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PREFACE

Powder compaction is a key step in all processes

for the production of cemented carbides. In view

of the great importance of hard materials for its
products, SANDVIK AB has decided to start some basic
research into various aspects of the compaction of

hard metal powder.

The research work presented in this report has been
conducted as a collaboration between SANDVIK AB and

the divisions of Structural Engineering and Rock Mecha-
nics at the University of Luled. Larsgunnar Nilsson
has been responsible for coordination of the work

carried out at Luled University.

The present paper should be considered as a progress
report on our ongoing common effort to get an idea
about the 'deformation and stresses introduced into
powder material during compaction. It summarizes
background material and contains the results of a

series of pilot tests.



ABSTRACT

Mechaniczl properties of hard metal powder during
compaction are studied. Uniaxial, hydrestatic and
triaxial tests zre described and the results used tc
obtain points on load surfaces which characterize the
elasco-plastic behaviour of the powder. A constitut-
ive wodel of the "cap"-type is proposed and its
implementation - along with frictional relations -

into a finite element program is discussed.
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INTRODUCTION

it seems to be exceedingly difficult to give a
precise theoretical description of the behaviour
of powder material under pressure. Powder simply
does not fit any of the conventional material
models which were developed to account for con-

stitutive properties.

In an attempt to get at least an approximate
description, one may start from two extreme points

of view.

The first obvious standpoint would be to try to

give a microscopic description of the particles

or "granules", to characterize them by size, hard-
ness, shape, ete. and to account for interparticle
forces, frictional behaviour and the like. In fact,
there have been numerous attempts [?orre (1948),
Bockstiegel & Hewing (1965), Sjoberg et al (1977),
Fischmeister et al (1978), Arzt & Fischmeister (19793
in this directian, with many interesting results and
conclusions. However, results on a microscopic level
are only of limited value as long as it is not
possible to extrapolate them to the macroscopic scale.
So far, there seems to be no valid way of carrying
out such an extrapolation, although some interesting

work along these lines is under way Eundall & Strack

(1979)].

The second extreme point of view would be to neglect

the microscopic structure and to treat the powder

as a homogeneous continuum. The material properties

are then no longer derived from microscopic behaviour
of individual particles, but rather based on experi-

mentally observed macroscopic properties.



As a consequence, theoretical models dealing with
the interrelation of cuch properties typically
contain parameters to be fitted to experiment.
Therefore, thesy are ‘to-be used cautiously, whenever
applied under conditions which:differ significantly

from the ones valid during the experimental tests.

The obvious way to proceed would be to describe
the mechanical behaviour of our powder durirg
compaction in terms of stresses, displacements and
sitrains, i.e. to witilize the continuum mechanical

approach,

The first step in any attempt to arrive at a mathe-
matical description of the constitutive properties
of hard metal powder has toc be to carry out the
nhecessary ekxperimental tests. Based on the resulis,
one may then try to develop a material model. In
order to‘veriFy the validity of sutch a model, the
corresponding continuum equations have to be solved.
If one wants to deal with realistic boundary condi-
tions, shapes and load cases, it will be necessary
to resort to a computational rather than analytic
treatment, e.g. using the Finite Element Method
(FEM) [ see e.q. Zienkiewicz (1977)7] .

This was in fact the way we decided to proceed,
namely to start out with triaxial tests of powder
specimen, to use the result to derive constitutive
relations and, finally, to implement these relations
into a finite element program of enough versatility
to permit ngnlinear anplysis'of both material and
geometric types. Material nonlinearities arise
because of the highly "plastic" behaviour of the
powder, whereas geometric nonlinearities arise fraom

large deformations during compaction.



Section 2 contains a brief summary ol previous
experimental as well as theoretical work cn the

compaction of powder materials.

In section 3 we discuss our experimental sect-up
and present the results obtained by m=zans af uii
axial, hydrostatic and triaxial compression toesis

of cylindrical powder compacts.

Section 4 deals with the thecretical and computa-
tional aspects of our work. We take up pcssible
constitutive relations for powder material and
discuss the problem of friction between powder and

die wall.

Finmally, section 5 contains a discussion of our
preliminary results along with conclusians of

importance for our future work.
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REVIEW OF PRIVIOUS THEGREVICAL AND EXPEKRINENTAL
FOWDER COMPACTION

In the preszint paper we 2oncenttats orn the continuum
mecharical &specis of the wouwli compactior problem.
we arcv Lherverore omitting a cicsor discussion ‘

of work rerated to its, alunough very Zuporisnh.
microceopic (paciicle) asperts, 28 fong &3 there

is no wbvious connection wilii ihe macrvascapic pro-

percies we wish to describe.

One of the earliest attewnts Lo ectabliich an csmpipe-
icel relaticnship between cowmpreiing pressurs wrnid
density of the compact was maus Dy Wolkew (19235,

vased on an analogy with Hooke's iaw hoe peoposed

(2.1) ln P S e = r‘

whare P denotes the applisd pricsure ong D iz the
"relative"” dunsity of the powder (i.e. the meiic
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between compacted dereity and thaeretical limit don
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of 2 non-porous matesrial). L and C ave cnnstants,

A similar exprezssinn was propused hy 3alsiily (i1928),

viho applied fluid mechanical conconic in sunsoert

of hig formula.

However, no such simple relationsaip as (2.1

can possibly account far the empivicel fladings.

Even if L and C are fitted tc the upecifis nowder
material and experimentszi condicions unger crpnsideva-
tion, the fact remains that (2.1) icads touaphysical
conseqiences: For high enougygh pressures P, U will

ree any choice of constants L and © cxcecd its

limiting value of one.

An expression which turned cut to be quite pnpular
among practicioners was propesed by Shapiro &
Koitthoff (1947) and, independentiy, by Koncpicky
(1948). It reads



(2.2) 1n = kP + C

A
T-D

As in (2.1), P and D denote pressure and relative
density, respectively; k and € are constants. This
equation adequateiy represents the compaction pro-
cess over a limited range of applied pressures.

It over=zestimates the densities both at very low and

at very inigh pressures.

A theoretical explanation of (2.2} was attempted
by Togrre (1948}, who proposed 3 microscopic model of
a hollow metal sphere with negligible internal pres-
sure, exposed to surrounding hydrostatic pressuce.
In this way he tried to represent pores in solig
maiterial. By assuming a rigid - periectly plastic
naterial - he arrived at (2.1) with

3
(2.3) k=3G_  C=0

L)

Gg Eeing the upper yield stress of the material.
Unfortunately, Torre's expression (2,3) does not agree
with experimental evidence which, according to Heckel

(1961), rather suggests

(2.4) k =

rurther, by setting the constant C equal to zero,

a vanishing pressure P would imply a vanishing density.

Hewitt et al (1973) extended Torre's theory by in-
troducing strain-hardening, which enabled them to
guite accurately predict the compaction process for

all but the very low and the very high pressure areas.

Many more curve-fitting models have been proposed,
but none of them seems to be free from the drawbacks

of the models described above.

Recently, attempts have been undertaken to describe
the powder material in terms of relationships between

stresses and strains, thereby utilizing the mathe-

matical theories of elasticity and plasticity.



Early work in this field was done by Suh (1969),

who proposed a yield-criterion to predict the plastic
flow of a frictional work hardening granular material.
His yield surface has the geometrical form of a
revoluting lemnisecate. Depending on the stress
state, the material may undergo an increase or de-
crease in volume. In a hydrostatic state of stress
pure volume decrease will occur. In a general load-
ing situation, the surface will change in order to
include the work hardening effect. Suh does not

mention any comparisons with experimental results.

Another early proposal for a yield criterion is due
to Kuhn & Downey (1971), who extended v. Mises'
classical criterion by allowing the mean stress to
influence yielding. When the density of the compact
approaches the thecretical limit density, this depen-
dence on the first stress invariant is gradually
removed and v. Mises' criterion is recovered for the
fully compacted body. The magnitude of the yield
stress does -not only depend on the deviatorie
strains, but also on the degree of densification.
The relation between stress and strain is determined

by a normality flow rule.

Kuhn & Downey tried to verify their theory using

iron powder samples of varying densities. The samples
were fitted into a die and an axial load was applied.
By measuring the axial stresses and strains, the
density was calculated for incremental deformation
steps. Except for high stresses, the formal agreement
was good. Even for experimental data due to Antes
(1970), who reported homogeneous compression and plain
strain compression tests on sintered compacts from
different.iron powders, a reasonable agreement was

found except for high stresses.



Theoretical work on plasticity models suitable for
powder material has been carried out at many places
- among them notably the USSR and Japan - during

the past two decades. However, there seems to be a
general lack of empirical support for these models.
In other words, the effort spent to do careful test-
ing and to perform experimental verifications most
often did not match the mathematical sophistication
of the models. For practical purposes, simple
empirical relutionships as the ones discussed at the
beginning of this section, despite their often
serious principal drawbacks are still more useful.
It appears therefore that real progress in this
field only can be made by a united effort in the

experimental, theoretical and computational fields,

Such an effort has recently been initiated by the
Philips Research Laboratories, Eindhaven, The
Netherlands. Philips has during the past five years
developed an impressive setup of advanced test equip-
ment for, in particular, ceramic powders.

The equipment consists of: (i) a triaxial cell for
the accurate measurement of axial and volumetric
strains of cylindrical specimen (Meerman & Knaapen
(1979)), (ii) an apparatus for the measurement of
the friction between powder and die wall (Strijbos
(1977 ), Strijbos et al (1977)), (iii) an X-ray
radiographic instrument with subsequent computer-
controlled microdensitometric evaluation af the
exposed X-ray film for the accurate measurement of
density variations in pressed products (Broese van

Groenou & Knaapen (1980)).

In collaboration with the geotechnical laboratory
of Delft University of Technology, Philips has also
undertaken some computational studies, based on an
extension of the Mohr-Coulomb type of yield surface
(Strijbos et al (1979), Vermeer (1980)).



Excellent reviews of the work by the Philips group
were given by Broese van Groenou (1978, 1980) and

by Strijbos et al (1979). Although these studies
are of great interest for our present project, they
will have to be carried further in two main areas

in order to be really useful for the understanding
of hard metal powder compaction.  Firstly, the tri-
axial equipment used by Philips only allows hydro-
static pressures up to about 50 MPa, whereas a limit
of 250 MPa would be desirable for our purposes.
Secondly, the computational studies have so far been
restricted to two-dimensional calculations of
cylindrical test specimen, while our present work

is aimed at the full treatment of realistic, three-

dimensional powder compacts.



EXPERIMENTAL STUDIES

Equipment and experimental techniques in
the present work

This section deals with the experimental techniques
used to appraise the mechanical properties of a
standard grade of hydrostatically pre-compacted
SANDVIK hard metal powder. The following three
types of tests were employed in order to determine
the numerical values of the parameters entering the
suggested constitutive equations of this material.
(The symbols used in the text below are explained

in figure 1. Compressive strains are assumed nositive.)

- Uniaxial compression tests d1>- dz = 63 = 0
- Hydrostatic compression tects g, = d, = a4
- Triaxial compression tests 61 > 62 = d4

O

Specimen :
length/diameter |
=2 :

- 0, =05

of

Fig. 1: Notation used in the text

An Instron, 500 KN universal testing machine, provided
the necessary loading force in all our experiments.
This machine can be operated in three different
conttol modes: constant displacement rate, constant
load rate, or it can be controlled by any user-
selected transducer based on one or mare strain

gauges .



All our experiments were carried out at room
temperature. The high-pressure tests were per-
formed in a piston and cylinder apparatus (Fig. 2).
The machine was controlled in the constant displace-~
ment rate mode in both the uniaxial and the hydro-
static compression tests. 1In the latter the specimen
chamber ((4} in Fig. 2) was first filled with oil

to a level well above the specimen. The top piston
((1) in Fig. 2) was then advanced downwards at a
constant displacement rate, and thus we achieved

an approximately constant rate of increase of oil

pressure by 3.2 MPa/min.
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Fig. 2: Piston and cylinder apparatus; 1) top
piston, 2) vessel, 3) bottom piston,
4) specimen chamber, 5) top and bottom
o-ring seals, 6) confining pressure
inlet (after Alm (197 ))
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The triaxial compression tests were somewhat more
difficult te carry out because of the large deforma-
tions and small differential loads. To avoid large
fluctuations in the load reading we found it necessary
to control the confining pressure within 0.5 % over
the pressure range 1-60 MPa. It was not possible to
cbtain such stability by adjusting the flow of oil
through an ordinary constant pressure valve. We

did, however, obtain an excellent pressure stability
by using the signal from a pressure transducer

(HBM P3M 200) as a feedback signal to the servo-
controller of the [nstron machine via a strain tranc-
ducer conditioner. The differential load on the
specimen was then obtained simply by opening the high
pressure valve and letting out a small and steady
flow of o0il. The flow rate varied somewhat during
the experiments and this caused small changes in

the displacement rate. These variations were too

small to have any significant effect on our results.

The top o-ring seal ((5) in Fig. 2) moves with the
top piston. friction between the seal and the cylind-
rical wall contributes to the readings such that we
tend to over-estimate the load when inereasing it

and likewise, underestimate the load when decreasing
it. Moreover, this friction becomes more pronounced
with increasing oil pressure. This effect is clearly
demonstrated in Fig. 9 (see p. 21), where each
reversal of load direction causes the curve to drop
fairly vertically, corresponding to the asscciated
friction. Corrections based on these observations
were therefore applied to the load readings in all

the high-pressure experiments.

The cylindrical specimens, 60 mm long and 30 mm in
diameter, werc machined from hydrostatically pre-

compacted hard metal powder. The specimens were
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covered with latex rubber to prevent high-pressure

. fluid from penetrating into the specimens. Although
the powder was pre-compacted, the specimens were
highly porous and large deformations 25 %) took
place during the experiménts. This made it imposs-
ible to measure the strains by conventional strain-
gauge techniques. A new equipment for measuring
large displacements was therefore designed. The
deformation gauges which are shown in Fig. 3 were
made of spring steel blades with strain gauges fixed
in positions to give maximum output. They were
connected in such a way that echanges in strain-gauge
resistance caused by variations in temperature and
confining pressure were “balanced out. Despite the
careful constructioh of the gauges, however, some
pressure effects could not be balanced out. These
were corrected for by subtractihg the high-pressure
readings obtained with no specimen in the gauges

from the recorded data on the various specimens.

Fig. 3: Deformation gauges used in the experiments

The axial deformation was measured over the whole
specimen length by means of three cantilevers fitted

on the bottom steel plate. The upper ends of the
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cantilevers rested on a 45° conical steel stamp
placed on top of the specimen. When the specimen
deformed, the top of the cantilevers moved hori-
zontally outwards and indirectly registered the axial
deformation. This gauge was calibrated by comparing
the reading of the gauge with that of a precision

displacement gauge (LVDT).

The radial deformation was measured by means of a
trianqular-shaped gauge that was fitted directly on
the specimen. It was important to ‘measure at half
the cylinder height since friction between the speci-
men and the steel end plates affected the radial
deformation near the ends (c.f. Fig. 4). A coarse
calibration of this gauge was obtained from the
readings of the gauge, when placed an three different

aluminium cylinders with diameters 28.0 I 0.01,

30.04 £ 0.01 and 31.05 I 0.01 mm, respectively. A
finer calibration was accomplished by deforming these
aluminium cylinders and comparing the readings with

those of the strain gauges fixed on the cylinders.

a (¢} c

Fig. 4: The shape of the hard metal powder specimens:
a) undeformed, b) after a hydrostatic com-
pression test, c) after a triaxial compression
test
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The load was registered by the load cell of the
Instron machine. The signals from the load cell
and the deformation gauges were recorded on an
analog Hewlett Packard 7046A X-Y recorder. The
curves were then digitized on a Tektronix digitizer
for quick and easy data evaluation and presentation.

The experimental set-up is shown in Fig. 5.

Fig. 5: Experimental éetjup

Experimental results

e e e e e e v S e v S = w —— -

Cylindrical powder specimens with varying deqgrees

of hydrostatic precompaction in the range 10-180 MPa
were subjected to uniaxial loading. -Béth axial and
radial strains were registered. A typical stress-
strain diagram is presented in Fig. 6. 1In Fig. 7

we show the dependence of failure stress on the
degree of precompaction or, more concisely, initial
relative density which is defined with respect to

the density after sintering.
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Fig. 6: Typical stress versus strain diagram from
uniaxial compression tests; specimen pre-
compacted to 40 MPga.
B.0 ~ L)
5.0
g
@
40
uy
w1
i
&>
w 9 /
-~ ’-rlf
20 .
."--’
o
/
L
U e 1T T L e T T | T T T T T T ™ =
L00 45.0 50.0 550 508
REL. DENS. [% ]
Fig. 7: \Uniaxial failure stress versus relative
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As expected, the tailure stress increases for
increasing initial densities. The scattering of
data for relative densities above W53 % (~80 MPa
precompaction) can probably be attributed to defects
like small cracks, to lack in parallelity of the
test cylinder surfaces, and to end effects at the

contact surfaces.

Different displacement rates in the range 0.004 to
40 mm/min were tried, but did not lead to any sig-
nificant changes, except possibly to increase
failure stresses for high displacement rates. By
recording both axial and radial strains during
unloading, it would be possible to obtain values
for Young's modulus and Poisson's ratio for all
degrees of precompaction. Due to insufficient
resolution in our radial strain measurements, however,
it turned out that we were unable to obtain accurate
estimates o7 the latter. The dependence of Young's
modulus on the relative density was similar to the
behaviour of the failure stress, showing an increase
for increasing density.

for relative densities in the range 39-57 % we
obtained values of Young's modulus between ~300 MPa
and ~ 10,000 P Ma, whereas Poisson's number was esti-
mated to lie around 0.15. Refined experimental
techniques will be required to improve the accuracy

of these figures.

Hydrostatic compression tests were carried out on
3 different deyrees of pre-compaction: 10 MPa,

20 MPa, and 40 MPa. Before starting the planned
series of tests, we studied the isotropy of the

material. If the pre-compacted powder could be
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considered as an isotropic material, we could reduce
the strain measurements to record the axial shorten~
ing of the specimens only. Fig. 8 shows the nydro-
static pressure versus axial and radial strain for a
specimen pre-compacted to 20 MPa. We observe that
the curves differ slightly at large strains. Several
explanations have been suggested for this difference,
but we believe that it is mainly caused by disturb-
ances at the three contacts between the gauge and
the specimen. llowever, since this difference was
small in relation to the total strain, we assume

the material to be isotropic.

120 —
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+—Axial strain €,
1 Radial strain €,=€,
L)
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6 8 10 12
STRAIN (%]

o]
Ko
b

Fig. B: Hydrostatic pressure versus axial and
radial strain; specimen pre-compacted
to 20 MPa.
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Fig. 9: Typical hydrostatic pressure versus axial strain
diagrams for three degrees of pre-compaction,
10, 20, and 40 MPa {(dashed curves; they are
corrected for friction. in the top seal).
The solid curve is calculated from recorded
data without any corrections.

The solid curve in Fig. 9 is an example of the
typical relationship between hydrostatic pressure
and axial strain for a specimen pre-compacted to

10 MPa. The dashed curves shaow typical results for
the three degrees of pre-compaction after correction
for friction in the taop o-ring seal. The diagram
also displays the response of the material to cyclic
hydrostatic pressure. Typical data obtained in the
hydrostatic experiments are summarized in Fig. 10.
The small distortion of the cylindrical shape close
to the end plates was neglected in the calculation

of the densities.

In Fig. 10 we also show the "plastic” components
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obtained by considering the strains remaining

after unloading.
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Fig. 10;: llydrostatic pressure versus relative
density.

Triaxial compression tests (612'62 :63)

friaxial compression tests were carried out at four
different confining pressures, 15, 30, 45 and 60 MPa.
fhe tests were perfarmed on specimens pre-compacted to

10 MPa. The average displacement rate was 1.5 %1 mm/min,
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and the tests were stopped at approximately 35-40%
total axial strain. The results of the triaxial
tests are presented in Fig. 11. In order to facili-
tate a comparison, all strains are indicated rela-
tively to the volumetric strains caused

by the respective confining pressures. The total
strains are therefore obtained by adding together

the hydrostatic and the relative triaxial values.

As seen in Fig. 11, we performed ecyclic loading and
unloading tests at regular intervals to allow for
the separation of elastic and plastic strain compo-

nents.

In Fig. 12 we show the change of relative density

for all four cases ["A" : 15MPaj; "B" : 30MPa;

"C" : AS5MPaj; "D" : GUMPa] . Contrary to Fig 11,

the volumetric strains up to the con-
fining pressure levels are taken into account.

It is interesting to note how the curves bend back

for sufficiently high differential stresses (Gﬁ —(32):
At certain critical stress values, the increasing
radial strains (radial expansion) more than ocutweigh
the decreasing axial strains (axial compression).

In other words, the volume starts to increase.
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TRIAXIAL COMPRESSION

168.83 —

t40.8 —

- -
128.9 —| -
N =
ter.@ — —
. B -
8. — P
60.2 — —
: -
W.B—‘ —
28,2 — -
-
a -t

L L R [ = I ' I '

35.a @2 4.0 50.08 55.0 60.& B5.0 70.8
REL DENS. [%]

dr’ - 02 {MPa]

i

|

i

Fig. 12: Change of relative density during
triaxial compression test. "A", "B",
"C", "D" symbolize confining pressures
15, 30, 45, 60 MPa , respectively.

Construction of Loading Surfaces

When planning the tests described above, our aim was
to provide data to be used in the formulation of a
constitutive model for powder material. Due to our
intention to rely on the classical flow theory of
plasticity [see e.q. Malvern (1969)] , our most
important goal was the construction of loading sur-
faces based on uni-axial, hydrostatic, and triaxial

tests.
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A severe difficulty which we encountered was the
question of definition of plastic flow for an
unconventional material such as hard metal powder.
We decided to employ well-defined strain hardening
measures and to draw surfaces of constancy of these

parameters.

Another key problem is the separation of elastic

and plastic strain components. Plasticity theory
requires the use of plastic components which may be
obtained by subtracting the elastic components from
the measured total strains. For our powder material,
the plastic components dominate by far, and were
taken to be the strains remaining after unleading
(ef. p. 21-22, Fig. 10).

In the remainder of this section and in all figures
shown below, whenever referring to "strain" we mean
its plastic component. The results for confining
pressure 6, = @; = 60MPa (denated by symbol "D"),

for which unloading data were unavailable because

of experimental difficulties, were obtained by
straightforward extrapolation, based on the available
information for confining pressures G} = 63 = 15 MPa
("A"), 30 MPa ("B"), and 45 MPa ("C").

Convenient quantities for graphical display of our
results as well as for the theoretical developments
are the octahedral stresses and strains see e.g.
Malvern (1969) or Kachanov (1971) . Denoting the
direction of the eylindrical axis as ."1"-direction
and the radial directions as "2"- and "3"-directions,

we obtain
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(3.1) G = ES_Jé_jggéj Octahedral normal stress

(3.2) Q; = %?'IG; _ G;'j Octahedral shear stress

i

(3.3) & = E%Ez Octahedral normal strain

]

(3.4) Yo Zi;‘ IE.' - 5;‘; Octahedral shear strain

In (3.3 - 4), the strains were taken to be the natu-

ral ones defined in the usual way as

(3.5 a) E

H

»@n% = P/PL(1+eL)

o

where
(3.5 b) e =

was the quantity registered by experiment and dis-
played e.g. in Fig. 11 (p. 24). For the large
strains considered, the difference between natural

and engineering strains is no longer negligible.

For the assumed and experimentally verified (c.f.

Fig. 8, p. 20) isotropy of our material, the princi-
pal axes of the stress and strain spaces do coincide.
The octahedral guantities defined above have then

very similar meanings: With respect to an octahed-
ral plane making the same angle with the three princi-
pal directions, & (Eo) and ,to ( J\VQ_)
represent the normal and tangential components of

the stress (strain vector). The relations with
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the stress and strain invariants are given by

w
o~
G
i

lqA
-
]}

'.%(G;*Qz“'ga)

G 6 s s A (6 6 )

G.o) T« V2T - 4lE-a)h b )]
) I/
G Lo o 2 el A I AN A RS G A A (v

and the lengths of the stress and strain vectors in the

octahedral (Rendulic) plane are easily calculated to be
4
2 2 12
[65° + )
E 5 !6‘0 2%
VE Ll = Leo M T) J

.10 |3, |

i

(s.11) E¥

H

We have chosen to adopt E* as defined by (3.11) as

a convenient distorsion measure (effective plastic
strain) for the construction of load surfaces in octa-
hedral stress space. For compariscn, however, we also
show two alternate families of surfaces based on the

constancy of £° and E; , tespectively.

Before presenting the final figures, let us first

consider how they were obtained.

Fig. 13 shows the first basic piece of information,
the hydrostatic stress - (plastic) strain curve for

a cylindrical specimen precompacted at 10 MPa.
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Fig. 13: Hydrostatic stress versus plastic
octahedral strain.

In triaxial experiments, the situation is much more
complicated and we have therefore chosen to display
the interrelationships between the various quantities

entering egs. (3.1 - 11) in some detail.

Figs. 14 and 15 show the axial shortening as function
of G; and Q%, respectively.

Figs. 16 and 17 show the increase of radial strain

in the same situation. Note that the triaxial loading
has been preceded by a hydfostatic compression up

to the confining pressure, which has led to equal
inital axial and radial strains. The same information
as contained in Figs. 14-17 is displayed in an alter-
native fashion in Figs. 18-21. As seen, the decompo-
sition into 80 and X, serves a very illustrative

purpose.
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In Figs. 22-23 we further show the connection

between octahedral normal and shearing stresses and
*

the effective plastic strain E (cf. Eq. 3.11).

TRIAXIAL COMPRESSION
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&
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L] LS ” —
4 = b
B " . - -
*
A.a — * —
TR -
A [ I I I B N |
fa I A (EI n.a 17.% z.n 2.5 %.8
Yel+ W7 il

*
“ B . A - z 4
Fig. 22: Ga versus effective strain E. VEL + (8o )2

TRIAXIAL COMPRESSION
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Fig. 23: ?,; versus effective strain E =\‘{'E_:5+(3\o/&)z.

At this point we are ready to show the portions of
lpad surfaces which can be constructed from the avai-

lable experimental data, which is done in Figs.24-27.
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In Fig. 25 we check the validity of Drucker's postu-
late [Drucker (1951); Kachanov (1971)] for stable
materials, which states that any additional loading
AG >0 will give rise to an additional plastic
strain AEP such that the plastic work done is
positive and the increment atP s perpendicular to
a tangential plane with respect to the load surface.
The asterisks in Fig. 25 visualize the end points

of the strain increments such that a A.Eo of - 0.07%
corresponds to 1MPa in the G -direction and a A(J%&)
of 0.01% corresponds to 1MPa in the T%—direetion.

The stress increment was taken to be AG, = 0.5HPa
which corresponds to AG; - —é—MPa and b-léa = f—QG—MP:J.

We will comment on various factors influencing the
accuracy and reliability of these results in the

discussion of section 5 below.

In all load surfaces it is clearly seen that points
associated with gur given confining pressure

(A: 15MPa; B: 30MPa; C: 45MPa; D: &0MPa) lie on
straight lines with slope sz which is evident from

the connection

1!

(3.12) T, 2 6 G

o

For EEFO one obtains the special case of the uni-

axial test. Unfortunately, since failure occurs
already for G:i ~ 3MPa at of2 ~ 0.25 % ,
it is impossible to incorporate the uniaxial results

in Figs. .24-27.
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THFORETICAL STUDITS

Constitutive relations

Preliminaries

During recent years various constitutive relations
for granular materials have been discussed in the
literature, see e.g. Desai (1979), DiMaggio and
Sandler (1971), Sandler et al (1976) and Nilsson
(197%). Most of these relations concern the mate-
rials sand, rock and concrete. However, the mecha-
nical behaviour of metal powder can very well be
described by any of these relations. The following
discussion is restricted to the flow theory of
plasticity, since our experimental studies indicate
rate independent material behaviour in the range

of interest.

There are two main phenomena which our material model

must account for:

{a) nonlinear dilatancy and compaction
(b) plastic flow, which depends both on
deviatoric and volumetric states of \;;

stress

To describe these phenomena, we have chosen to
separate elastic and plastic states of stress by

two loading functions. The theory of multiply
segmented loading functions has becn developed by
Koiter (19%3) and may be considered as a part of

the classical flow theory of plasticity., The present
choice of loading functions follows to some extent
sandler et al {1976) and Green and Swanson (1973).

From our experimental results we conclude that con-
stitutive relations designed to cover hard metal
powder must incorporate strains of considerable
magnitude (>40 %). Hence our analysis must not be
restricted to small strains. Convenient frame in=
variant measures of‘ostress and strain are the Jauman
stress rate tensor 2; and the rate of deformation

tensor d, respectively [see e.q. Malvern (19693.
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These are defined by
[ -] a
. e - 6." - w [} - * ~ .
(4.1) "Ef% = &y cks,g Wik 6Gj;
(* = %t) where & is the Cauchy stress tensor

andﬁlis the spin rate tensor defined by

(-2 * (u = UJ,L)

(~ eing the dlsplacement vector), and

(w3) ey = 3 (ugg e upi)

For infinitesimal deformations = ® and & =
Ay fa

N

2

where E is the small strain tensor. For the sakc
of simplicity, we will still use small deformation
notatinns in the following. However, we emphasize

that finite strains usually are attained in our

applications.,

Basic tangential stiffness formulation

Following the flow theory of plasticity, we assume
that the strain rate tensor & can be decomposed into
P

Ld I d
elastic, £%, and plastic, EF, parts, i.e.
Lard s

(4.4) 8‘:J = E:;i + E::
The skress rabte components follow from
(h.5) Gy = S%H. (é - £°)
g & kL Skl
The two seqgments of our loading function are (assuming

initial isotropic material behaviour)

(4.6)£(@J|<4)=§(G’f'9k ))G
6, k) = 5,08, 7,8 k(gg)); Go-’—"i:

where G& and Qéare the octahedral stresses defined by

(3.6) and (3.8),

B = {arcr‘ns Cw ('5'a 3". /(3’1’3)]}/3 G;_ G‘_ 31151.3
is the angle of slmilarlty, anq k (ElL) and k (

(4.7)

are two hardening or softening Functions which account
for the material destruction. The Rendulic section

of the loading function is shown in Fig. 28.
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Fig. 28: Two segmented loading surface

Plastic loading occurs if one of the following three

conditions is met:

(w.8) { % (8.,k)

O and ‘S:(G::aJk‘l): O

P 1
5 (&, k) < o
(4.9) 5, (g— y k) <
N {39.( 6z, k) = ond £, (83,k,) = ©
R 5,(65,)) = 0 and f,, (63, k,) = ©
5. (6?5; k,) = © and 5';_(& l&) =0

LJ,J
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The two conditions {(4.8) and (4.9) do not deviate
from the ordinary single segmented loading condi-
tions. The condition (4.10) implies that the stress
point lies on the intersection of the two surfaces.
We will show that the plastic flow from the condi-
tions (4.8) or (4.9) will follow as special cases

of the condition (4.710). During the plastic flow,

an extended normality rule ikoiter (19535] 18 assumed
to hold

P a0 5 ) D8,
411 €y = 2, 28, + 1’-—’35':{
)

From eqs. (4.5) and (4.10 - 11) we obtain
(4.12) % = 2% & ;.,%L?ﬁ_é‘p

1 06 4 P i
- % Sou (8- 42 -3,%)
T Wy Okl Tk T A, T 298, )T
v 98 Ok (4 0%, 4 Q@5 )
and
(. B g, 9% Ok P
(4.13) §, = o6y e + Taf:_ '3&'.“3"’ CCJ

Equations (4.12) and (4.13) can be rewritten in

matrix form as

(4.14)

A BY [ 2, E

I

¢ DJl3 F
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where

A= 9 g % _ 05k 9
Wy gkt QQL Ty ET 96,
B = '351 f; — (Dﬁfgkf(bii
gkl %;,_ 0k REF o6,
s L 2% G 05 950k O
(4.15) oy '-&"L%‘ é‘i’é’é,;fa%
= 2% ST y . 05 Ok, 05
o= &y Sy 68, ok et e,
E = 2% ST 8
= %:-3‘ S'#"L E’kL
F - 2% ST €

QT% S::;ch S

The two special cases (4. 8) and (4. 9) are obtained

from equation (4.14) by 12.:0 and 1 z 0,

respect-
ively. Thus

. o5, \
wae A, = 2R = & v Siu S (=0

and
(4.17) :'.!.3_ = % = ;) @? SL‘kLEkL (i "o)

From equations (4.5) and (4.11), we obtain

_ e " 05 e h (95:‘1
(4.18) b‘g = SgkL {8“- - A ’DG‘ rsmn '”"T}?kl.}
4 e 9f ’}

and hﬂﬁ: C))

(4.19) . e 4 QS e  0f,
{S‘:J"’L - 5?‘2:3 ST'SH, Sugmuq_ ek‘i'

(3, = o)
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for the case Z‘xo and A, % © we find from equa-
tion {(4.14)

(4.20) (A =
[&;] ) ) DE - RF
: dD—-R
?g,_J PR AR~ ce

From equations (4.5) and (4.11) we obtain
. a s e Of
(4-21) G:-J = SgkL S "' gkl. ﬁ SLJI(L Doy

{ e 1 [«as, e e 0,
LsijkL ~ ap-sc LG, Dsﬂjm Sr-.s!d%‘m

-8 e o & %
06_‘"” (BS;Q-M" Srs\d_"" CSEJ S LL)

Qs e s, (¢
‘% 5 S5 S I}

or

.
(4.22) G:-J = Sa-gkL EiL
ol i . : ) X
where o~ is the elastic-plastic tangential stiffness
tensor. We notice from equation (4.2:l) that §ap is
unsymmetric for the case 14*&0 and ;5.,_3,3.9, unless
B = C. This will anly happen if

(4.23) 0% Ok 9% 95 9k 9

O Ly, T ok, D] Ty
Thus, in the general case our solution procedure
must consider this unaymmotry For the cases
"\Hg;o ﬂ =0 and ﬁzﬁ; o, 2,40 we obtain sym-
metrical stiffness matrices, c.f. equations (4.18)

and (4.19).
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On the choice of loading and hardening

In order to apply the general theory previously discuss-
ed we need explicit expressions for loading and
hardening functions, We will assume initial iso-
tropic material behaviour and independence of the
angde of similarity. Thus, the loading functions

can be completely determined from the mean stress G;,
the octahedral shear stress 1;, and the hardening

functions k’ and kz'

The two loading functions, which we propose,

are

(s.24)  5(6,, 7T, k,) = T, « 1(6“,)— L<,,(€ki),-

°
and G% = GBC
el 2 ( T; 2
(4.25) gz(go:,to, kz) = (_0_5__25.) + _B_) --4.;
G2 6,

where @, characterizes the centre of the ellipse.

Thus, the function %,ﬁi) determines the frictional

angle
(4.26) P . % . 99(67)
96, 26

and the functions a and b determine the semiaxes of

the ellipse.

In the following we assume

-, G,
(4.27) eI,(G;) c, e €27

L}

where c1 and c2 are constants. Furthermore, we

define a ratic R = a/b of the axes of the ellipse.



Thus, we have

~ C,6,
w.20) §,16,, T, , k) = T, + ce 2°_ k;

6, 6

and

\ 2 2,.2 ']2

s 5, (6,T, k) = G6) « R%- [Bk)-6]
G, = 6,

where G;m denotes the intersection between the

ellipse and the &, axes (G, = G;c’).

The loading function 52_ (Go,’fo,kz) will in the

following be denoted as the "cap". Its intersection

with the hydrostatic axis, G%m’

is assumed to be
. P_ &5/
governed by the volumetric plastic strain g, = %Kk/g

The intersection between the two loading surfaces

51 and 53 can be found from the equations

(4.30) Rc‘de-cz(;ac - G.oc. = G;m (E,P) + ‘R‘kf (x‘:

e

and
n- eﬁ”ﬂ (E:) = G;;c
Loc R

respectively.

(4.31)

From our assumptions it thus follows that G'oc.
depends both on the volumetric and the deviatoric

part of the plastic strain tensor.

DiMaggio and Sandler (1971) propose the following

cap hardening relation

(4.32) EOP - _ W L&D(Gom - G.;m)_ 4]

or

P
ws G, = Z[l1- &)1 + %,
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where b‘! and D are material constants and °G;m is

the initial position of the cap.

The constants <, and <, of the loading function
§, can be determined from two deviatoric stress
1

paths, e.g. the uniaxial compression test

(Go = 5/35?;=Y§_'5/33 § is the ultimate stress)

and the biaxial compression test ((? = 2ot 5/3-
. ° J

Q/o = \G."'.:L:v'/g)- ol s the ratio hiaxial to uni-

axial strength).

If we, for simplicity, assume that the metal powder

lacks cohesion, we find C4=ka. Thus, for this case

(4.34) Cz . -—i,@n [_4 - VE-'J:/(3I(4)]

¥
Finally, we obtain the constant k1u{)fr0m the condition
5§ =0; ’Co —  k, when G, —am 00 .

For simplicity, we assume a linear hardening of
the ultimate shear strength.
Thus,

= P
.32y k, = H %o
where H is a material parameter.

Deviation of gradients of the loading functions

In order to establish the tangential stiffness
coefficients, we need the gradients of the loading

functions 5'; and 52. For :F1 we have

(4.33) 03, _ 0% 28 2%

—t = +
QG"-J 08, 'b(?‘.'_j T, 9,;)

R

With

(4.34) Q B'n S:J‘
063, 3

]
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and
o7, e
(4.35) __© = &j
26 37,
we find
£ C.6 ~A
(4.36) ?ag = cee>” i} N G3.
& 3 37,
(4.37) 054 0, Ok, OnP
= - d3q )
(e tcg Pk, 7537} ge‘_dr
With
P
(4.38) ’D&, - P l/
€ =k (E"J ) (3x7)
we obtain
L P l
w38 =t ~ 44 (&) -/(35\‘:)
9
Similarly, we obtain for £Z
(4.39) ..@..&- - Y2 g?o + 95,_ 92;
or, with (4.34) and (4.35),
Q5 2 l
(4.40) . 2 - 2 o :;_ G‘
Furthermore,
(4.41) 9%, _ N 05 i 99&}963». 2&f
08}3 - L6, 96, 06,,, § 9P OEP
where + 952- Qgﬂ: 98‘:
(4.42) QEF 3.
Y

%]
-
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As noticed from equation (4.30), there is no
obvious solution for Egc. We therefore propose
to solve Eﬁn numerically from equation (4.30), using

an iterative technigue:

(4.43) B}:n = "U’* L&, + Rky ~ “))/R%]} /c

i
vhere B;i)and ?m_fz)denote the first and second esti-

mates of Gﬁt , Tespectively.

08;
To obtain an approximation of the gradient Ry%g;
£
we solve numerically &G / ‘:\&pm for a given G‘__:
and A?”'
‘Cnﬁ-& - &6
n 290 G
(4.46) AB,, = KNg e (e o /f) + A5

< om

Again, we must use an iterative approach. Thus,

equation (4.41) can be rewritten

%, _ f_ 085¢
(4.45) SeF = 1 2(6,-5;.) + 2(63,, ZX

g
i s, 26 3 (D)

i
XEW &= 1 ':3/3 Py
where the gradient ‘©8g¢ /9& is computed
°
similarly to ’ae—oc_/



Frictional relations

Due to the discontinuity in material properties,
sliding can occur between the powder compact and

the surrounding die wall. The mechanical behaviour
of this sliding can in general not be derived from
the constitutive relations of the contacting mate-
rials. The general approach to formulate the sliding
relation is based on macroscepically observed
phenomena. In this report we will 1limit our dis-
cussion to a simple generalization of the classical
Coulomb's frictional law. More detailed discussions
can be found in Strijbos (1977), Strijbos et al (1977),
Fredriksson {(1976), and Nilsson (1979).

5liding is assumed to occur when

Lo

(4.46) g.(t“fn,/k) = (\%'i&)dl2 —-/u.t,.

where 't,g = [t,s') '}332']? is the vector of tangen-

tial contact forces, tn is the normal pressure, and
is the angle of friection. The sliding condition

(4.46) constitutes a surface ( a cone) in the

(ES, tn) space, c.f. Fig. 29. We assume a non-

associated slide rule. Thus, the increments in slip,

4£3 and oli-

" ?

- 29 : =
(6.47) {drs* - d 9/9{:.:. ’ =12

GL l"" = o

This sliding rule neglects the possible separation

are obtained from

between the powder compact and the die wall. However,
this separation ts assumed to be very small in most

practical compact situations.
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The increment in dissipative work de conducted
during an incremental sliding

is

(4.48) CL[V.S = ’ts . J’:S = £S4 til';1 + tSzJJ'SL

wt, (e dp)? 5t 0

(4.49) dA

H
™
.
e
N
fhy
S
NS

172
ts 1y

oy

- —p
i
—_—

g“;§ .tn-“') =0

4‘drs

>t

Fig. 29: A generalized Coulomb's sliding surface.

From eg. (4.48) we also obtain

D (W) dr )
(4.50) t = 98¢%) _ b Sfst ot=12:
= O(dr,) g (dry - dry) % L..>’oj

In general, the angle of friction is a function of

the effective slip, the contact pressure, etc.,

[sce e.q. Strijbos (1977) and Strijbos et al
(1977J. A more detailed investigation of the frictio-
nal effects during powders compaction has just been

initiatéd, and will be reported in a forthcoming paper.
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Computational aspects

We have decided to use the FEM - Program

ADINA {Bathe, K-J (1978))} for the computational

part of our study. ADINA can handle non-linearities
of both material and geometric type, but may still
be considered as a research program of manageable
size. This is important, since we have to implement
our own material model for powder material, along
with modifications to describe the friction between

powder and die wall.

ADINA runs both on the CDC computer of Luled Univer-
sity and on the IBM 3032 computer at SANDVIK computing
center, Sandviken. Program development and testing

can therefore be carried out at both places. It is,
however, planned to use only the SANDVIK facilities
for production runs. The department of process
development, SANDVIK Stockholm, which is supervising
all basic powder compaction projects, has further
access to a Tektronix FEM181 interactive

graphics system which can be used for pre- and post-

processing of finite element data.

Due to the complexity of the full problem to be
solved numerically, we have decided to proceed in

four steps:

(i) Run ADINA for the hydrostatic and triaxial load
cases discussed in section 3.1, i.e. for cylindrical
test specimens; use axisymmetric two-dimensional
elements and try to fit the parameters of the standard
Drucker-Prager material model with cap [Dricksr and

Prager [1952)J to the experimental results.

(ii) Implement the material model discussed in
section 4.1 and recalculate the load cases worked

out in (i).
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(iii) Treat tool compaction by adding frictional

relations at the boundaries in order to account for

the friction between powder and die wall. Adjust
frictional parameters to experiment.

(iv) Extend the treatment to three dimensions and

complicated geometries.

Further details and results will be reported in a

forthcoming paper.
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DISCUSSION AND CONCLUSION

Much of the work reported in this paper is prelimi-
nary in character. The experiments should rather
be termed "pilot tests" and the calculations carried

out so far have been of an exploratory nature.

However, the experimental difficulties posed by the
extremely large strains during compaction could be
overcome in a rather satisfactory way and extensions
of the techniques to even larger stresses and strains
are under way. After completion of the present modi-
fication work we will be able to handle loads twice

as high as the ones discussed in this paper.. We

will then have to concentrate even more on the eli-
mination of some factors which seem to have a negative

effect on the accuracy of our measurements.

A first important point is the elimination of varia-
tions in the initial density of the test specimens.
Ideally it would be desirable to start with the
powder itself which, however, is impossible because
of practical difficulties with the test equipment:
Bur triaxial measurements require solid specimens of
cylindrical shape and a reasonable accuracy in shaping
such cylinders can first be obtained for a minimal
hydrostatic compaction pressure of 10 MPa, There-
fore we are investigating hard metal powder compacted
to a relative density of more than 40%, whereas the

relative density of loose powder lies around 25%.
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We still believe that the resultant incampleteness of

information can be compensated through suitable extra-
polation of results for higher degrees of compaction.

If the load surfaces for powder material precompacted

to, say, 10, 20, 30...MPa were known, it would be

possible to predict the behaviour for, say, 5 MPa.

So far we have carried out measurements to construct

a significant part of the 10 Mpa - family of load sur-
faces. Major sources of errors in the quoted resuilts
are variations of up to 5% in the initial relative
density, slight variations in the cnnfining pressures
during the triaxial tests, and also end effects due

to friction between the test specimens and the stamps
of the triaxial cell. By inspecting the figures it
can be stated, however, that the irreqularities due

to such errors only had an insignificant effect on the
overall shape of the load surfaces which came out
roughly as anticipated from our study of previous

investigations of granular materials.

By studying the constructed load surfaces it becomes
apparent that the mean stress has a great influence

on the plastic flow. However, the definition of effec-
tive plastic strain (distorsion measure) is not a
straightforward matter. Thus, when using the effective
plastic strain E*, we do not generally obtain normality
between the plastic strain increments and the load sur-
faces. Further studies on the choice of effective

plastic strain measures are warranted.

In conclusion, it remains to be seen how well the model
outlined in section 4.1 will reproduce our test data and
how well it will carry over to a description of tool
pressing, which also requires a reasonably accurate
modelling of the friction between powder compact and

die wall.
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