves as
the input to the iteration (the partitioning and concatenating) phases of our
algorithm. Segmenting a sequence X (where k < m2) works as follows:

1. Find all the non-negative runs and negative runs of X.

2. Construct a new sequence Y from X by replacing every run with its
score. Clearly, Y is a sequence of length m2 + m3.

3. Let m′ be the number of positive elements of Y .

4. If k < m′, then delete all the elements equal to zero from Y .

5. If k ≥ m′, then the optimal k-cover consists of all the positive runs of
X (positive elements of Y) together with (m′−k) of the zero elements
of Y and we are done.

6. Negative elements at both ends of Y (if any) are removed from Y .

5

Moreover, by storing the indices of all the runs of X, one can easily refer
each element of Y to its corresponding segment of X. Clearly, the whole
preprocessing phase takes at most O(n) time in the worst case. Furthermore,
any optimal k-cover of Y corresponds to an optimal k-cover of X. In fact,

Proposition 1. Given a sequence X of real numbers, if the number of non-
negative runs of X is at least k, then there is an optimal k-cover of X such
that any member of the optimal cover is either an entire non-negative run
of X or a concatenation of neighboring runs of X.

Proof. Consider any k-cover C of X. If the cover C did contain only a part
of a non-negative run, we could just include the rest of that non-negative
run; obtaining a new k-cover with a total score at least as good as the old
one. Hence the cover C would not be optimal.

If the cover C did contain only a part of a negative run, we could just
exclude this negative run in order to increase the value of the cover. Hence
the cover C would not be optimal.

To sum up, we have

Corollary 1. Let T (n) and A(m) be the time needed to compute an optimal
k-cover of a sequence X of length n and of an alternating sequence Y of
length m, respectively. Then,

• T (n) = O(n + A(n)).

• If Y is the sequence resulted from preprocessing X, then the value of
an optimal k-cover of X is the same as that of Y .

If an optimal k-cover of X has not yet been computed during the prepro-
cessing (Steps 1-3), we obtain an alternating sequence Y = 〈y1, y2, . . . , ym〉,
where m ≤ n. Moreover, we can define a new order (≺) on the elements
of Y such that yi ≺ yj ⇔ {yi < yj ∨ yi = yj ∧ i < j}. However, throughout
the paper we will use the standard notation to simplify presentation. There-
fore, after O(n) preprocessing time, we consider only alternating sequences
of mutually distinct real numbers (that is, a-sequences) in the rest of our
algorithm. The following property of such sequences characterizes optimal
covers of the sequences.

Observation 2. Let Y be an alternating sequence of length m and k ≤
⌈m/2⌉. Then, each member of an optimal k-cover of Y will always be a
segment of Y of odd length.

Proof. Suppose there is a segment of an optimal k-cover that does have an
even length. Then either a prefix or a suffix of this segment will be negative.
We could thus remove that negative prefix or suffix; resulting in a new k-
cover with a higher total score. Hence, the cover was not optimal. This is a
contradiction.

6

3.2 Partitioning and Concatenating

In this subsection, we give an overview of these two phases of our algo-
rithm, whereafter a detailed presentation follows. Our approach in comput-
ing an optimal k-cover for a given a-sequence Y is to construct a series of
a-sequences from Y while the lengths of the sequences are decreasing and
the optimal k-cover remains the same.

More precisely, we first construct a shorter a-sequence Y ′ from Y . Such
a construction can be accomplished with concatenation operations run on
an odd number of consecutive elements of Y according to Observation 2.
By partitioning Y into smaller pieces and concatenating carefully chosen
segments, we can reduce the number of candidate segments for the optimal
k-cover fast. If the length of Y ′ equals 2k−1 , we are done; otherwise, repeat
the construction starting from Y ′ . Such a procedure will be run iteratively.

For a given a-sequence Y of length m and an integer k, 1 ≤ k ≤ m , we
consider only the case when k < ⌈m/2⌉. Otherwise, the problem is taken
care of by our preprocessing phase. Let Yt (t = 1, 2, · · ·) be an a-sequence
of length mt associated with a working sequence St of length nt, where
Y1 = Y and S1 = Y . The working sequence contains elements of Y that
are currently interesting for the algorithm. In the following, each element
of Yt and St refers to the block of concatenated elements that the element
currently corresponds to. The tth iteration of our algorithm (in particular,
the partitioning and concatenating procedure) is as follows. Let ξ0 be the
largest absolute value of the elements in Y and let r1 = ⌈‖S1‖/2⌉.

Input: Yt, St, a threshold rt, and a pivot ξt−1, where k < ⌈mt/2⌉
Output: Yt+1, St+1, rt+1, and ξt, where mt+1 ≤ mt and nt+1 < nt.

1. Partition

(a) Compute the (rt)
th largest absolute value ξt of all the elements

in St.

(b) Let Dt be the sequence containing all the elements of St whose
absolute value is less than or equal to ξt. Preserve the ordering
among the elements from Yt; the indices of the elements are in
increasing order.

2. Concatenation

(a) Let Y ′
t be the sequence resulting from, for each element y in Dt,

repeatedly replacing some blocks in Yt of odd lengths around y
with their score until every element has an absolute value not less
than ξt. Let k′ be the number of positive elements in Y ′

t .

(b) If k < k′ (that is, we merged too few blocks in the previous step),
then

7

• St+1 ← 〈All the elements now in St whose absolute value
lies between ξt and ξt−1; if some elements now belong to the
same block, then just insert one of them into St+1〉

• rt+1 ← ⌈‖St+1‖ /2⌉

• Yt+1 ← Y ′
t

• ξt ← ξt−1.

(c) If k > k′ (that is, we merged too many blocks in the previous
step), then St+1 ← Dt, rt+1 ← ⌈‖St+1‖/2⌉, and Yt+1 ← Yt.

(d) If k = k′, then we are done.

The goal is to eventually construct an a-sequence of length 2k − 1 and
hence the optimal k-cover is found due to Observation 1. With a careful
implementation, the lengths of the a-sequences constructed will gradually
decrease. In accomplishing our task within the desired time bound, we
cannot afford to actually construct all the sequences Yt (t = 1, 2, · · ·). In
such case, we may end up with an algorithm that takes Ω(m log m) time in
the worst case.

In the following, we show how to implement the algorithm efficiently.
Actually, we never construct Yt, but operate directly on Y all the time.

4 Algorithmic Details

Recall that the input now is an a-sequence Y = 〈y1, y2, . . . , ym〉 and an in-
teger k, where k < ⌈m/2⌉. To implement the above algorithm efficiently,
we will employ a disjoint-set data structure [10] augmented with extra in-
formation such as indices and scores of blocks. In addition to the standard
disjoint-set data structure, we store the following extra fields at the leader
node of each set:

• The index, in Y , of the leader

• The range, in Y , of the largest block created to which the leader
belongs

• The score of the block

4.1 Union-Find

Initially, for i = 1, 2, . . . ,m, we perform MakeSet(yi) with {i, (i, i), yi} as
extra information. Also, let FindSet(yi) return this extra information. For
any two elements x and y in Y , the operation Union(x, y) is performed as
follows.

Union(x,y)

8

1. Let (i, (i1, i2), sx) = FindSet(x).

2. Let (j, (j1, j2), sy) = FindSet(y).

3. If i = j, then return; else let ℓ be the new leader index decided by the
disjoint-set data structure (i.e., ℓ is either i or j).

4. The new extra information will be (ℓ, (min{i1, j1},max{i2, j2}), sx +
sy).

In the above procedure, if j1 − i2 = 1 (that is, the blocks joined are
adjacent), the extra information maintained for each block will represent
the intended extra information in the previous subsection. This is the case
that is needed by our algorithm later on.

For the simplicity, for any y in Y , denote by b(y) and v(y) the index, in Y ,
of its leader and the score of its block, respectively; i.e., (b(y), (j1, j2), v(y)) =
FindSet(y). It is important to emphasize that any block created with Unions
can be represented by an arbitrary element of Y from within the block. Any
intermediate sequence used during the process contains only the original
element from Y . Consider now the tth iteration of the phases for t = 1, 2, · · · .

4.2 Partition

In this step, we partition the current input St according to the given thresh-
old rt. Notice that each element in St corresponds to some block of Y .
Therefore, it is necessary to map from the elements stored in St to the
blocks created by the previous concatenations. Thus, one FindSet is done
on each element of St.

Now, we can do the desired selection on all the absolute values obtained
using a worst-case linear-time selection algorithm [10]. After that, a par-
tition is performed around the pivot, ξt, and all the elements of St whose
absolute value is less than or equal to ξt are included in a sequence Dt.
Observe that for each comparison done on a pair of elements, one must
do FindSet operations first. The output of the partition step is (Dt, ξt).
Thereafter, a series of replacements is applied to Dt in order to create a new
a-sequence of smaller length.

4.3 Concatenation

In this subsection, we focus on the problem of constructing shorter a-
sequences from a given a-sequence. One approach is to repeatedly con-
catenate blocks and replace them with their score. However, one cannot
just choose an arbitrary block and then do the replacement, because this
could potentially yield incorrect results. What we want from the replace-
ment is that the operation should result in both a shorter a-sequence and

9

that the optimal k-cover of this sequence remains the same as the one before
the operation.

Recall that for a given input sequence, Dt and ξt, to the concatenation
step, we aim at editing the sequence Y so that there is no element y in Y
with |v(y)| ≤ ξt. By this we mean that all the elements in Dt and all the
blocks created within this step with smaller absolute values will be involved
in some replacement. From Fact 2, we know that blocks of odd lengths
may be a good choice for preserving optimal k-covers. Among all possible
replacements of blocks, one special kind of the replacements, the merge, will
do the job.

4.3.1 The Merge Operation

A merge operation only applies to segments of length three. In par-
ticular, a merge can apply to a segment 〈yi−1, yi, yi+1〉 only if |yi| <
min{|yi−1|, |yi+1|}. The result of a merge on the segment 〈yi−1, yi, yi+1〉,
denoted by merge(yi−1, yi, yi+1), is a new block with a value equal to
yi−1+yi+yi+1; realizable with Union(Union(yi−1, yi), yi+1). Call such an op-
eration a merge around yi. Specially, a merge around y1 implies Union(y1, y2)
if |y1| < |y2| and a merge around ym implies Union(ym−1, ym) if |ym−1| <
|ym|. Hence, the elements y1 and ym can be treated in the same way as other
elements. In general, for any y in Y , let (b(y), (i, j), s) = FindSet(y). A
merge around y is then the merge operation on the segment

〈

yi−1, yb(y), yj+1

〉

(i.e., Union(Union(yi−1, yb(y)), yj+1)) if applicable. In this case, such a merge
is also called a merge around y′ for any y′ in the block Yi,j. Hence, we use the
term element y to mean both the original element in Y and interchangeably
the longest block created containing y.

The merge operation designed above has some nice properties which
ensures the correctness of our algorithm. First, each merge operation will
result in a new block with larger absolute score. Namely,

Proposition 2. Let y be an element in the block resulting from
merge(yi1 , yi2 , yi3). Then, |v(y)| ≥ max{|v(yi1)|, |v(yi2)|, |v(yi3)|}.

This is because a merge operation can apply to yi1 , yi2 , yi3 only
if |v(yi2)| ≤ min {|v(yi1)| , |v(yi3)|}. Thus, |v(yi1) + v(yi2) + v(yi3)| =
||v(yi1) + v(yi3)| − |v(yi2)|| = ||v(yi1)|+ |v(yi3)| − |v(yi2)|| ≥
max {|v(yi1)| , |v(yi3)|}.

Next, alternating sequences are invariant under merge operations. More
precisely,

Proposition 3. Let M be the set of merge operations performed on a given
alternating sequence Y = 〈y1, y2, . . . , ym〉 and YM the sequence (called the
compact version of Y under M) constructed from Y by replacing each merged
block with a singleton element. If no merge is done around neither y1 nor
ym, then

10

1. ‖YM‖ = ‖Y ‖ − 2 ‖M‖.

2. YM is also an alternating sequence.

Proof. We prove by induction on the number ‖M‖ of merge operations per-
formed. For the case of ‖M‖ = 1, say merge(zi−1, zi, zi+1) results in a se-
quence Z ′ from an alternating sequence Z = 〈z1, z2, . . . , zℓ〉. Assume zi > 0,
then zi−2 > 0 and zi+2 > 0. Since zi = |zi| < min{|zi−1|, |zi+1|} we know
that zi−1 + zi + zi+1 = −|zi−1| + zi − |zi+1| < −|zi+1| < 0. Hence, Z ′ is
an alternating sequence containing one positive element less than that in Z.
Thus, ‖Z ′‖ = ℓ − 2. The case of zi < 0 is similar. Now, let Z ′ be the new
input and the result easily follows from the induction.

Moreover, if Y is an a-sequence, so is YM . Hence, by repeatedly merging
blocks one can obtain some compact version of Y , particularly a version with
no smaller elements (that is, all its elements have absolute values greater
than ξt).

4.3.2 Repeated Merges on Dt

Obviously, in order to ensure that there is no element y in Y with |v(y)| ≤ ξt,
at least all the elements in Dt must be involved in some merges. For each
element in Dt and all the newly formed blocks (regarded as new elements
of Yt for some t), we need to decide whether a merge operation will be
performed around it. For y in Y , define Test(y) = true if a merge can be
done around y according to the definition of the merge operation and |v(y)| ≤
ξt; otherwise, Test(y) = false. Let Dt = 〈d1, d2, . . . , dnt

〉. Basically, we
traverse Dt from d1 to dnt

and, for each element, determines if it should be
merged. The current element is merged repeatedly until it is larger than the
pivot. When it is, then its left neighbour is checked again to see if it should
be merged again. More precisely:

1. For j = 1, . . . , nt let ij = b(dj) (ij is the index, in Y , to the set leader
for dj).

2. Set up a double-linked list Lt with its jth node containing a prev
pointer, a next pointer, and a numeric field num storing ij , j =
1, . . . , nt.

3. Let p point to the first element of Lt.

4. while Lt 6= ∅ do

• ℓ← p.num

• If Test(yℓ) = false, then p← p.next

• If Test(yℓ) = true, then

11

– Do a merge around yℓ. If the element corresponding to the
node p.prev is involved in this merge as well, then delete the
node p.prev. Perform similar for the node p.next.

– If |v(yℓ)| > ξt (the block after merge is larger than th
threshols), then delete the node p (we should not perform
any more merges on block p) and let p← p.prev (we check if
the previous block should be merged again).

As mentioned before, each merge operation creates a compact version
of Y with the length decreased by 2. Therefore, the number of positive
elements in the current version, Yt of Y , (after all the merges done) can
easily be counted when doing merges. This means that we do not need to
actually construct the compact versions Yt+1 of Y at the moment. Only
when we finally find an a-sequence of length 2k − 1, that compact version
of Y is then computed; which costs in the worst case O(m).

Furthermore, if a merge around y1 (or ym) was performed during the
process, then a new block with negative score (which is either the prefix or
suffix of Y) appears. The reason for the block being negative is that y1 < y2,
otherwise the merge would not have occurred. Such a block can immediately
be removed, because it is always unnecessary to include it in the solution to
the current compact version Yt+1 of Y . Thus, if the block 〈y1y2〉 is selected
for merge, we can effectively remove this block without doing any merge.
The merge around ym is analogous. Hence, Yt+1 is an a-sequence as well.

4.3.3 tth Iteration

The goal of the tth iteration is to construct implicitly a new a-sequence Yt+1

of length mt+1 from an a-sequence Yt of length mt. From the construction,
we know that mt+1 ≤ mt. The equality holds when there are too few
positive elements in the compact version of Y after the merges. In this case,
we cancel all the merges performed in this iteration. In order to be able
to cancel the merge operations performed earlier, we record and store all
changes made to the disjoint-set data structure. We need only store all the
changes made in the current iteration. This is because that if there are not
too few positive elements in the resulting sequence, we will never need to
cancel the previous merge operations.

Observe that the iteration works on the working sequence St associated
with Yt, decides whether a merge should be performed around every el-
ement, and produces a new working sequence St+1 associated with Yt+1.
Fortunately, the working sequences get shorter after every iteration. In fact,
the lengths of such sequences decrease very fast, which implies that the
number of iterations performed in our algorithm is not too many.

From Propositions 2 and 3, the lengths of a-sequences (i.e., the compact
versions of Y) will eventually decrease to 2k− 1; say the last one is Yt′ . We

12

will show in the next section that the optimal k-cover of Yt+1 corresponds to
an optimal k-cover of Yt, and thus is represented by all the positive elements
in Yt′ .

5 Correctness

After preprocessing, our algorithm takes an alternating sequence Y =
〈y1, y2, . . . , ym〉 and an integer k, 1 ≤ k < ⌈m/2⌉, and computes an optimal
k-cover of the sequence. The approach is to construct a set of alternating
sequences {Yt: t = 1, 2, · · · ,K} of length mt, for some K, where Y1 = Y ,
such that

• k < ⌈mt/2⌉ and mt+1 ≤ mt for t = 1, 2, · · · ,K − 1

• k = ⌈mK/2⌉

For simplicity, call the number of positive elements in an alternating se-
quence its p-length. Thus, the optimal ℓ-cover of an alternating sequence of
p-length ℓ consists of all the positive elements in the sequence only. By defi-
nition, the p-length of Y is ⌈m/2⌉. The following property is straightforward
from the discussion in the previous section.

Observation 3. For a given threshold ξ > 0, if the value ξ lies between
the smallest and the largest absolute value in Y , then the sequence Z =
Concatenate(Y, ξ) is always an alternating sequence of length at most m.

Moreover, our algorithm also have the following nice recursive property:

Proposition 4. Given a threshold ξ > 0 and an alternating sequence Y of
length m, let ℓ be the p-length of Z = Concatenate(Y, ξ). If ℓ < ⌈m/2⌉ and
0 < ξ′ < ξ, then by ignoring all the merge operations around elements in
(ξ′, ξ] ever done, the algorithm that produced Z will now output a sequence
equivalent to Concatenate(Y, ξ′).

Proof. Denote by Algo(ξ) the algorithm that produced Z = Concatenate(Y,
ξ). Consider any operation merge(y′, y, y′′) done by the algorithm Algo(ξ)
for any y ∈ (ξ′, ξ]. On executing this merge by Algo(ξ), one must have
that |v(y)| < |v(y′)| and |v(y)| < |v(y′′)| before the merge. Hence, ignoring
this merge would not change the fact that both the elements y′ and y′′ were
above ξ′. For all the merge operations done by Algo(ξ) after merge(y′, y, y′′),
notice that a merge can only increase the absolute value of the block. Hence,
if y′′ was involved in any merge merge(y′′, ∗, ∗) later on, then the element
corresponding to merge(y′′, ∗, ∗) would lie above ξ′ with or without the ex-
ecution of merge(y′, y, y′′). Therefore, the algorithm Algo(ξ) without all its
merge operations around elements in (ξ′, ξ] would behave exactly the same
as some algorithm that produces Concatenate(Y, ξ′).

13

Furthermore, the number of merges around elements in (ξ′, ξ] as above
done by our algorithm are bounded. Namely,

Proposition 5. Given two thresholds 0 < ξ′ < ξ, let ℓ(ξ) and ℓ(ξ′) be the p-
lengths of the sequences Z = Concatenate(Y, ξ) and Z ′ = Concatenate(Y,
ξ′), respectively. If 1 < ℓ(ξ) < ℓ(ξ′) < ⌈m/2⌉, then the number of merge
operations around elements in (ξ′, ξ] done by the algorithm that produced
the sequence Z equals ℓ(ξ′)− ℓ(ξ).

Proof. Induction on the difference between ℓ(ξ′) and ℓ(ξ).

Denote by Algo(ξ) and Algo(ξ′) the algorithms that produce the se-
quences Z and Z ′, respectively. Observe from Proposition 3 that each
merge operation decreases the p-length of the sequence by exactly 1. Thus,
the numbers of merge operations performed by Algo(ξ) and Algo(ξ′) are
⌈m/2⌉ − ℓ(ξ) and ⌈m/2⌉ − ℓ(ξ′), respectively.

Consider first the case when ℓ(ξ′)− ℓ(ξ) = 1. In this case, we claim that
Algo(ξ) has performed exactly one merge around some element y ∈ (ξ′, ξ].

It is clear that Algo(ξ) must have done at least one such merge operation.
Otherwise, the algorithm Algo(ξ) would behave exactly the same as if the
input threshold ξ were replaced with a new threshold ξ′; resulting in an
alternating sequence Z ′′ of p-length ℓ(ξ′) equivalent to Z ′. However, the
number of merge operations performed by Algo(ξ) is ⌈m/2⌉−ℓ(ξ) and hence
any sequence produced by Algo(ξ) would have a p-length of ⌈m/2⌉−(⌈m/2⌉−
ℓ(ξ)) = ℓ(ξ); contradicting the fact that ℓ(ξ′) = ℓ(ξ) + 1 .

On the other hand, assume that the algorithm Algo(ξ) has performed two
or more merges around elements in (ξ′, ξ]. From Proposition 4 we know that
Algo(ξ) will produce an alternating sequence equivalent to Z ′ by ignoring
all the merges done around elements in (ξ′, ξ]. This is impossible since
one cannot produce an alternating sequence of p-length ℓ(ξ′) using at most
(⌈m/2⌉ − ℓ(ξ)) − 2 = (⌈m/2⌉ − ℓ(ξ′) + 1) − 2 = ⌈m/2⌉ − ℓ(ξ′) − 1 merge
operations from Y . Hence, the claim is true.

Assume that the proposition is true for any number of merge operations
ℓ, ℓ(ξ′)− ℓ(ξ) < ℓ. Now, consider the case when there is some threshold ξ′′,
0 < ξ′′ < ξ, such that the sequence resulting from Concatenate(Y, ξ′′) is of
p-length ℓ(ξ′′) = ℓ− ℓ(ξ).

Notice that if ℓ(ξ′) − ℓ(ξ) = ℓ − 1, then Algo(ξ′) will, from the induc-
tive assumption, perform ℓ(ξ′) − ℓ(ξ) merge operations around elements in
(ξ′, ξ]. At the same time, since ℓ(ξ′′)− ℓ(ξ′) = (ℓ− ℓ(ξ))− (ℓ− ℓ(ξ)− 1) = 1,
the algorithm Algo(ξ′) will also execute exactly one merge around some el-
ement in (ξ′′, ξ′]. Hence, the number of merge operations around elements
in (ξ′′, ξ] by both Algo(ξ) and Algo(ξ′) is ℓ(ξ′)− ℓ(ξ) + 1 = ℓ(ξ′′)− ℓ(ξ). Ob-
serve again that the above reasoning works for any algorithms that produce
alternating sequences of p-lengths ℓ(ξ), ℓ(ξ′), and ℓ(ξ′′) with respect to the
given thresholds ξ, ξ′, and ξ′′. Therefore, there is an algorithm of comput-

14

ing Concatenate(Y, ξ) that performs ℓ(ξ′′) − ℓ(ξ) merges around elements
in (ξ′′, ξ]. By induction, the result follows.

In order to establish the correctness of our algorithm, we will first investi-
gate the recursive behavior of the optimal k-cover for alternating sequences.
An element (or a block) y in the input sequence Y is included in an opti-
mal k-cover C for the input if y is either a member of C or a segment of
some member of C. The following fact can be obtained directly from a nice
relationship between optimal covers presented by Csűrös [11].

Lemma 1. If k < ⌈m/2⌉ and yi is an element with the smallest absolute
value in Y , then either the entire segment 〈yi−1, yi, yi+1〉 is included in an
optimal k-cover of Y or none of yi−1, yi, or yi+1 is.

Since yi has the minimum absolute value, one can always perform
a merge operation around it; call such a merge a min-merge operation.
The Θ(m log m)-time algorithm for finding an optimal k-cover proposed by
Csűrös [11] performs only min-merge operations. Our algorithm goes further
by using general merge operations, which leads to an almost-linear-time so-
lution. Actually, the elements included in the optimal k-cover computed by
our algorithm are exactly the same as those selected by Csűrös’ algorithm
for being included in some optimal k-cover.

For a given alternating sequence Y of length m and an integer k, k <
⌈m/2⌉, the procedure to construct an optimal k-cover of Y by repeated min-
merge operations [11] actually implies the following recursive constructions.
For any integer q, k ≤ q < ⌈m/2⌉, an optimal q-cover of Y can be computed
as follows: While the number of positive elements in the sequence is greater
than q repeatedly join segments each of length 3 by performing min-merges.
Call the sequence obtained Zq and let Mq be the set of min-merge operations
performed (ordered in the time at which the operation is executed). Then,
an optimal k-cover of Y can be found with further min-merge operations
starting from Zq. We will show that the optimal q-cover computed by such
a procedure is exact the same as the one resulted from our algorithm. More
precisely,

Lemma 2. Given an alternating sequence, Y , and two elements yi ∈ Y and
yj ∈ Y , the merges 〈yi−1, yi, yi+1〉 and 〈yj−1, yj , yj+1〉 can be performed in
any order, if j − i ≥ 2.

Proof. We distinguish two cases: j − i ≥ 3 and j − i = 2.

• j − i ≥ 3: In this case, since i + 1 < j − 1, the two merges does
not affect each other. The merge around yi yields a new element
y′i = yi−1 + yi + yi+1 and the merge around yj yields a new element
y′j = yj−1 + yj + yj+1 independently of each other.

15

• j − i = 2: In this case, yi+1 = yj−1, so the merges are not completely
independent of each other.

First, consider the case when we first merge around yi and then around
yj . The first merge (around yi) will yield a new element y′i = yi−1+yi+
yi+1. Now consider the merge around yj. We notice that yj−1 = y′i.
Hence, the merge around yj will yield a new element y′j = y′i + yj +
yj+1 = yi−1 + yi + yi+1 + yj + yj+1.

Now, consider the case when we first merge around yj and then around
yi. The merge around yj will yield a new element y′′j = yj−1+yj +yj+1.
Notice that yi+1 = y′′j . Hence, the merge around yi will yield a new
element y′′i = yi−1 + yi + y′j = yi−1 + yi + yj−1 + yj + yj+1.

Since yi+1 = yj−1, we have that y′j = y′′i , which proves the lemma.

Notice that, for the case when j = i + 1, in the above lemma, the order
between merges are significant (the algorithm takes care of this case).

Lemma 3. Let ℓ be the p-length of Z = Concatenate(Y, ξ), where ξ > 0
is a given threshold. If ℓ < ⌈m/2⌉ and an optimal ℓ-cover of Y is
constructed from Y by repeated min-merge operations, then the sequence
Zℓ = Concatenate(Y,Mℓ) is the same as the sequence Z = Concatenate(Y,
ξ).

Proof. Notice that we will compare operands of the operations in Mℓ and
those used for achieving Z = Concatenate(Y, ξ) by assuming that these two
algorithms are virtually run, respectively, on its own copy of the input Y .
In what follows, call Concatenate(Y, ξ) our algorithm.

Let Dξ be the partition set in computing Z = Concatenate(Y, ξ); i.e.,
Dξ = {y ∈ Y : |v(y)| ≤ ξ}. The set Dξ is dynamic under deletions. Observe
that we implement such a set as a sequence and employ a double-linked list
to run operations on it. Here, we ignore such details.

From Proposition 3, each merge (and thus min-merge) operation de-
creases the number of positive elements in the sequence by 1. Thus, the
number ‖Mℓ‖ of min-merge operations performed equals ⌈m/2⌉ − ℓ. That
is, ℓ = ⌈m/2⌉ − ‖Mℓ‖.

The proof of the lemma is done by an induction on ‖Mℓ‖. We prove the
result for general merges and min-merges. The case when the operation is
2-merge can be solved similarly.

1) Consider the case when ‖Mℓ‖ = 1. In this case, the only min-merge
operation is around the element y which has the minimum absolute value in
Y .

Since ℓ < ⌈m/2⌉, we know that at least one merge have been executed
by our algorithm in order to arrive at Z from Y . Such a merge must be done

16

around y; otherwise, say it is around y′ 6= y. Hence, y′ ∈ Dξ due to the fact
that our algorithm performs a merge around y′ only if |v(y′)| ≤ ξ. At the
same time, we know that y ∈ Dξ since |v(y)| < |v(y′)|. Therefore, our algo-
rithm must perform a merge around y as well. Then, our algorithm would
have performed at least two merges, which will results in an alternating se-
quence of p-length at most ⌈m/2⌉ − 2 from Proposition 3. This contradicts
the fact that ℓ = ⌈m/2⌉ − ‖Mℓ‖ = ⌈m/2⌉ − 1. Hence, our algorithm do
exactly the same operation as in Mℓ and thus Zℓ = Z.

2) Assume that the claim of the above lemma is true for ‖Mℓ‖ < m′.
Now, consider the case when ‖Mℓ‖ = m′.

In the rest of this proof, we use the following expression for convenience:
For a given pivot ξ > 0 and an alternating sequence Y of length m,

Z(ξ, Y) = Concatenate(Y, ξ).

ℓ(ξ, Y): The p-length of Z(ξ, Y); always assuming that ℓ(ξ, Y) < ⌈m/2⌉.

M(ξ, Y): The set of min-merge operations done during the procedure, of
constructing an optimal ℓ(ξ, Y)-cover of Y by performing repeatedly
min-merge operations on Y , sorted in the increasing order of the time
it is executed.

Z(M(ξ, Y)): The sequence obtained from Y by operating M(ξ, Y) on Y .

Hence, the inductive assumption can also be stated as follows:

For any threshold ξ′ > 0, if ⌈m/2⌉ − ℓ(ξ′, Y) < m′, then
Z(ξ′, Y) ≡ Z(M(ξ′, Y)).

What we want to prove in the inductive step is thus the following:

For a given threshold ξ > 0, if ⌈m/2⌉ − ℓ(ξ, Y) = m′, then
Z(ξ, Y) ≡ Z(M(ξ, Y)).

Let ξ be the pivot such that our algorithm Algo(Z(ξ, Y)) produces the
sequence Z(ξ, Y) with ⌈m/2⌉ − ℓ(ξ, Y) = m′. For any real number ξ′ (< ξ)
that would cause ⌈m/2⌉ − ℓ(ξ′, Y) = m′ − 1, we have ℓ(ξ′, Y) = ℓ(ξ, Y) + 1.

From Proposition 4 we know that, by ignoring the only merge operation
merge(y′, y, y′′) ever done around some element y in (ξ′, ξ], the algorithm
Algo(Z(ξ, Y)) will produce an alternating sequence Z ′ equivalent to the
one constructed by Algo(Z(ξ′, Y)). However, by the inductive assumption,
Algo(Z(ξ′, Y)) produced an alternating sequence equivalent to the sequence
Z(M(ξ′, Y)). Hence, Z ′ is the same sequence as Z(M(ξ′, Y)). At the same
time, the element y is now the one with the smallest absolute value in the
sequence Z(M(ξ′, Y)). Therefore, the operation merge(y′, y, y′′) performed
by the algorithm Algo(Z(ξ, Y)) can now be viewed as a min-merge operation
run on Z ′. Also, according to Lemma 2, the order in which merge(y′, y, y′′)

17

and some other merge, merge(x′, x, x′′), is performed by Algo(Z(ξ′, Y)) is
insignificant as long as there is at least one element between y and x. This
is ensured by the fact that |y′| > |y| and |y′′| > |y|, because if |y| > ξ′, then
|y′| > ξ′ and |y′′| > ξ′. Now, ξ′ is chosen so that y is the only element larger
than ξ′ but smaller than ξ which implies that both y′ and y′′ is, in fact,
larger than ξ and would be untouched by Algo(Z(ξ′, Y)). Hence, we know
that there is at least one element between y and any other element merged
(namely y′ or y′′). This means that Algo(Z(ξ, Y)) will produce the same
sequence as Z(M(ξ, Y)). The result follows.

Notice that the optimal ℓ-cover of an alternating sequence of p-length ℓ
is composed of all its positive elements. Then, we have that

Corollary 2. Let ℓ be the p-length of Z = Concatenate(Y, ξ), where ξ > 0 is
a given real number. If ℓ < ⌈m/2⌉, then the optimal ℓ-cover of Z corresponds
to an optimal ℓ-cover of Y .

Observe that our algorithm try to compute the p-length ℓ of the sequence
resulted from the concatenation step for a given threshold ξ. We want to
ensure that k ≤ ℓ < ⌈m/2⌉ and try to decrease the value of ℓ by a recursive
computation of the threshold value. What we have done can be regarded as
a binary search on the interval [k,m/2]. The correctness of our algorithm
thus follows.

Theorem 1. Let ℓ be the p-length of Z = Concatenate(Y, ξ), where ξ > 0 is
a given threshold and ℓ < ⌈m/2⌉. If k ≤ ℓ, then there is an optimal k-cover
of Z that corresponds to an optimal k-cover of Y .

5.1 Complexity

Given a sequence X = 〈x1, x2, . . . , xn〉 of real numbers, the preprocessing
step of our algorithm takes O(n) time. After that, the iterations is run on the
working sequences St for t = 1, 2, · · · , where S1 = Y (the segmented version
of X). Each iteration will decrease the length of the working sequence by a
constant factor. In fact,

Lemma 4. ‖St+1‖ ≤
2
3 ‖St‖ for t = 1, 2, · · · .

Proof. Consider the ith iteration. If we have merged too few segments during
this iteration (i.e., the case of Step 2b), then our algorithm creates St+1 from
St by deleting all the elements y ∈ St with |v(y)| > ξt−1 (the absolute value
here corresponds to the new block after the merges been done; call this value
|v(y)|new). Observe that with the merges done in Step 2a, all the elements
in St lie above ξt. In other words, St+1 = {y ∈ St : ξt < |v(y)|new ≤ ξt−1}.

We claim that ‖St+1‖ ≤
2
3 ‖St‖. Denote by |v(y)|old the absolute value

of the element y in St before entering the concatenation step (i.e., before

18

performing merges in Step 2a). Observe that for any element y in St ,
we have |v(y)|old ≤ ξt−1. Let Ut = {y ∈ St : |v(y)|old > ξt}. That is,
St = Dt ∪ Ut when regarding them as sets.

Recall that the threshold ξt−1 is the latest value corresponding to the
case that we had merged too many segments. With respect to the current
threshold ξt, we have in this iteration merged too few segments. Hence,
‖St+1‖ > 0 since otherwise we would have also done too much even during
this iteration.

Before the concatenation starts, all the elements in St = Dt ∪Ut are the
candidates to be included in St+1. Hence, the number nt+1 of the candidates
equals ‖St‖, initially. Consider any element y in Dt and a merge merge
(y′, y, y′′) (if exists) around y, let z =merge(y′, y, y′′).

• If |v(z)|new > ξt−1, then y /∈ St+1 and the number nt+1 is decreased
by 1 for every element in St involved in the merge.

• If |v(z)|new ≤ ξt−1, then we know from Proposition 2 that |v(y′)|old ≤
ξt−1 and |v(y′′)|old ≤ ξt−1. That is, y′ ∈ St and y′′ ∈ St. In this case,
the number nt+1 is decreased by 2 depending for every three elements
in St involved in the merge. For the case of 2-merges, the number nt+1

is decreased by 1 for every element in St involved in the merge (since
such an element is no longer included in the optimal cover).

Therefore, the number of candidates to St+1 is decreased by at least 2
for every three elements in Dt. Observe that the number of merges around
elements Dt is bounded below by 1

3 ‖Dt‖. We thus have that ‖St+1‖ ≤
‖St‖ −

2
3 ‖Dt‖ = ‖St‖ −

2
3 ·

1
2 ‖St‖ = 2

3 ‖St‖.
On the other hand, if we have merged too many segments (i.e., the case

of Step 2c), then our algorithm will undo all the merges done in Step 2a by
assigning St+1 to be the sequence Dt. Notice that ‖Dt‖ = 1

2 ‖St‖. Hence,
‖St+1‖ = 1

2 ‖St‖ < 2
3 ‖St‖.

The time (except for that consumed by the disjoint-set data structure)
needed for the tth iteration of our algorithm is O(‖St‖). Hence, the time
complexity of our algorithm (excluding cost for union-finds) satisfies the
recurrence T (n) = T (2

3n) + O(n) and thus equals O(n).
Moreover, the number of union-find operations performed during the tth

iteration is also O(‖St‖). This implies that the total number of disjoint-set
operations executed by our algorithm is

∑

t≥1 O(‖St‖) = O(
∑

t≥1 ‖St‖) =
O(n). All these operations cost thus O(n · α(n, n)) in the worst case, where
α(n, n) is the inverse Ackerman function. To sum up,

Theorem 2. Given a sequence X of n real numbers and an integer 1 ≤
k ≤ n, the problem of computing an optimal k-cover of the sequence can be
done in O(n · α(n, n)) time in the worst case, where α(n, n) is the inverse
Ackerman function.

19

6 Conclusions

The problem of computing the maximum-scoring segments of a given se-
quence has been studied. We show how to solve the problem in O(nα(n, n))
time in the worst case. Of course, a linear-time algorithm for this prob-
lem is desirable. Many algorithmic problems arising in the analysis of DNA
sequences are of this flavor. Namely, one is interested in finding segments
with constraints on the length of the segments and/or with different scor-
ing functions. Both theoretical and practical efficient algorithms for these
problems are interesting.

References

[1] I. E. Auger and C. E. Lawrence. Algorithms for the optimal identifi-
cation of segment neighbourhoods. Bulletin of Mathematical Biology,
51(1):39–54, 1989.

[2] S. E. Bae and T. Takaoka. Algorithms for the problem of k maximum
sums and a VLSI algorithm for the k maximum subarrays problem. In
Proceedings of the 7th International Symposium on Parallel Architec-
tures, Algorithms and Networks, pages 247–253, 2004.

[3] S. E. Bae and T. Takaoka. Improved algorithms for the k-maximum
subarray problem for small k. In Proceedings of the 11th Annual Inter-
national Conference on Computing and Combinatorics, volume 3595 of
LNCS, pages 621–631, 2005.

[4] T. R. Bement and M. S. Waterman. Locating maximum variance seg-
ments in sequential data. Mathematical Geology, 9(1):55–61, 1977.

[5] F. Bengtsson and J. Chen. Efficient algorithms for k maximum sums.
In Proceedings of the 15th Annual International Symposium Algorithms
and Computation, volume 3341 of LNCS, pages 137–148, 2004. Revised
version to appear in Algorithmica.

[6] J. L. Bentley. Programming pearls: Algorithm design techniques. Com-
munications of the ACM, 27:865–871, 1984.

[7] J. L. Bentley. Programming pearls: Perspective on performance. Com-
munications of the ACM, 27:1087–1092, 1984.

[8] Anders Bergkvist and Peter Damaschke. Fast algorithms for finding
disjoint subsequences with extremal densities. In Proceedings of the
16th Annual International Symposium on Algorithms and Computation,
volume 3827 of LNCS, pages 714–723, 2005.

20

[9] Kai-Min Chung and Hsueh-I Lu. An optimal algorithm for the
maximum-density segment problem. In Proceedings of 11th Annual
European Symposium on Algorithms, volume 2832 of LNCS, pages 136–
147, 2003.

[10] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In-
troduction to Algorithms. The MIT Press, 1990.

[11] Miklós Csűrös. Maximum-scoring segment sets. IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics, 1(4):139–150,
2004.

[12] P. Fariselli, M. Finelli, D. Marchignoli, P.L. Martelli, I. Rossi, and
R. Casadio. Maxsubseq: An algorithm for segment-length optimiza-
tion. The case study of the transmembrane spanning segments. Bioin-
formatics, 19:500–505, 2003.

[13] X. Huang. An algorithm for identifying regions of a DNA sequence
that satisfy a content requirement. Computer Applications in the Bio-
sciences, 10:219–225, 1994.

[14] T. C. Lin and D. T. Lee. Randomized algorithm for the sum selection
problem. In In Proceedings of the 16th Annual Internatinal Symposium
on Algorithms and Computation, volume 3827 of LNCS, pages 515–523,
2005.

[15] Walter L. Ruzzo and Martin Tompa. A linear time algorithm for finding
all maximal scoring subsequences. In Proceedings of the 7th Annual
International Conference on Intelligent Systems for Molecular Biology,
pages 234–241, 1999.

[16] D.R. Smith. Applications of a strategy for designing divide-and-conquer
algorithms. Science of Computer Programming, 8:213–229, 1987.

21

