L 1997:18
LULEA
UNIVERSITY

OF TECHNOLOGY

DOCTORAL THESIS

USABILITY WORK AND INDUSTRIAL
SYSTEM DEVELOPMENT

by
TOMMY NORDQVIST

“Fly before you buy”

Voss, 1993

Department of Human Work Sciences
Division of Engineering Psychology

1997:18 « ISSN: 1402 - 1544 « ISRN: LTU - DT - 1997/18 - - SE

Doctoral Thesis 1997:18

Usability Work and Industrial System Development

by
Tommy Nordqvist

Division of Engineering Psychology
Department of Human Work Science
Luled University of Technology

Akademisk avhandling / Dissertation
for avliggande av filosofie doktorsexamen i Zmnet teknisk psykologi,
som med vederborligt tillstdnd av tekniska fakultetsnimnden vid Luled
tekniska universitet kommer att offentligen forsvaras,

i sal F341 vid Lule tekniska universitet
tisdag den 3 juni 1997 kl 13.00.

Handledare / Supervisors
Prof Kjell Ohlsson, Luleé tekniska universitet
Prof Jonas Lofgren,IDA Linkdpings universitet

Fakultetsopponent / Faculty opponent
Prof Martin Helander,IKP Link6pings universitet

Betygsnimnd / Examination board
Prof Berndt Brehmer, FHS, Stockholm
Docent Hans Marmolin, Ul-design, Linkping
Prof Houshang Shanavaz, Lulei tekniska universitet

Ordférande / Chairman
Prof Kjell Ohlsson

ABSTRACT

This dissertation is about usability work and industrial system development. The
first part of the thesis utilizes present descriptions of the industrial system

development process to illustrate activities performed.

Following this description is a definition of usability work, together with a number
of methods and techniques deemed suitable for usability work. The methods and
techniques are analyzed with respect to when they should be used, how to utilize
them, outcome from utilization, need for supplémenting methods, practical
experiences and my own experiences from usability work and industrial system

development.

Based on these descriptions and analyses a preliminary model for integration of
usability work and industrial system development, together with some preliminary
experiences, are presented. Use and outcome from the application of usability work

methods are described for each system development activity.

Next is need for further and more comprehensive integration of usability work and
industrial system development discussed. Also traditional computer support in
system development is described followed by a brief discussion of its relevance for
usability work. A number of simple computer-based tools aimed at studying the
possibility to support development of computer systems, primarily user interface

development, are then presented.

Finally, possible future work is discussed, mainly focused on computer supported

usability work.

CONTENTS

PREFACE

ACKNOWLEDGMENTS

1. INTRODUCTION 1

2. INDUSTRIAL SYSTEM DEVELOPMENT: AN OVERVIEW 4

2.1 ACTIVITIES IN INDUSTRIAL SYSTEM DEVELOPMENT.........cocoutunumemeasisessaseresssnensneeasessssssscssasenssrenss
2.1.1 Identification Of NEEA............cccooueieoueeueureeeeereeeseeseeeeveaseisessesessnsesesssssseneenenssnsanssesenesee
2.1.2 Identification of User Requirements (Requirements Definition) .
2.1.3 Overall Design Of the SYSIEML.........cccoueomeeeeeeirreereereessesesessssssesssssssssssssessssssesessessasenssssesesens
2.1.4 Identification of Software Requirements (Software Requirements ARGLYSiS).........coovveuven.. 12
2:1:5 Software Desighsusssassassossssmiismssnimnssiinmanmmsensasasmssrsssosssrssroans e
2.1.6 Implementation and Unit Testing ...
2.1.7 Integration and Testing
2.1.8 Operation and Maintenance.

2: 2 CONCIUBIONE v snsssemsussmsmasnmmmpmemsmns s e s s e e e e e erieass
3. USABILITY WORK 17
B A BEFINTIION cmscmssssmsrmsmmassssesmpn smses s s s s s v S0 A S s S AL 17
3.2 EXAMPLES OF METHODS/TECHNIQUES FOR USABILITY WORK .. .18
3.2.1 Business Analysis (RASP)......ccoueueeuececeeeeiceeerrerens 20
3.2.2 Task Analysis, (KAT)........ .26
3.2.3 Usability Specification...........c.ccocceeeeeeveceeeeereuennen. 33
3.2.4 Heuristic EValUation...............eeeeeeeeeeeeeeeeeeeerenenen. .35
3.2.5 Cognitive Walkthrough............... .38
3.2.6 Use of Guidelines Qnd StYLEGUIAEScoooeueueeeeeeeeeeeeereeeeeeeeeeeeeeseesereneseseasesssesesesnens 41
3.2.7 PrOtOIYDING csvvivsvinssmsonisnsisssssermmassnmmmsanesssassmssmmensesssmsessnmassosnmsssesessnsmnn orsarssensassansusmsussounsmarand
3.2.8 Contextual Design o
3.2.9 Use Testing (Usability TESHINE) s:ssesmsusisssnssssssnmmmmmemsnsnssssnsasssasnsssassessssssnsssptnsnsssasssssmssssss 52
3.3 ICONCLUSIONS sssussicosssmssssssimssssvsassomssssssunsissssnsssins
3.3.1 Business Analysis (RASP).. ” 5
e L L [4 U T —
3.3.3 Usability Specification...
3.3.4 Heuristic Evaluation......
3.3.5 Cognitive Walkthrough...............
3.3.6 Use of Guidelines and StyleQUIdescoeeeeeeoveeeeeeeeeieeeeeeeeeesrisinnns s
3.3.7 Prototyping.............cecveeveceuenucns T8
3.3.8 Contextual Design................ 70
3.3.9 Use Testing (Usability TESHING):c.couerermeueurunieieieiraeseseieeeeisesenesessesesssnas s sensssssssseens 78
4. USABILITY WORK AND INDUSTRIAL SYSTEM DEVELOPMENT 81
4.1 INTRODUCTION......oocutiiueutiateiit ittt st s saeseseetene s emeasesesesesss s s esebsmsees s se s st easemeseasessesesearasessasnnes 81
4.2 INTEGRATION OF USABILITY WORK AND INDUSTRIAL SYSTEM DEVELOPMENT: A PRELIMINARY
IMODEL.....cueeeitetimtese ittt et es oo s et ettt et e R e s st e s s e s et aen 83
4.3 AN EXAMPLE OF INTEGRATION OF USABILITY WORK AND INDUSTRIAL SYSTEM DEVELOPMENT .84
4.3.1 1dentification Of INEEAccoomueueemeeieeieieeeeees v esee st seneassenn 84
4.3.2 ldentification of User Requirements (Requirements Definition) .. .86
4.3.3 Overall Design Of the SYSIEM........c.weevivverueesrereeeesvesieseseecssesessiesesesesenenins .88
4.3.4 Identification of Software Requirements (Software Requirements Analysis).. -89
4.3.5 SOfIWATE DESIGN.......c.oeeeeeiereeteeeeie et ense e nne .90
4.3.6 Implementation and Unit Testing 9]
4.3.7 Integration aNnd TESHINGceeuiueeeereeureeiireinessesssssssssesesessesesessaseseesens .93

4.3.8 Operation and MAINIENANCE.............c.oeucucueeieeuerissisieeisessiesesessiesese s sssenssssesesssssassessenns 94

AR CONCIUISTONE cusiosinssivsivmm o i s s s s eSS orasi i SR a s S SO S TS eor s 94
4.4.1 The Model, ..o s 94
4:4.2 EXDRTICICES isvisasisssssssssssssminssesaasssssssasvssssssssssdsssss oo sesss i ensss s saadssnssssasamsssnssssossvusssasnsavanenss 95

5. THE NEED FOR EXTENDED INTEGRATION OF USABILITY WORK AND INDUSTRIAL
SYSTEM DEVELOPMENT 100

5.1 INTRODUCTION 56 5 oxecibiirionsionssismsemiass mosiiisios S s s T 100

5.2 FURTHER INTEGRATION OF USABILITY WORK........... .. = ..101
5.2.1 Role of Business Analysis - 103
5.2.2 Role of Task ATIYSIS ssseivessrmmsssasions iosamnesssses o s 0o 100 5 s s 1SS0 e S n S as 104
5.2.3 Role of Usability SpeCfiCation «u:.musvsimesisinsesiiasssos i ensosta s s s ions 5 assemis o wonees 105
5.2.4 Roles of Heuristic Evaluation, Cognitive Walkthrough (Jogthrough), Use of Guidelines
AR SIYICTRIAES i1 insrersimssnssasissse irsmiasissmss Faaras anes oIS oS i AR S B 106
5,25 Role Of PYOTOTYDING vorsissomssssmmmsssss momssmsss v sisssse e a0 o5 immsshs s 55 8 S0 To s snmswses 106
5.2.6 Role of Contextual Design... 107
5.2.7 Roleof Use TeStiRB s osmessossmss sy s s s e rev s vsiss e53iins w207

5.3 ADDITIONAL METHODS INEEDED ssssv:xsussmmw 5500050055554 s0asam0s s s Faasaiassass ses s «:107

5.4 FURTHER DEVELOPMENT OF METHODS FOR USABILITY WORK108

5.5 PRACTICAL EVALUATION icucsssisvassuss susssssrassunsssssnssssevsnsssassssensisvorssesssn «:110

5.6 THE NEED FOR COMPUTER SUPPORT IN USABILITY WORK.......cooeieeuiueernsninanannns 1L

6. TRADITIONAL COMPUTER SUPPORT IN SYSTEM DEVELOPMENT ..114

6.1 INTRODUCTION :u.5.sssmwessussesssspsirssimsssmss s spiss s snsesssssss ...114

6.2 CASE SYSTEMS cxcusesussessssvvonssssssssormsorsse s s s mmvessis sl yes sess ...114
6.2.1 Analysis and Design Workbenches. 118
6.2.2 Programming Workbenches 119
6.2.3 Testing Workbenches........... el 20
6.2.4 Conclusions

6.3 USER INTERFACE TOOLScuveiimiiiiiminiiinccernctsrescseasscnsasissess s s ssssnsseassessnssssnsesenssassesssssases
6.3.1 Toolkitsc.ccceuenn.

6.3.2 THLETfGCE BUIIARYS «...ovn o nvenesminromsscsomsnsssmmssomssossnsansmmasssmssssmsmsamsnsans
6.3.3 User Interface Management SYSIEMS.......co..ececererererericcenuenerneessnnens e OSSR 123
6.3.4 Application FrQMEWOIKSc.ccccvucuiuvmreererieccneassneassnsssssssssasssensssassessssssesensnsasasssssssas 126
0.3.5 CORGIUSIONE cr.nciirsnionssinspmssinsimmsriomsasssmnnsanansmsfbsrmssssansmsiiidbishdve s RE B A B S R e e08 126
6.4 TRADITIONAL COMPUTER SUPPORT IN SYSTEM DEVELOPMENT AND ITS RELEVANCE FOR
USABILITY WIORK: i:s5s0enessusssiins o ssissaiasissiesississnssiniassoass ssaos isesinss xsssaianiossdasssass sonnsssisssssabonsss s sssnsss 129
7. SUMMARY OF THE STUDIES 132

T-1 INTRODUGCTION s 55 5esssssissassywsness s5aasys 0a03 00342 0535500005 64505400 43008 V4RS00 A U0 SO SR S ER N a3 avoamas 132

7.2 STUDY 1: A KNOWLEDGE-BASED TOOL FOR USER INTERFACE EVALUATION AND ITS INTEGRATION

TNV UTIIVES i sesosmmevsnmsnmsssnsns swsmesss s sioss o ns sy samesa9s 4 505 A S A 3SR PE 132
7.2.1 A Knowledge-Based Tool for Evaluation of User Interfaces, the KRI System132
7.2.2 Integration with @ UIMS....c.ansmmmmsaisemissnsmemassseosssssoss ...134
72 B ONCIINIONS oo ssiwmsssosssasqmomesnssossa sy g e o S S AN SRS 136

7.3 STUDY 2: KNOWLEDGE-BASED EVALUATION AS DESIGN SUPPORT FOR GRAPHICAL USER
TMTERBREER oo mesmmygsssvs s oy s T e s o e A e S BN o it o
7.3.1 The KRI/AG System
7. 3.2 CORCIUSIONS. ivisuississosiswessusnvssossssvssvossomssapssvampoveonswvssisossssvinsssnss
7.4 STUDY 3: TUNE: A TOOL FOR USER INTERFACE EVALUATION
L T) A L
T.4.2 CONCIUSIONSeveeeeeeeeeceeeceeeeeeeserseeaeeereneineseeseaeens
7.5 STUDY 4: COMPUTER SUPPORT FOR USER REQUIREMENT EVALUATION IN SYSTEM DEVELOPMENT 148

7.5.2 CONCIUSIONSoveeeeereeneeeieeaneereneesiveeeineiresesssesessessensssstesssssenseses
7.6 CONCLUDING REMARKS

8. FUTURE WORK 155

8.1 EXECUTIVE SUMMARY OF WORK PERFORMED i::uivetvsusssessismnsssissisisssisnivasssonsasinmsasssas svssisnesanens 156
8.2 CSUW IN INDUSTRIAL SYSTEM DEVELOPMENT. 157
8.2. 1 Introduetion;cosss sovss 57

8.2.2 Identification of Need

8.2.3 Identification of User Requirements (Requirements Definition)160
8.2.4 Overall Design of the System . swsvssnmaessssucaposssinpimssen nd 63
8.2.5 Identification of Software Requirements (Software Requirements Analysis). ...165
8.2.6 Software Desigh s wussssmsssssnissmisssasrosisssmmsmiismsanim s isssmeivess ...166
8.2.7 Implementation and Unit Testing169
8.2.8 Integration and Testing v 70
8.2.9 Operation and Maintenance............ e 70

8.3 STUIMMARY wocsunsvenssssessmminsssisistsssvossssssssss o 8 assuisis sasss sraessssiaissssvaesvemsspissis i avossumssssiausorsivesnses 171
REFERENCES 173

PREFACE

One of my advisors wrote in his thesis the following “Why do we go through
graduate school and write dissertations?” He also gave an answer, “it is
simply a pleasure.” Although I can agree with him, at least most of the time,

my motive were more practical.

In my work as a usability consultant, customers are often focused on issues
concerning user interface design. Most of the time they want advice on
specific design proposals. They seldom ask for advice concerning the use of
the system from a user, task or business perspective. Also, the interest in
testing the usability of a developed or proposed system is minimal. This fact
confused me, and I spent a lot of time wondering why the profession I
represent is considered to be able to support industrial system development
in such a restricted way. Therefore, I started investigate the literature and
discuss with colleagues, to get an understanding of the process of industrial
system development and to deepen my knowledge concerning possible
contributions from the human-computer interaction discipline (HCI). The
human-computer interaction discipline is defined as “the discipline concerned
with the design, evaluation, and implementation of interactive computing
systems for human use and with the study of major phenomena surrounding
them” (ACM Special Interest Group on Computer-Human Interaction
Curriculum Development Group, cited in Hix, Finlay, Abowd, Beale, 1993, p.

xi).

From this work, I realized that other professionals thought that much of the
knowledge concerning user, task and business issues was to be found in other
disciplines, not from usability experts and the HCI discipline. As I am
convinced that HCI can contribute to industrial development of computer

systems also with respect to these issues, especially if the computer systems

are going to support the work tasks performed by computer system users, I

started to study how HCI could contribute.

One of the first objectives was to understand the industrial system
development process. One reason for this was that I thought it was necessary
to understand what to contribute to. Another reason was the necessity to
understand when and how to contribute. Another goal was to investigate
how HCI could contribute in a practical way. If not possible to show (and
ideally proof) that HCI methods and knowledge can be of value, it is hard to
convince managers and developers that it should be used. A third goal (from
the beginning the main goal) was to develop some simple tools to illustrate
the possibility to support industrial system development with HCI

knowledge.

After I had started my work, I realized that my first and second goal was
much more difficult to fulfill than I imagined from the beginning. The major
reason for this was that industrial system development was more complex
than just design, development and evaluation, as it is possible to conclude
when reading some of the human-computer interaction literature. Another
reason was that much of the HCI literature did not discuss the matter of how
and when to contribute to the industrial system development process in

enough detail.

These reasons resulted in that my work focused on the two first goals, and not
as predicted on illustration of simple tools for bringing HCI knowledge into
industrial system development. Another result easily noticed is that the thesis

is not a monograph and not a collection of papers, it is something between.

Finally, the thesis is also written from a practitioners point of view. My
interest is mainly in investigating how HCI methods and knowledge can
contribute to industrial system development. Hopefully, this thesis also can
remind us of the ideas of Dreyfus (1955, cited in Carroll & Rosson, 1985, p. 12-
13).

ACKNOWLEDGMENTS

Of course, there are many people and organizations who have contributed to
this work. I will try to mention them all. Should I forgot someone, I give my

apologies.

First of all, my advisors Kjell Ohlsson and Jonas Léwgren. Without their
support and encouragement, I would never had finished, or started, this

expedition into the academic world.

Leonard Adelman, my co-advisor, gave me valuable advice concerning both

some of the articles presented, and many of the ideas expressed in the work.

My friend and colleague Per Asplund contributed to the work in many ways,
especially in discussions of many of the ideas, and by implementing some of
the tools mentioned. To be honest, some of the ideas presented here, are also

his.

My colleagues Peter Ericsson and Johan Strand contributed both practically
and theoretically to the work, for example, in implementing some of the tools

and in discussions concerning ideas presented.

Staffan Lof has shared his ideas concerning development of computer systems

with me, resulting in many interesting discussions.

Also my former colleagues at Enator Telub AB, Bjorn Bergstrém, Hékan
Enqvist, Kaj Lethovaara contributed to this work.

All the people involved in some way and not mentioned earlier. Bjérn Peters,
Sture Hagglund, Hans Marmolin, Goran Forslund, Ingemar Widegren, Ulrika
Laurén, Karl-Erik Hedin, Lennart Ohlsson, Leif Larsson, Kent Lundberg,
Kristian Sandahl, Joakim Karlsson, Nils-Erik Gustavsson, Stefan Cronholm.

Steve Andriole inspired much of my thinking by the ideas and experiences

expressed in many of his books.

Jonathan Stubbs had the patience (and necessary knowledge) to read the

thesis and to give me advice on how to improve my English.

The Swedish National Board for Industrial and Technical Development
(NUTEK), Enator Telub AB, the Defence Material Administration (FMV), and
my family provided necessary funding. Karl-Einar Sjodin, NUTEK, Per-Géran
Nilsson, Enator Telub AB, Anders Mattson, FMV, and honorable wife, thank
you. Also, National Defense Research Establishment (FOA) contributed

funding to some of the studies, thank you Ingemar Widegren.

A special thanks to my family. My wife Marianne and our children Jenny and
Johan supported me in many ways. Without this support, and their patience

with my odd working hours, the work had never been done.
Finally, I want to thank my mother and father. Evidently, without them, this
had never been possible.

Virna, April 1997

Tommy Nordquist

1. INTRODUCTION

To develop computer systems is in many situations both difficult and time
consuming, requiring expertise in many disciplines. The reason for this is the
need to understand, for example, the work to be supported by a computer
system, the technology or technologies to be utilized, and the process
necessary to develop the computer system. These demands have resulted in a
number of efforts directed to development of system development methods
and supplementing activities. Different disciplines have also contributed, for
example, system engineering, system analysis, software engineering and HCL
However, much work seem to have been performed purely within a
discipline, with only minor interest in possible contributions from other
disciplines. This is especially true if the work is studied from an industrial
system development perspective. For example, work within HCI has mainly
focused on user interface issues, different methods for identifying and
analyzing user and task aspects with respect to human-computer interaction,
different methods for making users more active participants in development,
and alternative proposals concerning user centered system design. Also, a
number of the efforts have related their work to oversimplified descriptions of
the system development process. Resulting in that HCI expertise and methods
are not utilized to its potential in industrial system development. This fact has
resulted in that computer systems developed often do not fulfill user
requirements, (see, for example, Christel & Kang, 1992; Lederer & Prasad,
1992; Raghavan, Zelesnik & Ford, 1994).

As a preliminary attempt to describe how methods and tools developed
within HCI and other related disciplines can contribute, the present thesis
exemplifies how different methods and tools can be integrated in industrial
system development. Aiming at increased likelihood that the system

developed being usable. Reason for this attempt is the issues mentioned

above, and also my experience that questions concerning the user and use of
computer systems are not given priority, or are indeed forgotten in
connection with development of computer systems, (see also Andriole, 1990;

Naslund, 1994; Palmer, 1990).

Chapter 2 presents a superficial description of activities traditionally
perceived as components in the industrial system development process. The
basis for this description is different standards for system development,
describing activities supposed, or required, to be performed in industrial
system development. The chapter also presents some preliminary conclusions
concerning handling of user requirements in connection with the system

development process.

In Chapter 3, a definition of usability work is presented. From this definition,
a small number of usability work methods are briefly described and analyzed.
The methods presented are analyzed with respect to authors views on when
they are supposed to be used, if any other methods has to be carried out as a
supplement, practical experiences, and my own experiences from industrial

system development and usability work.

In Chapter 4, my interpretation of when different methods for usability work
shall be used is presented. Also, a preliminary model for integrating usability
work and industrial system development is delineated. This model is
followed by a brief example on how to integrate methods for usability work
with different activities in the system development process, and how the
results of the methods can be used in subsequent usability work and system
development activities. The model is also elaborated further to illustrate how
different methods for usability work can be integrated in the system
development process. Finally, preliminary experiences from practical

usability work in industrial system development are presented.

From these experiences, a simple analysis concerning the need for further
integration of usability work in the system development process, is presented
in Chapter 5. Here, need for additional methods, further development of
methods presented, practical evaluation of methods, and need for computer

support are discussed.

Chapter 6 gives a brief review of traditional computer support available in
industrial system development, together with a simple analysis of its
relevance for usability work. Mentioned in this chapter are CASE systems and

User Interface tools.

Chapter 7 presents a summary of the four studies in the thesis, supplemented
with a few concluding remarks. The studies focus on computer support for

evaluation of user interfaces and user requirements fulfillment.

The thesis concludes with a discussion of possible need for computer
supported usability work (CSUW), and presents some preliminary ideas

concerning possible computer support in Chapter 8.

2. INDUSTRIAL SYSTEM DEVELOPMENT: AN OVERVIEW

2.1 Activities in Industrial System Development

This section contains an overview of activities performed in industrial system
development. From the system development standards IEEE P1233-1993
(1994), IEEE std 830-1993 (1994) and MILSTD 498 (1994), the following

activities have been identified as parts of the system development process:

o identification of need,

¢ identification of user requirements (requirements definition),

e overall design of the system,

e identification of software requirements (software requirements
analysis),

e software design,

e implementation and unit testing,

e integration and testing,

e operation and maintenance.

These activities can, to a greater or lesser extent, also be found in other system
development literature (see, for example, Andersen, Kensing, Lundin,
Mathiassen, Munk-Madsen, Rasbech & Sorgard, 1990; Andriole, 1990; Davis,
1990; 1993; Sage, 1992; Sage & Palmer, 1990; Sommerville, 1992; 1996; U.S.
Department of Defense, 1985). System development standards are point of
departure in describing industrial system development, as they are guidelines

commonly used to describe necessary activities during system development.

The present description does not suppose any specific method of system
development; it only identifies and briefly describes different activities

performed in industrial system development. The role of project management

in successful system development is not considered in this description. In
Figure 1 below, the system development process and system development
activities are illustrated. It is important to note that in this model there is no
rigid separation between different activities, often there are iterations within

and between them (IEEE std 830-1993, 1994).

Figure 1: Activities in industrial system development

2.1.1 Identification of Need

The system development process begins with a need or idea presented by a
“user” (“user” is here used as a general term for all people contributing, for
example, end-user, customer, business people) to a “developer” (“developer”
or “system developer” is used here as a general term for all the people
involved in development of a system. For a discussion of the different
qualifications needed see, for example, Andriole, 1990). This can be an
identified need for specific computer support or an idea for improvement of a
business process. This idea or need is often expressed in general terms (see,
for example, Sommerville, 1992). Usually it is necessary to help the user

identify and specify actual needs or ideas from general ideas or needs.

2.1.2 Identification of User Requirements (Requirements Definition)

Identification of need is followed by identification of user requirements (or
requirements definition). The system developer, together with the user,
identifies and defines the requirements for the future computer system. A
detailed analysis is performed to establish exact needs. The goal of this
activity is to identify all user requirements for the future computer system
and to describe these requirements in a language understandable by both

developers and users (IEEE P1233-1993, 1994).

According to IEEE P1233-1993 (1994), the identification of user requirements

activity is iterative and consists of the following four sub-activities:

o “identify requirements from the customer, the environment, and the

experience of the technical community,

build well-formed requirements,
e organize the requirements into a SyRS (System Requirements

Specification),

present the SyRS in various representations for different audiences, “

(p-17).

These sub-activities should not be seen as sequential. In most cases, there are
iterations between them. Below, is a short description of the above mentioned

sub-activities.

Identification of requirements.

With the needs or ideas identified in the identification of need activity as a
basis, the requirements of the system to be developed are identified and

defined. The purpose of this sub-activity is to identify every requirement,

check that each requirement is defined only once, and that no requirements

are omitted.

According to IEEE P1233-1993 (1994), it is important that the process of

identifying and defining requirements is managed to ensure the following:

“the process is goal directed and aimed at the production of a set of
requirements,

the system boundaries are defined,

all requirements are solicited, fairly evaluated, and documented,
requirements are specified as capabilities and that qualifying
conditions and bounding constraints are identified distinctly from
capabilities,

requirements are validated, or purged if invalid, from the requirements
set,

consideration is given to consistency when many individuals
(‘authors’) may be contributing to the development of the requirements
set,

the developing requirements set is understood, at an appropriate level

of detail, by all individuals participating in the process,” (p. 19).

There are a number of techniques for identification of requirements.

Mentioned in [EEE P1233-1993 (1994) are:

“structured workshops,

brainstorming or problem-solving sessions,

interviews,

surveys/ questionnaires,

observation of work patterns (e.g., time and motion studies),
observation of the system’s organizational and political environment

(e.g., sociogram),

e technical documentation review,

o market analysis,

e competitive product assessment,

e reverse engineering,

e simulations,

e prototyping,

e benchmarking processes and products,” (p. 19).

Build well-formed requirements.

According to IEEE P1233-1993 (1994), this sub-activity is carried out by:

e “ensuring that each requirement is a necessary, short, definitive
statement of need (capability, constraints),

e defining the appropriate conditions (quantitative or qualitative
measures) for each requirement. Avoid adjectives like resistant or
industry wide,

¢ avoiding the requirements pitfalls,

e ensuring the readability of requirements. This entails:

1. simple words/ phrases/ concepts,
2. uniform arrangement and relationship,
3. definition of unique words, symbols and notations,

4. the use of language and symbology shall be grammatically correct,”
(p. 20).

Organization of requirements into a System Reguirements Specification
(SyRS).

In this sub-activity, the set of requirements is structured by relating the

requirements to each other according to some method. According to IEEE

P1233-1993 (1994), this activity is characterized by the following:

e “searching for patterns around which to group requirements,

o utilizing experience and judgment to account for appropriate technical
approaches,

o utilizing creativity and intuition to generate alternative approaches and
to prioritize requirements,

e defining the requirements properties,

o defining the requirements attributes,” (p. 21).

There are many strategies used to organize requirements into an orderly set.
Most often utilized is gathering requirements into a service (capability)
hierarchy, where general services are divided in subordinate requirements.
Another method is to use network links (for example, hypertext), which show
relations between requirements. According to IEEE P1233-1993 (1994), the

following relations can be maintained in a system requirements specification:

e “hierarchical dependencies,
e events,
e information/data,

e physical or abstract objects,

functions,” (p. 21).

10

Presentation of requirements in the system requirement specification in

different ways for different audiences.

In this sub-activity, the optimal way (alternatively, optimal ways) to
communicate requirements to all individuals who need to understand,
review, accept, or use the system requirement specification is identified.
According to IEEE P1233-1993 (1994), one description is not enough in most

instances, (see also Sommerville, 1992), because:

e “the customer and technical community usually have different cultures
and languages; thus the same system requirements may have to be
presented differently to the technical or customer communities,

o retrieval of specific information is difficult in some representations,

e representation of interactions can be difficult to do in some
representations,

e relating information in one place to information in another place can be

difficult in some representations,” (p. 21).

Therefore, it is important to present the system requirement specification in
different ways, taking into consideration audience needs and background
knowledge. For example, a general document including descriptive text and a
selected set of high-level requirements, can be presented to customer staff
responsible for project realization. For customer staff responsible for
acceptance of the requirements, a more detailed document can be presented.
For the design team, a document including low-level requirements can be

presented.

11

Methods for describing requirements can, according to IEEE P1233-1993

(1994), be one or a combination of the following:

e “textual
- paper,
- electronic,
e model
- physical,
- symbolic,
- graphical,
- prototype,” (p. 22).

Definition of requirements usually continues after the system requirement
specification is approved. In large and complex system development projects,
it is likely that the first approved version of the system requirement
specification has overlooked requirements, and/or misinterpreted needs or
ideas. Knowledge concerning requirements also evolves in the process of
developing the system. Therefore, it is necessary to iterate the process of
requirements definition throughout the system development process. The aim
being to correct deficiencies and/or supplement the system requirement
specification with new requirements, and to enhance future computer system
qualities (see, for example, Andriole, 1996; Sage, 1992; Workshop Proceedings,
1991, for a discussion of requirement definition and the development of

requirements).

12

2.1.3 Overall Design of the System

When the user requirements are defined and approved, system design
follows. In overall system design, the focus is on issues relative to allocation
of services (capabilities) to different parts of a system. Besides these general
system design decisions, the system architecture is delineated (MILSTD 498,
1994; Sommerville, 1992). In other words, system parts, interfaces, and
communication between parts, are identified and defined on a high level.
Allocation of services to the computer system and to the user, may also be

carried out (IEEE P1233-1993, 1994).

2.1.4 Identification of Software Requirements (Software Requirements Analysis)

After system design, identification of software requirements (software
requirements analysis) follows. User requirements are translated into a
representation suitable for software development. This representation may be

flow diagrams, object models, etc., (Andriole, 1990; Sommerville, 1992).

Main issues handled in identification of software requirements are, according

to IEEE std 830-1993 (1994):

o “functionality. What is the software supposed to do?,

o external interfaces. How does the software interact with people, the
system'’s hardware, other hardware, and other software?,

o performance. What is the speed, availability, response time, recovery
time of various software functions, etc.?,

o attributes. What are the portability, correctness, maintainability,

security, etc., considerations?,

13

e design constraints imposed on an implementation. Are there any
required standards in effect, implementation language, policies for

database integrity, resource limits, operating environment(s), etc.?,”

(p4).

The outcome of this activity is a written Software Requirements Specification

(SRS) used as the main reference when designing software.

2.1.5 Software Design

In this activity, different functions are allocated to different software modules
and software is structured in a convenient way (object-oriented design,
functional design). According to MILSTD-498 (1994), focus is on definition

and documentation of:

e general design decisions concerning modules,
e architectural design for each module (identification of software units in
modules/components, interfaces and communication between units),

e detailed module/component design.

According to IEEE std 830-1993 (1994), the following is specified (see also
Sommerville, 1992):

e partition of the software into modules,

e allocation of functions to modules,

o description of information or control flow between modules,
e design of data structures,

e design of algorithms.

14

2.1.6 Implementation and Unit Testing

Software design is followed by implementation and unit testing. This activity
consist mainly of implementation of different software units (modules),
according to the software design, and testing of these units (MILSTD-498,
1994).

According to MILSTD-498 (1994), the following activities are performed

during implementation and unit testing:

o software implementation (development and documentation of
software in accordance with module design),

e preparation for unit testing, including development of test cases (input,
expected results and evaluation criteria), test procedures and test data
necessary to test the software in each software unit. Test cases shall
encompass all aspects in module design,

e performance of unit tests (testing of each software module),

o revision and, if necessary, repeated testing (including necessary
software revisions, retesting of the software and update of relevant
software documentation),

e analysis and documentation of the results from unit testing (analysis of

test results, documentation of tests and analysis results).

2.1.7 Integration and Testing

Integration and testing (also called integration and system testing; see, for
example, Sommerville, 1992), according to MILSTD-498 (1994), consist of
software integration and testing of integrated software to check that
integrated software works as specified. This process is iterated until all

software is integrated and tested.

15

According to MILSTD-498 (1994), the following activities are performed in

integration and testing:

e preparation for unit integration and testing (development of test cases,
in terms of inputs, expected results and evaluation criteria, and
development of test procedures and test data necessary for the
integration and testing),

e performance of unit integration based on software design, and testing
in accordance with test cases and test procedures,

e revision and, if necessary, repeated testing (including necessary
software revisions, retesting the software, and updating relevant
software documentation),

o analysis and documentation of unit integration and test results
(analysis of unit integration, test results, documentation of tests and

analysis results).

2.1.8 Operation and Maintenance

When the computer system is installed and acceptance tests are completed,
the system is set in operation. Deficiencies recognized when using the
computer system are resolved, and the computer system is further developed
to meet business requirements. According to Sommerville (1992), this is often
the most time-consuming activity. He divides maintenance into three types:
perfective, adaptive and corrective maintenance. Perfective maintenance is
maintenance necessary to develop the computer system further, without
changing its functionality. Adaptive maintenance is maintenance necessary to
adjust the computer system to changes in the environment. Corrective
maintenance is maintenance necessary to correct deficiencies in the computer

system that were not found during unit and system testing.

16

2.2 Conclusions

In the brief description of the process of system development presented
above, user requirements are mentioned in the beginning of the process, in
connection with identification of need, and identification of user
requirements. They are not mentioned explicitly in subsequent activities.
Accordingly, it is difficult to see how to guarantee that original user
requirements are addressed throughout the system development process. As
can be noticed in the description above, translations of user requirements are,
for example, performed in conjunction with identification of software
requirements and software design. This results in user requirements being
expressed in a totally different (and more restricted) language when
programmers are going to implement them. If original user requirements are
not considered and presented in this situation, there is a risk that
programmer interpretations of requirements are more influenced by their

own experiences than by user requirements.

As can be noticed in this Chapter, the identification of need activity is
described very superficially in the literature and little guidance is provided
for the people that are to perform that activity. This activity seems to be
superficially described also in the Software Engineering and Human
Computer Interaction literature (see, for example, Dix, Finlay, Abowd &

Beale, 1993; Nielsen 1993; Naslund 1994; Sommerville, 1992).

Also found in the literature surveyed, is that the original user requirements
are divided in functionality and user interface (see sub-section 2.1.4). This
separation is still present in software design, implementation and unit testing,
and integration and testing. In the developed system then, functionality and
the user interface is hopefully unified, rather than being iteratively integrated

throughout all system development activities.

17

3. USABILITY WORK

3.1 A definition

Usability work, as described here, comprises those activities that support
development of usable computer systems. From the definition presented in
Lowgren (1993), (other definitions can be found in Adler & Winograd, 1992;
Card, Moran & Newell, 1983; Nielsen, 1993; Whiteside & Wixon, 1987; Woods
& Roth, 1988):

“usability is a result of Relevance, Efficiency, Attitude and Learnability
(REAL).

e the relevance of a system is how well it serves the users’ needs,
o the efficiency states how efficiently the users can carry out their tasks
using the system,
o attitude is the users’ subjective feelings towards the system,
o the learnability of a system is how easy it is to learn for initial use and
how well the users remember the skills over time," (p. 52),
usability work is defined as those activities that increase the likelihood that
requirements related to relevance, efficiency, attitude and learnability are
fulfilled in the computer system. Hence, usability work are those activities

that contribute to:

o definition of the user requirements, in terms of services the system
should deliver,

o definition of how, and to what extent, these services should support the
user performance of work tasks,

e users perceiving the system to be good,

e easy learning and that knowledge is there for later access.

18

In this definition, development of the user interface and system services are
not separated. Even if these activities can be separated (as is often the case in
current system development practices), it is in my opinion necessary to treat
them as supplementary perspectives both influencing computer system

usability.

3.2 Examples of Methods/Techniques for Usability Work

From this definition of usability work, there - are many methods and
techniques that may be referred to as parts of usability work (for the sake of
simplicity, the term method is used to mean both methods and techniques). In
the sub-sections of 3.2, examples of these methods are presented (The
interested reader can find more methods and techniques in Dumas & Redish,
1994; Nielsen, 1993; Nielsen & Mack, 1994; Preece, Rogers, Sharp, Benyon,
Holland & Carey, 1994, part 6). The basis for choosing the methods described,
from the larger number of possible choices is that each fulfills one or more of

following requirements:

o it should focus on some or more of the activities in the system
development process described in Chapter 2,

o it should have been used in commercial system development,

e it should be possible to integrate (at least theoretically) with other
methods,

o separate parts of the method should be possible to use individually
and/or together with other methods,

e the methods should make continuous and iterative usability work

practical throughout the system development process.

The reason for the first requirement is that the method should be possible to

utilize in some of the system development activities. The motive for the

19

second requirement is the value of practical experience from utilizing the
method. The third requirement origins from my experience that a single
method alone is not enough to address all usability issues. It is necessary to
see methods for usability work as tools in a tool box, to be used together in
suitable combinations. For this to be possible, it is often necessary to integrate
them in some way, to support each other. Requirement four has the same
basis as requirement three. The reason it is presented as a separate
requirement, is that for usability work to be efficiently accomplished, it is
sometimes necessary to adapt methods to practical system development
demands. This could mean performing less complex forms of usability work
to be able to deliver timely results. The fifth requirement is perhaps the most
important. If usability work is not performed continuously during the system
development process, there is a risk that user and use perspectives “are lost”
in one or more system development activities. From my experience (see also
Andriole, 1990; Nielsen, 1993), it is evident that for successful system
development to occur, these perspectives have to influence the entire system

development process.

With these requirements as a basis for selection, one method for business
analysis and one method for task analysis, together with the methods
usability specification, heuristic evaluation, cognitive walkthrough, use of
guidelines and styleguides, contextual design, prototyping and use testing
(usability testing) are chosen. The reason why one method for business
analysis (RASP), and one method for task analysis (KAT) have been chosen, is
mainly that the purpose of this section is to illustrate how different usability
work methods are performed and their outcome. It is enough to choose two
out of all available methods to show applicability. However, this should not
be seen as favoring these two methods over other methods for business and
task analysis. The last statement is of course true also for other methods
selected. Note, the methods selected here shall not be interpreted as

discarding the methods mentioned in conjunction with description of

20

industrial system development (Chapter 2). Usability work methods can be

considered as supplementary.

3.2.1 Business Analysis (RASP)

RASP (Requirements Analysis and Specification methodology) is a method
used for business analysis. (Other terms used for this kind of activity is
Business Process Modeling, Hughes 1996; Business Process Reengineering,
Hammer & Champy, 1993; Davenport, 1993). In RASP, people from business
systematically map and describe present business, analyze possible needs for
changes, and define future business (Telub AB & System Development
Associates, 1990; Telub AB, 1995). (Other methods for business analysis that
may alternatively be used in place of RASP can, for example, be found in
Goldkuhl & Rostlinger, 1988; Willars, 1993a, b). Business analysis can result in

and serve as information for:

e development of a computer system,
e development of organization,

o development of the staff in the organization.

The focus of RASP is mainly a functional perspective, where business is
structured in a way that reflects the task oriented structure in the business
studied. However, according to RASP, this perspective alone is not enough to
describe and analyze a business. Therefore, RASP incorporates a human
perspective (the business people) in parallel with the task oriented
perspective. The functional perspective is considered at the model level and

the human perspective is considered at the background level.

21

In RASP, modeling of business is important, therefore a generic business
model has been developed. With the generic model as a framework, business

is investigated, described, analyzed and developed.

The main components within the generic business model are:
e purpose,
e product/products,
e market/markets,
e resource/resources,
e supplier/suppliers,
e administrative instruments and reports,
e goal/goals,
e responsible people,

e business regulations.

Most important in the generic business model is the purpose of the business
(the function). From this, concrete and abstract products are realized, which
are aimed at one or more markets. The products can be a main product (the
product realizing the purpose), by-products (one or more products not
realizing the purpose, but useful for the business in some way), or other
products (one or more products that must be handled by the business, but not
useful for the business). To deliver the product or products, the business
needs different resources. These resources are delivered by one or more
suppliers. The resources can be resources attached to the product (resources
that are part of the product), or resources attached to the process (resources
used to develop the product), for example, resources in the form of
knowledge, personnel, money or information. For management of business,

different kinds of administrative instruments and reports are used. These

22

instruments and reports can be plans, policies, orders, messages, result
reports etc. For the purpose of the business to be fulfilled, there must be

business goals. Also people responsible for the business are important to

identify. Business is also influenced by external business regulations, for
example, instructions, guidelines and conventions, that the business has to

follow.

A business analysis, according to RASP, consists mainly of the following
activities:

o definition of the business analysis project,

o description of present business,

e need analysis,

e business development.

In the definition of project activity, the business analysis project is defined.
Here, for example, project constraints, activities to focus on (description of
present business, need analysis, business development), necessary members
in the project, expected results, resources needed, and responsible for the

project are defined.

In the description of present business activity, RASP experts use the RASP
method to assist business staff in developing a description of the present
business. First, the purpose of the business is identified and described. Then
other aspects essential for the business, according to the RASP generic
business model, are identified and described. If the business is complex,
partitioning into sub-businesses, or sub-functions, is carried out. These
different sub-businesses are then described according to the generic business

model.

23

To describe present business, two supplementing modeling techniques are
used. In RASP they are called functional modeling (or process modeling) and
concept modeling (or object modeling). Using the functional modeling
technique, present business, delivered products, resources needed, and the
other components in the generic model are described. Using the concept

modeling technique, different concepts used in the business are described.

In functional modeling, two supplementary ways to describe the business are
used. The first is a written notation, supported by forms for description of
functions. The second is a graphical notation, supported by function graphs.
The written description is a complete description of the business studied. The
graphical description is a summary description, focusing on the business
relation to suppliers and markets. The graphical description is also used to
identify sub-functions (sub-businesses) in the business. Sub-functions are
described in writing and by function graphs. Sub-functions can be divided
further, until an appropriate level of description has been reached. In concept
modeling, a graphical object-oriented technique is used, where concepts are
described through definition of their type instances and inherited parts. In
Figure 2 and 3 below, is an example of a written and function graph business

description.

24

Function: Company staff

Responsible: Chief of company

Purpose: Managing the company

Main product: Orders to platoons
By-products: Information to other companies,

information to commander

Markets: The different platoons in the
company, other companies,
commander.

Resources: Orders, information, staff,

reports, communications.

Suppliers: Commander, platoons in the
company, other units.

Figure 2: A simple example of a written description of a function (business)

@ \ Company stafff

Commander

Platoon 2

Commander

Suppliers Resources Business function Products Markets

Figure 3: A simple example of a function graph

In need analysis, needs and wishes for business change are identified and
described. Needs identified in conjunction with description of the present
business are supplemented with a systematic analysis of possible change
needs, carried out by business people and RASP experts. Basis for this

analysis are models and documents generated during description of the

25

present business, plus ideas and suggestions voiced by business staff. The
final task in need analysis is to prioritize change needs and to develop

proposals on how to realize changes.

In business development, the future business is designed and described,
(design alternatives may be included). Business development may take place
on up to three levels; structuring of business, design of functions (business
parts) and design of activities in business. Structuring of business is
performed in order to change the structure of the present business to more
efficiently fulfill the purpose of the business. For example, modification of the
main function or identification of new resources or products. Design of
functions is carried out when there is need to change the content in different
sub-functions. Change of relations between sub-functions, deletion of sub-
functions or creation of new sub-functions may be necessary. Design of
activities is performed when it is necessary to define and describe how sub-
functions are carried out in detail, and to describe the dynamics of this
accomplishment. Design of activities can also include description of resources
to be utilized, when they are to be utilized, who is to do what, and how

different sub-functions will relate to each other.

To support the process of analyzing and describing present business, identify
change needs, and develop proposals of future business, a computerized
support system, MacRASP, may be used. This tool supports documentation,
presentation, and consistency verification of function models and concept

models.

The outcome from RASP is characterized by a detailed description of present
business, a prioritization of change needs, and proposals for future business.
This information can then be used in connection with development of a

computer system and/ or the organization and/ or staff.

26

RASP is, according to the authors, especially suited for identification of
possible needs for development of a computer system and in defining which
part of a business will benefit from support. In this respect, RASP is of
greatest benefit during the initial stage of system development, before
decision about what to develop is made. The RASP analysis provides a basis

upon which to base system development decisions.

3.2.2 Task Analysis, (KAT)

Task analysis is a method for analyzing tasks (for example work tasks). The
original purpose of task analysis was to support selection, training and
education for different work tasks. Task analysis has been extended to include
support of computer systems development, particularly user interface. The
principal components of task analysis are the following three activities
(Bodart, Hennebert, Leheureux, Provot & Vanderdonckt 1994; Diaper, 1989;
Johnson, 1992; Johnson & Johnson, 1991):

e collection of information about task or tasks,
e analysis of the information,

e task modeling.

Johnson and Johnson (1990a, b; 1991) have developed a method for
performing task analysis, KAT (Knowledge Analysis of Tasks). KAT is based
on the TKS theory (Task Knowledge Structures, see, for example, Johnson,
Johnson, Waddington & Shouls, 1988; Waddington & Johnson, 1989a, b for a
description of TKS and its usage in task modeling) and focuses on
identification and analysis of knowledge people possess about specific tasks.
This knowledge is primarily utilized to support development of human-

computer interaction.

27

According to KAT, task analysis consists of the following activities.
Identification of the knowledge people possess about the task or tasks,

analysis of this information, and task modeling.

Before task analysis can be carried out it is necessary to:
o define the purpose of the analysis,
e identify areas to be considered in the task analysis,
o identify tasks within each area,
e choose task or tasks to be analyzed,
e define information needed,
e identify where information can be gathered,
o decide how information shall be gathered,

e select which individuals to study.

According to KAT, task analysis is performed in the following way. First is
identification of the knowledge people possess about the task or tasks. To
identify this knowledge, goals and sub-goals necessary for task
accomplishment are identified. Also, task procedures, objects used and

actions taken during task performance are identified.

Suitable techniques for identifying this knowledge are, according to Johnson
(1992):

e structured interviews and questionnaires,
e direct or indirect observation,
e concurrent or retrospective protocols,

o different experimental techniques, for example card sorting, rating

scales, frequency counts.

28

In Figure 4, below, a simple example of the results from above mentioned

activities are depicted.

Goal: Overcome the enemy unit(s).
Subgoals: Command own unit(s).
Control own and enemy unit(s).
Procedures: Give order to own units.
Get information about enemy unit(s) position and action(s).
Get information about own unit(s) position and action(s).
Actions: Look at map.
Discuss with intelligence unit.
Write order.
Send order.

Figure 4: A simple example of results from the identification of knowledge

activity

The information is next analyzed to identify representative, central and
generic task components. The term “representative” meaning that some task
parts are more representative or typical for the task or tasks. The term
“central” meaning components necessary for task performance, without these
components task completion is impossible. “Generic” task components are
components common for a set of tasks within the task domain. Generic
components are identified to minimize variation between tasks that are

similar.

When task knowledge has been identified and analyzed, task modeling in
TKS terms is performed. In Figure 5 below, a simplified example of a task

model containing goals, sub-goals, procedures and actions is portrayed.

29
Goal: Overcome the enemy unit(s)
Subgoals: Command own unit(s). Control own and enemy unit(s).

Procedures: Get information about own I_ Get information about enemy
unit(s) position and action(s): unit(s) position and action(s).
Give order to own unit(s).

Actions: Look at map. Look at map.
Discuss with intelligence unit. Discuss with intelligence unit.
Write order.

Send order.

Figure 5: A simplified example of a task model

When modeling according to TKS, the model generated contains the

following parts:
e agoal structure,
e a procedural sub-structure,

e a taxonomic sub-structure.

The goal structure is used to describe relationships between goal states. These
relationships can be hierarchical relations or control relations. Hierarchical
relationships describe how goals are divided in sub-goals. Control
relationships describe how goals and sub-goals are related to each other in

conjunction with task performance.

The procedure sub-structure is used to describe in detail, how a task is carried
out. This sub-structure is directly related to the lowest level in the goal
structure, and describes actions and objects, and the relations between them.
Each procedure is defined by a pre-condition that defines the context that
must exist before the procedure can be accomplished. The performance of a
procedure results in an explicit outcome, a post-condition. These pre- and

post-conditions are defined in the procedural sub-structure, and is a way to

30

describe the relationship between goal structure and procedural sub-

structure.

The taxonomic sub-structure is used to describe hierarchical relations between
objects in terms of their categorical affiliation. In addition, features and
attributes of each object are described. Examples of features and attributes are
object relationship to superordinate and subordinate categories,

representativeness and centrality to task context.

According to TKS theory, it is possible to model existing tasks, as well as new

or changed tasks in conjunction with their design.

According to Johnson and Johnson (1991, see also Johnson & Johnson, 1989),
task analysis can support development of computer systems during the

following activities:
“ At the feasibility / initial planning stage:

o identifying and documenting any new functions/new tasks the

computer may support,
o identify potential functionality of the system from user perspective,
o identify user population and characteristics of that population,
o identify characteristics of interface to be developed,
e allocation of function between user and system,

e assess scope/degree of larger-scale TA to be undertaken later in

development lifecycle.

31

At the requirement/ analysis stage:
e identify and document user/ Ul requirements comprising details about;
e hierarchical structure of tasks (goals and sub goals),
e how users achieve goals and sub goals,
o listing and ordering of undertaking task procedures,
e frequency with which particular procedures were carried out by users,

e reasons why and circumstances under which one procedure was used

in preference to another,
e inputs and outputs from each procedure,
e events, data used, actions, objects,

o standard set of properties relating to objects and actions, e.g.,

frequency, time taken, etc.,

e expectations the user entertains about the system after user has carried

out an operation,

e division between user and system.

At the Design stage/ User Interface Development/Dialogue design:
e provide initial input to guide dialogue and screen design, comprising;
o details of what users expect to have available to them at any one time,
o the structure and sequence of their usage of system facilities,

e the names and form of representation to be given to screen-presented

objects and events,

e information that should be available in given contexts, (i.e. design of

screens),

e structure between contexts, (i.e., mapping between screens),

32
e how much to put on the screen at once with reference to number of
commands,

e what information should go on screens and the grouping of that

information,

e what commands are needed to support user operations and what those

commands will be,

e user testing.

At the prototyping stage:

e guide initial format and presentation of prototype by indicating how

the screens should look,
o identify data that has to be displayed,
o identify operations and sequencing of procedures,

e ensure dialogue specification is represented in a format that can be

understood and verified with end users and to carry this out.

At the validation stage:

e user testing.

At the update and maintenance stage:

e identifying, documenting and cataloguing user problems,” (pp. 14-15).

35

3.2.3 Usability Specification

Usability specifications are precise and testable performance measures of a
user’s planned performance of specific tasks using a computer system (Carroll
& Rosson, 1985, see also Chapanis & Budurka, 1990). This method satisfies the
need to specify usability goals that the system to be developed can be
evaluated against. A usability specification has, according to Whiteside,
Bennett, and Holtzblatt (1988), two purposes:

o clearly express how the usability of a system should be defined,
e function as a measure of how well, and to what extent, a computer

system has fulfilled usability requirements.

The starting point in developing a usability specification for a computer
system, is identification of functional goals and usability goals. Through an
analysis of these goals, specific usability requirements are outlined that
describe the user task to be supported by the computer system, in what
respect the computer system shall support the task, and to what extent the

computer system shall support the task.

According to Carroll and Rosson (1985), usability requirements can be
partitioned into subskills, individual skills needed for successful performance
of a certain task. For example, a subskill needed in creation of a document
could be to understand commands. With these subskills as a basis, it is
possible to evaluate components of the system under development for
usability. For example, menus, dialog boxes and help texts. In Figure 6 below,
a simple example of a usability specification is illustrated (based on Whiteside

etal., 1988).

34

System Task Measuring | Minimal Planned Optimal Actual Comments
attribute measured method value value value value

Map Find specific |Time (sec.) 3 sec. 2 sec. 1,5 sec. 5 sec.

display unit

Map Look atinfo. | Time (sec.) 3 sec. 2 sec. 1 sec. Wseers | 0|
display | about unit. 3 min.

Map Understand Interviews 90% under- | 100% 85% R
display unit info. stood.

Text 'Write order Time (sec.) 3 min 2 min 1 min 4 min ol

Figure 6: Illustration of a simple usability specification example

In the system attribute column, the system property in focus for the testing is

listed. Task measured, is the specific task to be performed to evaluate the

usability of the system attribute. Measuring method, is the method used to

evaluate that the attribute fulfills the usability goal. Minimal value, is the

minimal acceptable value for this specific attribute. This value indicates the
usability baseline for the attribute. Important to note is that, according to
Whiteside et al., (1988), the values of all attributes should reach at least this

level for the total system to be regarded as usable. Planned value, is the level

defined as desirable, and the level planned to be reached. Optimal value, is
the level defined possible to reach for this attribute. This value can serve as a

goal for future versions of the system. Actual value, is the value measured in

connection with actual system use or manual work. The comments column
can, for example, be used to reference other usability specifications, where

attributes may be described in greater detail.

Usability specification is, according to the authors, used both as a way to
create a common understanding among developers about usability
requirements, and to define testable requirements against which a computer

system may be evaluated. According to Carroll and Rosson (1985), the

39

usability specification should be developed in parallel, and integrated, with

the functional specification (Software Requirements Specification).

Carroll and Rosson (1985) point to the importance of representative users and
tasks when developing usability specifications. They also advocate the use of
representative users and tasks when testing usability according to the

usability specification.

A common way to evaluate if a computer system fulfills defined usability
requirements is, according to Whiteside et al, (1988), to arrange an
experimental situation, where users are requested to solve standardized tasks
in a standardized situation. This approach makes aggregation of test data
possible, for example, time used to solve a specific task for all users
participating in the “experiment.” Data can then be compared for different
versions of the system. Carroll and Rosson (1985) advocate an informal and
qualitative test situation, where focus is to elicit as much information as
possible from each person involved with the computer system under

development.

3.2.4 Heuristic Evaluation

Heuristic evaluation is a systematic inspection method, developed by Nielsen
and Molich (1990), to identify usability problems in a user interface.
Development of this method is based on their and other’s experiences that
collections of guidelines for design of user interfaces (see, for example, Brown,
1988; Smith & Mosier, 1986) are difficult for developers to use (De Souza &
Bevan, 1990; Tetzlaff & Schwarts, 1991; Thovtrup & Nielsen, 1991). With this
kind of documents as a basis, they identified a number of general rules of
thumb (usability principles) and a method for inspecting user interfaces using

the rules.

36

The goal of heuristic evaluation is, according to Nielsen (1993), to discover
usability problems early in the development process, making adjustment of
the user interface in succeeding iterations possible. Heuristic evaluation shall
be used during development of a user interface, and not as a method to

review the usability of a already developed user interface.

Heuristic evaluation can, according to the authors, be used on early
prototypes as well as implemented user interfaces. This causes the method to
be suitable throughout the (software) development process, from early

sketches to “completed” user interfaces.

According to Nielsen (1993; 1994), heuristic evaluation is carried out as
follows. With the usability principles (see below) as a basis, the user interface
is inspected by three to five experienced usability experts for possible
usability problems. The usability experts perform inspection individually.
When all inspections are accomplished, the evaluators analyze and compile
generated comments collectively. In performing a heuristic evaluation an
evaluator inspects a user interface several times. User interface elements are
evaluated against usability principles and comments are recorded. If an
evaluator discovers other possible usability problems, these are also

documented, irrespective if there is a usability principle defined.

The evaluator decides how to perform the inspection, but the
recommendation is to inspect the user interface at least twice. The first time to
get an understanding of the user interface and the purpose with the system.
The second time, focusing on every user interface element with the usability

' principles in mind.

37

Below is a brief description of the usability principles as defined by Nielsen
and Molich (1990). A more thorough description of these principles is

contained in the original document and also Nielsen (1993; 1994).

o Design the dialogue to be easy and natural. The dialogue should
present only the information necessary for the user. All information
should be presented in a way that is in accordance with the task to be

performed by the user.

e Speak the users’ language. The dialogue should be consistent with user

knowledge and experience and should not be expressed in system

oriented terms.

e Minimize user memory load. The user should not be required to

remember information from one dialogue to another.

e Be consistent. Users should not be uncertain about meanings of terms,

situations and actions.

o Give feedback. The computer system should always inform the user

about what is occurring.

o Provide explicit exits. Give the user opportunity to exit states that are

unwanted.

e Provide shortcuts. Give experienced users access to accelerators, to

work more efficiently with the computer system.

e Design informative error messages. Error messages should be

expressed in a way natural to the user. Give information about what is

wrong and how the problem can be solved.

o Prevent error situations. Design the computer system so that potential

error situations are avoided as much as possible.

38

e Help and documentation. Design help and documentation so that

information is easy to find and understand. Information should also be

presented in a way that reflects the task to be performed by the user.

The outcome from a heuristic evaluation is a list of potential user interface
usability problems. Usability problems identified are closely related to
usability principles utilized (Lewis & Rieman, 1993). This means there is a risk
that some usability problems are missed. This risk can partly be taken care of
by supplementing heuristic evaluation with some other evaluation method.
(See, for example, Jeffries, Miller, Wharton, and Uydea, 1991, for a discussion
of the advantages and disadvantages of different evaluation methods, with

respect to usability problems identified).

3.2.5 Cognitive Walkthrough

Cognitive walkthrough (Polson, Lewis, Rieman, and Wharton, 1992; Lewis &
Rieman, 1993; Wharton, Rieman, Lewis & Polson, 1994) is a method used to
identify potential usability problems by imagining user intentions and actions

the first time they use a computer system.

Cognitive walkthrough is carried out in the following manner. Use a
prototype or a detailed design description of a user interface, plus knowledge
of the user characteristics, as the basis of an evaluation. Choose one or more
work tasks the future computer system will support. With these work tasks as
a basis, attempt to tell a believable story about every action a user has to take
to carry out a task. The story is believable if every user action is motivated by
their knowledge, or prompts/feedback from the computer system. If it is not
possible to tell a believable story about a user action, a probable usability

problem has been recognized.

39

Deficiencies in user interface specifications can also be detected with cognitive
walkthrough. Utilizing cognitive walkthrough, specifications can be inspected
and potential deficiencies such as forgotten specification, be identified. A
concrete example of what potential deficiencies can be identified is when
relevant feedback is missing as when, “There is nothing specified, that

informs a user the computer system is processing an input.”

To perform cognitive walkthrough the following information is needed,

according to Lewis and Rieman (1993):
o auser interface specification, a prototype or a completed user interface,
e a task description,

e a comprehensive description of actions required to perform a task

when using the computer system,

e description of future users and of their knowledge regarding the task

to be performed.

The main concept used in cognitive walkthrough is to attempt to tell a
believable story about why a user chooses to execute each action. Then to
critically review the story to ensure that it is believable. According to Lewis
and Rieman (1993), the following four questions are important in story

analysis:

o “will users be trying to produce whatever effect the action has?,

o will users see the control (button, menu, switch, etc.,) for the action?,

e once users find the control, will they recognize that it produces the
effect they want?,

o after the action is taken, will users understand the feedback they get, so

they can go to the next action with confidence?,” (Chapter 4.1.3).

40

The first question relates to user intentions. Often, users have no intention to
do what the developer thinks. The second question is related to the likelihood
that users see controls at all. It is not unusual for controls to be hidden, so as
to not damage a “beautiful” design. The third question is related to users’
possibility to identify the correct control. Even if users want to perform an
action, and a control is possible to identify, there is no guarantee that they will
understand it is the correct control. Note that identification and
understanding are dependent upon each other. Users may not understand
which action is correct, but a control that is easy to detect and understand
helps them to determine what has to be done. The fourth question relates to
feedback after an action is performed. Often, even the simplest action needs
some form of feedback to inform users that the computer system has

“understood” the action and that it has resulted in some form of processing.

According to Lewis and Rieman (1993), an evaluator can identify many

different kinds of usability problems with the help of cognitive walkthrough:

e erroneous or defective assumptions about users’ intentions with the

computer system,

e identification of controls (commands, switches etc.,) that are obvious to the

designer, but “hidden” for users,
e identification of possible difficulties to understand labels and prompts,

e identification of defective feedback, resulting in, for example, further user

actions despite performance of a correct action the first time.

The potential problems found through a cognitive walkthrough are often

simply resolved, since problems identified point to actions such as:
e change the user interface to be in accordance with user intentions,

e change the presentation of controls so they are easy to locate,

41

¢ change control design so that users understand their purpose,

o change label design so that users understand their meaning.

According to the authors, cognitive walkthrough can be used in the detailed
design of a user interface, to evaluate a prototype, or an already developed

user interface.

3.2.6 Use of Guidelines and Styleguides

Guidelines and styleguides are recommendations and rules that are built on
practical experience and research within the HCI (Human Computer
Interaction) area. Guidelines are general recommendations and advice
concerning design of user interfaces. Styleguides are specific rules (usually
proprietary) for the appearance and, in some cases, also the behavior of a user

interface for a specific implementation platform.

Examples of documents containing guidelines are:
o Guidelines for Designing User Interface Software (Smith & Mosier, 1986).

o Principles and Guidelines in Software User Interface Design (Mayhew, 1992).

The first document contains 944 guidelines, which deal with
recommendations and advice concerning different ways of interaction, for
example, menus, command language, forms, but also the design of help and
feedback. The second document contains 288 guidelines concerning ways of

interaction, such as menus, forms and direct manipulation.

42

Examples of styleguide documents are:
o The Windows Interface: An Application Design Guide (Microsoft, 1993).
o OSF/Motif Styleguide (Open Software Foundation, 1993).

o Human Interface Guidelines: The Apple Desktop Interface (Apple
Computer, 1992).

There is also company and project specific guideline and styleguide
collections. These often contain both guidelines and styleguides adapted to a
specific company or project. Examples of this kind of collections can be found
in Flygvapnet (1993), Defense Information Systems Agency (1994), Fernandez
(1992) and Goddard Space Flight Center (1992).

To exemplify what guidelines are, two guidelines from Guidelines for
Designing User Interface Software (Smith & Mosier, 1986) are presented:

e “Provide maps to display geographic data, i.e., direction and distance

relations among physical locations,” (p. 163).

o “Allow users to select transactions; computer processing constraints

should not dictate sequence control,” (p. 271).

To exemplify what styleguides are, a styleguide from The Windows Interface:
An Application Design Guide (Microsoft, 1993) is presented:

e “The Help menu should contain components that provide user help
facilities. The components in the Help menu usually bring up a
DialogBox with the help information. Every application should have a

Help menu. The Help menu should have a mnemonic of H,” (p. 9-70).

43

Guidelines and styleguides can, according to Smith and Mosier (1986), be
utilized in connection with both design and evaluation of a user interface.
Here, both situations are briefly described. When designing a user interface,

guidelines and styleguides may be used in the following way:

1. prior to first design of a user interface, study those guidelines and
styleguides that describe advantages and disadvantages of different

styles of interaction,

2. when overall design of the user interface is decided, study relevant
guideline and styleguide documents to identify guidelines and
styleguides valid for the specific design,

3. use the guidelines and styleguides to review the design.

Many guidelines need to be concretized, if they are to be used in a specific
design and implementation situation (Smith, 1988). An example of

concretizing a guideline is:
guideline: Give feedback.

concretized guideline: Every user action that leads to a processing time

longer than 5 seconds shall result in that feedback is presented. The
feedback should indicate length of time necessary for processing and time

elapsed.

Guidelines and styleguides are also useful in conjunction with identification
of software requirements. Guidelines and styleguides may here be used in
much the same way as in design. An advantage is incorporation of guidelines

and styleguides into the requirement specification document (SRS).

44

In relation to evaluation, guidelines and styleguides can be used in following

manner.

1. inspect user interface to be evaluated and identify user interface

elements (menus, dialog boxes, and so on),

2. review relevant guideline and styleguide documents to identify valid

guidelines and styleguides,

3. with identified guidelines and styleguides as a basis, evaluate the user

interface.

The outcome from use of guidelines and styleguides is often a list of
guidelines and styleguides with which the application does not conform. This

list can then be used to inform further development of the user interface.

3.2.7 Prototyping

Prototyping (sometimes also called modeling, see, for example, Andriole,
1989, ASTM, 1991; IEEE P1233-1993, 1994) is a method based on
understanding the difficulty to define user requirements for the computer
system to be developed. Prototypes concretize requirements, and users have
the opportunity to validate requirements using the prototype, (Andriole,
1989; 1990; Andriole & Adelman, 1995; ASTM, 1991; Wood & Kang, 1992).
Prototyping is also used in user interface design (see, for example, Nielsen,

1993).

Prototyping has many purposes. Here are mentioned some from the above

references. The purpose of prototyping is to:

o facilitate communication between developers and users and between

multiple developers,

45

e make it possible to concretize, in many cases, abstract user
requirements,

e facilitate validation that requirements on the system to be developed
are correct,

o facilitate identification of new requirements.

According to Sommerville (1992), there are the following activities in
prototyping:

1. establishment of prototyping objectives,

2. selection of functions (requirements/services) to be included in a

prototype,
3. development of a prototype,

4. evaluation of the prototype.

These four steps are supplemented with a fifth step (Andriole, 1990; Boar,
1984; Miller-Jacobs, 1991; Nielsen, 1993):

5. iteration of above steps until the prototyping work is considered
finished.

Below, these activities are described in more detail.

Establishment of prototyping objectives. It is important to define the

objectives of the prototype so that users and/or customers do not
misunderstand the purpose of the prototyping work. This can result in

erroneous expectations and frustration.

Selection of functions (requirements/services) to be included in the prototype.

It is also important to define which functions (services) to implement in the

prototype, and which not to implement. The reason for this is the necessity to

46

define what to include in the prototype, prior to prototyping. This is

particularly important for the subsequent evaluation.

Development of the prototype. The prototype is developed using one of the

techniques mentioned below.

Evaluation of the prototype. According to a number of authors, this is the

most important activity in prototyping (see, for example, Andriole, 1990;
Andriole & Adelman, 1995; Nielsen, 1993). In this activity, the prototype
being developed is evaluated against defined goals (purposes) and services
(functions). Misunderstandings, deficiencies, oversights and new

requirements are taken care of in conjunction with next iteration.

Iteration of above steps until the prototyping work is considered as finished.

It is crucial to recognize that prototyping is an iterative process, where a
prototype is further developed until the requirements and/or the evaluation
are judged to be reasonably comprehensive. Another aspect that influences
the conclusion of prototyping, is of course that the purpose of prototype

development is fulfilled.

There are a number of ways to create prototypes. Many authors differentiate
between vertical and horizontal prototyping (see, for example, Nielsen, 1993),
and between throw-away and evolutionary prototyping (see, for example, Dix
et al., 1993). Vertical prototyping, is development of a prototype that is
restricted to a specific application area, within this area the prototype is fully
developed. Horizontal prototyping is development of a prototype to illustrate
the complete system (user interface), where the prototype has restricted
functionality (Nielsen, 1993). Throw-away prototyping (also called

exploratory programming, Sommerville, 1992), is characterized by utilizing

47

prototyping only for definition of requirements upon the future computer
system. When requirements are defined, the prototype is ‘thrown away’. The
knowledge acquired is, for example, used as input to a requirement
specification. Evolutionary prototyping means that a system is gradually
developed with the first prototype as a basis (Dix, et al., 1993).

There are many techniques for developing prototypes, depending on the

demands for realism. Examples of techniques are:

e use cases (narratives, scenarios),
e paper copies of screen displays,
e storyboards,
e dynamic paper prototypes,
e limited functionality simulations,
e high-fidelity prototypes (high functionality simulations),
o selective fidelity prototypes.
Below, the different techniques are described briefly.

Use cases, (Andriole, 1989; also called Scenarios, Carroll, 1995; Nielsen, 1993)

is a technique to simply describe what a system (or some part of it) should do,
information needed, and result to be generated. A use case (scenario) is,

according to Nielsen (1993), (see also Carroll, 1995), a written description of:
e “an individual user,
e using a specific set of computer capabilities,
e to achieve a specific outcome,
e under specified circumstances,

e over a certain time interval,” (p. 100).

48

Use cases can be used in working with the user, to inspect and discuss

different proposals relative to situations of use.

Paper copies of screen displays, (Andriole, 1989) are simple sketches
concerning proposals for user interfaces, developed using some drawing
program or drawn by hand. The sketches are used to illustrate for the user
how the computer system (user interface) can be designed. The user can

inspect proposals and make comments.

Storyboards, are, according to Dix et al., (1993), (see also Andriole, 1991), a
graphical (and often animated) description of a proposal for a computer
system user interface. A storyboard presents snapshots of the user interface in
different interaction situations. With different kinds of computer programs, it
is possible to give storyboards some dynamic features, letting the program

‘play’ a sequence of snapshots.

Dynamic_paper_ prototypes, (Rettig, 1994) is a technique to illustrate and
evaluate a user interface proposal with the help of paper and pencil. The
technique is to prepare pictures describing different kinds of possible dialog
states. In evaluating the prototype, someone is acting as a ‘window manager’
and presents the picture that is the result from a user ‘button press,” ‘menu

choice,” and so on.

Limited functionality simulations, (Dix et al., 1993) are simple computer based

prototypes, developed using a simple prototyping tool (for example,
HyperCard, or Visual Basic). The purpose with these prototypes is to
illustrate and evaluate interactive aspects of a future computer system.
Another example of a technique for illustrating and evaluating interactive

aspects is ‘Wizard of Oz’, where someone in the development team is acting

49

as an intermediate between the user and the prototype (Gould, Conti &
Hovanyecz, 1983; Maulsby, Greenberg & Mander, 1993).

High-fidelity prototypes, (Lowgren, 1993, also called high functionality

simulations, Dix, et al., 1993) are prototypes developed using techniques very
similar to the technique to be used with the real computer system. This means
that the prototype is going to be very realistic, giving opportunity for

evaluations very similar to future use of the computer system.

Selective fidelity prototypes, (Voss, 1993, also called selective functional

prototyping, Allusi, 1991) are prototypes based on identification of critical
functions necessary to a user when accomplishing a task. The critical
functions are developed in the prototype. Not so critical functions are
developed using more simple prototyping techniques, for example, limited

functionality simulations, or are omitted.

3.2.8 Contextual Design

Contextual design is a method focused on customer driven development of
computer systems (see, for example, Whiteside et al., 1988; Wixon, Holtzblatt
& Knox, 1990; Beyer & Holtzblatt, 1993; Holtzblatt & Beyer, 1993; Holtzblatt &
Jones, 1993). The authors state that this method moves the focus of system
development to the customer and/or user and their work situation. Hence,
giving the customer and/or user greater influence over system development.
With this approach focus is on customers, continuous iterations, a common
understanding of the user’s work in the development team and continuous
testing/ evaluation of prototypes in the customer environment with real work

tasks.

50
According to Holtzblatt and Beyer (1993), contextual design consists of the
following five main activities:
e contextual inquiry,
e modeling of work,
o re-design of work,
o design of system (user environment),

e design of user interface.

Contextual inquiry, is an interview-based technique to study the

customer/user during performance of work in the actual work environment.
With contextual inquiry, the developer observes the work and continuously
asks supplementing questions, to understand the work (see also Whiteside et
al., 1988). During this study, investigation of issues concerning what is done;
why it is done; and how it is done, is made. Observations made and answers
to questions are written down. Usually, a number of studies are conducted
with different customers/users within an organization, to obtain as complete

description of work as possible.

When the majority of studies have been completed, the design team meets to
compile the data and to discuss interpretations. To support this process,
affinity diagrams are utilized. The diagrams are created by organizing the
data in different groups on walls. Each grouping is given a descriptive label.
After the grouping, each group is discussed and design ideas are created. The
design ideas are written down in connection with the group discussed. (A
more complete description of this process can be found in Holtzblatt & Jones,

1993).

9%

Modeling of the work, is performed after diagrams are ‘fully developed’. The

models advocated by Holtzblatt and Jones (1993) are:
e context models,
e physical models,
e flow models,

e sequence models.

Context models illustrate, for example, how organizational, cultural and
procedural factors constrain and create expectations on how people perform
work, and what they produce. Physical models illustrate how the physical
environment and the physical system influence work. Physical models also
illustrate if work is distributed to different physical locations. Flow models
illustrate different roles people take in their work. Each role represents a kind
of customer for, or user of, a computer system. Flow models also illustrate
what is needed and what is supplied to carry out a role. Sequence models
illustrate the time aspect for accomplishment of activities in work. These
models also illustrate specific tasks performed and specify in detail work to be

supported by a computer system.

Re-design of work, is performed after modeling of work has been carried out.

The purpose of re-design is to modify work to be performed, to cause
maximum efficiency of use within the system to be developed. In this re-
design, the same kind of models are used as in earlier modeling. The
difference is that here, abstract models are developed. To develop these
models, every existing model, of a specific kind and for a certain work task,
are collected. From these models, a new model is developed. Specific details
concerning individual workers are eliminated and the basic structure within
the work is emphasized. Each model is validated against already obtained

data about the work and further contextual inquiries in concert with new

52

customers/users. Already developed design ideas are also tested against the
abstract model to evaluate how close the correspondence is with new models

of work of the envisioned processes.

Design of system, (user environment) is performed with these new models as

a basis. To avoid discussions concerning detailed user interface design,
Holtzblatt and Beyer (1993) have developed what they call ‘User Environment
Design’. This technique is used to design the structure and function within a
system. This is carried out by identifying focus areas, explicitly defined places
within a system for performing a particular activity. For each focus area,

functions and work objects necessary to carry out work are defined.

In design of user interface, an appropriate user interface is designed for each

focus area. The design is then tested by evaluating paper prototypes in the
work place. The customer/user is requested to carry out their work with the
prototype, observations are made, and supplementing questions are asked.
This process is iterated with more and more fully developed prototypes, to
the point where a computer based prototype has been developed and tested.

The final computer system is developed from this prototype.

3.2.9 Use Testing (Usability Testing)

Usability testing, or use testing as named here, is a systematic way of
studying when users try to use a computer system (or a prototype) to carry
out their work. Information about problems they encounter or experience is
collected (Dumas & Redish, 1994; Lewis & Rieman, 1993). Use testing is also
called empirical testing (Adelman, 1992) or empirical evaluation (Adelman &
Donnell, 1986).

53

According to Dumas and Redish (1994), use testing is characterized by

following qualities:

e the main goal with use testing is to improve usability of the computer
system,

e the participants in use testing are real users,

e the participants in use testing try to carry out real work tasks with the
help of the system,

e what participants are doing, and what they say, are registered,

e participant behavior and statements are analyzed to diagnose real
usability problems, and to suggest proper actions.

Below, these characteristics are described in more detail.

Improvement of usability, is the purpose of use testing. The primary goal is to

identify possible problems a user has when utilizing a computer system (or
prototype). According to the authors mentioned above, use testing can be
used to evaluate prototypes, early versions of a computer system, and already
developed computer systems. (The above description is supplemented with
the following; ‘the main goal of use testing is to improve usability of the
future computer system,” and ‘the participants in use testing try to carry out
real work tasks with the help of the system, or prototype,’). According to
Lewis and Rieman (1993), it is important to remember it is the computer

system, and its possible deficits, that is evaluated, not the user.

Real users, are of great importance in use testing. If participants in use testing
do not represent users of a planned system, faulty conclusions concerning
usability may easily be drawn. If not possible to find representative users, at
least users that as much as possible are a representative sample of future

users should participate.

54

Realistic work tasks, are necessary to make valid conclusions concerning
usability of a computer system from use testing. If the computer system under
development is complex, it may be necessary to select some out of all possible
work tasks for actual use testing. Here, it is important to choose work tasks on
the basis of use testing goals. According to Lewis and Rieman (1993), it is
important that tasks selected are not too fragmented. If work tasks consist of
several sub-tasks, it is important to incorporate all these sub-tasks into use

testing.

Registration of user behavior and statements, is carried out to make

subsequent aggregations and analysis of data possible. According to Lewis
and Rieman (1993), there are two basic approaches for collecting data

concerning user interaction with a computer system:

e collection of data regarding what users are doing and how they carry

out tasks,

e collection of data concerning how efficiently users carry out a task or

tasks.

To obtain data about what users are doing, and how they are carrying out
their tasks, it is, for example, possible to observe users during their work with
the computer system (or prototype). Every problem recognized in conjunction
with task performance is noted, and then discussed with users. These
observations can be supplemented with video recordings of user utilization of

the computer system being studied.

It is also possible to utilize a technique called ‘think aloud’ (Lewis, 1982) in

order to understand what a user is thinking of during use of a computer

55
system. ‘Think aloud’ is carried out by asking users to report verbally what
they are thinking of when performing a task, for example:
e what they are trying to do,
e questions emerging in connection with task performance,
e what they are looking for on the screen,

e what different messages mean.

To make ‘think aloud” more efficient, it is usually necessary for an evaluator
to give users some help by asking questions about what they are thinking.
This is especially important if a user is quiet for a long time. This can mean
preoccupation with thinking of a solution to some issue, and thus forgetting
to ‘think aloud.” It is very important that an evaluator is neutral in asking, and

avoids giving hints to users about what to answer or do.

To get data about user performance in conjunction with accomplishment of a

task or tasks it is also possible to register, for example:
e time used by a user in carrying out a task or tasks,
e number of erroneous actions in connection with task performance,
e number of times the help function is utilized (if any),

e if the task was possible to carry out at all.

If usability requirements have been specified in advance (see sub-section
3.2.3), there are natural measures against which to evaluate actual user

performance.

Analysis, diagnosis and change, is perhaps the most important aspect of use

testing. Collected data must be analyzed and used to diagnose what real

56

usability problems exist. This diagnosis must then be used to further develop

a computer system, otherwise use testing is of minimal value.

Use testing can be performed on prototypes, early versions of a computer
system and already developed computer systems. Often, valuable
information regarding development of a new computer system can be
obtained by use testing the old computer system. It is also possible to use test
different parts of a computer system, for example, evaluation of installation

and/or maintenance of hardware and software.

3.3 Conclusions

If we consider usability work in industrial system development as different
kinds of activities that can be performed in conjunction with system

development, it is possible to illustrate this in Figure 7, below.

 UssorGlandSg
- ‘ Usability specification

" Heuristic evalussion

Use testing

Contextual design

Figure 7: Usability work in industrial system development

In industrial system development, usability work can be carried out at a

number of places in the overall process. Below, this issue is reviewed and

57

discussed. With the industrial system development process (as described in

Chapter 2) as a reference, methods described earlier in this Chapter are

analyzed from the following perspective:

authors of the various methods views about when in system development

their methods shall be used,
how method authors intend the methods to be used,

why, according to various authors, the methods should be used (outcome,

benefits),
authors’ views concerning need for carrying out supplementary methods,
experiences from practical use of the method,

my own experiences in system development and usability work.

3.3.1 Business Analysis (RASP)

When shall business analysis (RASP) be used:

RASP, as with other methods for business analysis (see, for example, the SIM

method, Goldkuhl & Rostlinger, 1988), is especially suited to identify possible

need for computer system development, and which business part(s) will

benefit from computer support. Business analysis provides greatest benefit

initially in the system development process before any decision about what to

develop.

58

Utilizing business analysis (RASP):

Activities performed in business analysis are, according to RASP, primarily

the following:
o description of business,
e need analysis,

e business development.

In description of business, present business is analyzed and described using
functional modeling and concept modeling. This activity considers a business
as hierarchical functions consisting of sub-functions. Main functions are
broken down into sub-functions, to a level where business people, method
experts, and customer of business analysis agree that descriptions accurately

portray present business.

With these descriptions as a basis, possible change needs are identified and
prioritized. When change needs have been identified and prioritized, one or
more possible future business are designed, using functional modeling and
concept modeling. When business design is carried out at the activity level,
techniques for flow modeling are used (flow charts, Petri-diagrams, Gant-

diagrams).

Result of business analysis (RASP):

The result generated by RASP is a detailed description of present business, a
prioritization of change needs, and one or more proposals concerning design
of new business. The design of new business can include overall changes on
the business level, as well as detailed changes of specific activities. According
to the authors (Telub AB & System Development Associates, 1990; Telub AB,

1995), these results can be used as a basis for development of a computer

59

system, and/or development of organization and/or development of

business staff.

Need for other methods:

In descriptions of RASP, no other methods are mentioned as a necessary pre-
condition or as a natural continuation. In the case where business analysis
(RASP) is followed by development of a computer system, authors seem to

conclude that activity models resulting from flow charts etc., are sufficient.

Practical experiences:

Practical experiences from RASP indicate that the strength of this type of
method is mainly in creating a basis for decisions about any of the following
actions; development of organization, development of computer system,
personnel development, or a combination of these actions (Enqvist &

Lethovaara, 1996).

My own conclusions:

RASP (as most of the other methods for business analysis) has been primarily
used to analyze and model businesses that are administrative in character.
This suggests that possible benefits and disadvantages in connection with
development of more complex computer systems, for example, command and
control systems and process control systems, is not clear. Business analysis is
also rather abstract, since most of the analysis is performed in meetings,

where business is discussed in a rather theoretical way.

It is also uncertain if the activity models mentioned above are sufficient for
development of computer systems, since these models provide abstract

descriptions on how activities shall be accomplished. In addition,

60

performance of business analysis is rather resource demanding. Active

engagement and commitment is needed from a number of business people.

Despite these conclusions, it is often important to perform business analysis in
connection with possible computer system development. The reasons for this

are:

e business analysis offers a better basis for decisions concerning possible
need for development of a computer system. Many times computer
system development is accomplished without any analysis of possible

need,

o it is difficult, and sometimes impossible, to develop a computer system
that supports a business (at least if the computer system is to support
complex businesses) without detailed knowledge of the business (see

also Andriole, 1990; 1996).

3.3.2 Task Analysis (KAT)

When shall task analysis (KAT) be used:

According to the authors, the KAT method is particularly effective for
generation of ideas about services needed in a future computer system, and in
evaluation of a developed computer system. The authors describe task
analysis as supporting the following system development activities (with

focus on user interface):
e feasibility study/initial planning,
e requirement definition/analysis,
o design,

e prototyping,

61

e validation,

e update and maintenance.

Utilizing Task analysis (KAT):

The activities performed in task analysis, according to the KAT method, are:
e identification of knowledge people possess about a task or tasks,
e analysis of task knowledge,

¢ modeling of present and/or future task or tasks.

In identification of task knowledge, goal and sub-goals that motivate task
performance are identified. Then, procedures used in task performance are
identified. The procedures are used as a basis to determine objects used and
actions taken during task performance. This information is collected through

interviews, observations and similar techniques.

In the subsequent analysis, goals, sub-goals, procedures, objects and actions
that are; task typical; necessary; and common, are identified. This analysis

meets the need for prioritizing and aggregating different task aspects.

Modeling of present/future tasks is carried out by creating a goal structure, a
procedure sub-structure and a taxonomic sub-structure. In the goal structure,
relationships between goals and sub-goals are described. The procedure sub-
structure describes how tasks are/or shall be performed. In the taxonomic
sub-structure relations between objects and actions, included in tasks, are

described.

62

Result of Task Analysis (KAT):

The result of task analysis, according to KAT, is:

e a description of task knowledge people possess. In other words, a
description of goals, sub-goals, how tasks are performed, objects used

and actions taken,
e a prioritization of task knowledge gained from descriptions,

e a model describing how to achieve a more efficient task design. Here,
detailed information about task goals, sub-goals, how the task/tasks

can be performed, objects needed and actions to be taken are included.

Need for other methods:

The authors do not describe need for any supplementing methods. Neither is
the need for results from any other method mentioned, nor that results from

task analysis shall be used in any other method.

Practical experiences:

Practical experiences from the utilization of task analysis in connection with
system development are not extensive, (see, for example, Johnson, 1992;
Johnson, Johnson & Wilson, 1995). Therefore, it is difficult to make any

definitive conclusions about applicability in industrial system development.

My own conclusions:

According to my assessment, task analysis in line with KAT is very resource
demanding, as task analysis is quite detailed. This implies that it is difficult to
motivate accomplishment of task analysis in an industrial system
development setting where, for example, demands on delivery time are high.
A possible solution to this problem can be to accomplish part of task analysis

early in the system development process (identification of user requirements).

63

The main purpose being to create goal and procedure structures. The
development of the taxonomic structure can be accomplished later, for
example, in conjunction with software design. Partitioning of task analysis is

also discussed in Johnson and Johnson (1991).

Performance of task analysis is especially important when developing
systems characterized by high interactivity and critical task situations. It is
important to have detailed knowledge about tasks to be accomplished with
the system, if the system shall support users in complex situations with high
demands on user actions. For example, systems for command and control,

and process control.

3.3.3 Usability Specification

When shall usability specification be used:

According to Carroll and Rosson (1985) and Whiteside et al., (1988), usability
specification is used to create an understanding in developers about the
usability goals, and to define measurable requirements against which a
computer system can be evaluated. Usability specification is most beneficial
when used in connection with specification of a computer system, and in
testing of a developed computer system. Carroll and Rosson (1985) advocate
that usability specification shall be used in connection with development of
the functional specification (SRS). They add that the usability specification
(possibly decomposed into subskills) shall be used continuously throughout
the system development process (development of the user interface) to

support continuous usability (use) testing.

Utilizing usability specification:

The activities performed in usability specification are, according to Carroll

and Rosson (1985), the following:

e identification of functional goals and usability goals (if not already
identified),

e definition of usability requirements,
e identification of necessary sub-skills,
e testing system parts (user interface elements) utilizing these sub-skills,

e testing system usability with the usability requirements as the test

criteria.

In identification of functional goals and usability goals, services the computer
system shall provide are defined, along with how users want/have to work
with the services. In definition of usability requirements, the task or tasks the
system shall support, how this task or tasks shall be supported, and to what
extent the tasks shall be supported, are defined. For identification of sub-skills
the individual proficiencies needed for task completion are identified. Using
sub-skills as a basis, separate parts of a computer system are usability tested.
For example, comprehension of menu items. When the system is more fully
developed, more complete parts are usability tested against previously

defined usability requirements.

Result of usability specification:

The outcome from utilizing this method can, according to Carroll and Rosson

(1985) and Whiteside et al., (1988), be summarized as follows:

e increased knowledge about what is needed to make a computer system
usable, and explicit definition of what is required of the system to be

deemed usable,

65

* possibility to usability test a computer system during its development.

Need for other methods:

No author mentions need for other methods as a prerequisite for usability
specification. The authors indirectly suggest task analysis, as they describe a
need for knowledge about tasks to be performed as data needed for
development of a usability specification. They also suggest use testing (in

some form) as this method is intimately connected to usability specification.

Practical experiences:

The authors reports few explicit experiences from use of usability
specification in practical system development. In Carroll and Rosson (1985),
there is a description of an example of usability specification in development
of a word processing system. However, from the description, it is difficult to
conclude if it is a theoretical example or an actual system development
project. In Whiteside et al., (1988) there are reports of the authors’ experiences
that usability specification is useful. However, a problem is that usability
specification tend to express developers’ usability requirements, and not those
of users’. Other authors (see, for example, Carlshamre, 1994; Wiklund, 1994)

report that usability specification is useful.

My own conclusions:

Although there are reports concerning the effectiveness of usability
specification, it is difficult to make any definitive claims about applicability to
industrial system development. One reason is that usability specification has
not been used to supplement functional specifications (software requirement
specifications, SRS). A second reason is that although Carlshamre (1994)

report that they use usability specifications in evaluating a prototype, nothing

66

is mentioned about its influence on usability of the final computer system.

However, it is probable that:
e usability specification can be useful,

o usability specification is very resource demanding.

Usability specification can be beneficial in industrial system development, as
it is rather easy (at least theoretically) to integrate with a software
requirement specification (see also Carroll & Rosson, 1985). Particularly
because of ease of integration, usability specification can be a valuable
supplement to the functional perspective. This is especially true if also
considering the possibility of using usability specifications to identify and

present performance measures from a use perspective.

Usability specification requires too much time and effort, especially if also the
sub-skills are to be identified, for easy integration into the industrial system
development process. Although testing is advocated in connection with
implementation and integration, usability specification at the level advocated
by Carroll and Rosson (1985) imply to much influence on the process, as much

time and effort is needed for this detailed testing.

3.3.4 Heuristic Evaluation

When shall heuristic evaluation be used:

According to Nielsen (1993; 1994), heuristic evaluation can be utilized on early
prototypes, as well as user interfaces under development. He does not
advocate that heuristic evaluation be used in evaluation of already developed

user interfaces.

67

Utilizing heuristic evaluation:

The activities performed in heuristic evaluation are, according to Nielsen

(1994):

e definition of the rules of thumb (usability principles) to be used in the

evaluation,

e evaluation of the user interface by three to five experienced usability

experts,

e compilation and prioritization of results from the evaluation.

In definition of the rules of thumb to be used, recommendation is to use the
rules of thumbs mentioned in section 34 as a basis. These can be

supplemented with domain specific rules (Nielsen, 1994, p.29). After rule

definition, an evaluation may be performed. Each evaluator performs
evaluation separately and inspects the user interface at least twice. The first
time to be familiar with the user interface, second to inspect the user interface
from the perspective of rules of thumb defined. After inspection, evaluators
meet and aggregate their comments. The results are analyzed to determine

degree of importance of usability problems.

Result of heuristic evaluation:

The result of heuristic evaluation is a compiled and prioritized list of possible
usability problems with respect to the rules of thumb used. This list can then

be used to decide about changes in the user interface.

Need for other methods:

According to Nielsen (1993; 1994), it is sometimes necessary to perform task
analysis prior to accomplishment of heuristic evaluation. According to

Nielsen (1994), task analysis may be necessary before starting a heuristic

68

evaluation of a computer system intended for specific users. Often, a use
scenario from a task analysis is required for usability experts to conduct

heuristic evaluation in an efficient way.

Practical experiences:

Nielsen (1992; 1993; 1994) has utilized heuristic evaluation in system
development projects, demonstrating the value of the method. Studies by
Jeffries et al., (1991), Desurvire (1994) and Karat (1994) also underline the
value of heuristic evaluation. However, this is based on the premise that
people performing heuristic evaluation are usability experts (Desurvire,

Kondziela & Atwood, 1992; Karat, Campbell & Fiegel, 1992; Nielsen, 1994).

My own conclusions:

While, a number of authors have shown through their work that heuristic
evaluation is of value in detecting possible usability problems, there are a few
important issues to review. The first concerns number of usability problems
detected with a heuristic evaluation. According to Desurvire (1994),
proportionally fewer usability problems are detected with a heuristic
evaluation (and other inspection methods) when compared to usability
testing. Of the problems detected, very few are related to tasks performed
with the computer system. The second issue relates to the need for
experienced usability experts. There are very few usability experts involved in
industrial system development (at least in Sweden). This can result in
difficulty to utilize heuristic evaluation in industrial system development.
However, heuristic evaluation by persons that are not usability experts is to
prefer if usability experts are not found (see, Nielsen, 1994, 1995, for a
discussion of discount usability engineering, where he advocates performing

usability engineering even when resources are scarce).

69

3.3.5 Cognitive Walkthrough

When shall cognitive walkthrough be used:

According to Wharton et al., (1994), cognitive walkthrough can be used in
conjunction with detailed design of the user interface. It can also be used to
evaluate how easy a simple or more advanced (user interface) prototype is to

learn and use.

Utilizing cognitive walkthrough:

The activities performed in cognitive walkthrough are:
o definition of necessary data for the cognitive walkthrough,
o performance of the cognitive walkthrough,

e development of suggestions to change actions/changed design.

The process of definition of necessary data, involves identification and
description of tasks to be used, actions required to perform the tasks, possible
users and their knowledge. With this information as a basis, cognitive
walkthrough is performed. Tasks and actions are used in inspection of the
user interface (a written description, a prototype, or a system) to judge if a
user wants to perform the actions, if a user can perform them, and if a user is
able to determine that necessary actions have been performed. From the result

of the inspection, possible changes to the user interface are recommended.

Result of cognitive walkthrough:

The result of a cognitive walkthrough is a detailed description of possible
usability problems, with respect to user need of the functions (services) in the
user interface, the possibility to perform the task or tasks, and understanding

of actions performed.

70

Need for other methods:

The authors do not mention need for supplementing methods. However, they
point to the need for detailed task knowledge and understanding of user
characteristics as a necessary precondition to a cognitive walkthrough. This
requirement suggests that there is a need for at least some form of task

analysis.

Practical experiences:

Cognitive walkthrough does not seem to have been used extensively in
practical system development. Practical experiences in using the method
appear to be based mainly on the authors’ own testing in connection with
further development of the method. This testing suggests that a cognitive
walkthrough will identify possible usability problems at a detailed level, as
every user action is analyzed. The results from using cognitive walkthrough
indicate that the method is very time consuming. To avoid this problem,
Rowley and Rhoades (1992) further developed the cognitive walkthrough
method, using video recording equipment along with a more informal and
interactive evaluation session. This ‘cognitive jogthrough” method requires
less time to perform than the conventional cognitive walkthrough. Although,
this method was used to evaluate an application, there is little information

about its pros and cons in industrial system development.

My own conclusions:

Practical experiences from utilizing cognitive walkthrough (and cognitive
jogthrough) is not comprehensive. Experiences are largely acquired in
connection with further development of the method and comparative studies
of the method (see, for example, Desurvire, 1994; Jeffries, et al., 1991; Rowley
& Rhoades, 1992). In these cases, cognitive walkthrough (and cognitive

jogthrough) was used in conjunction with development of rather simple

7|

computer systems. Therefore, it is difficult to make any definitive conclusions

about its advantages and disadvantages in industrial system development.

Despite this, cognitive walkthrough (and cognitive jogthrough) is potentially
valuable in the development of more complex computer systems. This is
particularly true in the development of computer systems where user
understanding, and management of the computer system is critical. As for
example with command and control systems or process control systems.
Cognitive walkthrough (and especially cognitive jogthrough) can be used in
these settings to check that tasks can be performed at all. In other words, a
simplified cognitive walkthrough can possibly be performed to study, on a

general level, the issues mentioned in sub-section 3.2.5.

3.3.6 Use of Guidelines and Styleguides

When shall guidelines and styleguides be used:

Guidelines and styleguides can, according to Smith and Mosier (1986) and
Flygvapnet (1993), be utilized in conjunction with specification, design and

evaluation of user interfaces.

Utilizing guidelines and styleguides:

The activities performed through the use of guidelines and styleguides are:
e identification of applicable guidelines and styleguides,
e inspection of design proposal or developed user interface,

e documentation of deviations from guidelines and styleguides.

72

In identification of applicable guidelines and styleguides, a design proposal or
developed user interface is usually a starting point. From this, guidelines and
styleguides judged as relevant are chosen. Guidelines and styleguides are
then used when inspecting the design proposal or the developed user

interface. During the inspection, possible deviations are documented.

Result of using guidelines and styleguides:

The result of using guidelines and styleguides is rather concrete, possible
deviations are documented and then used to decide on user interface changes.
Result are at a low level; deviations identified mainly concern deficiencies in

menus, dialog boxes, etc.

Need for other methods:

No need for other methods is mentioned by the authors.

Practical experiences:

The practical experiences from using guidelines and styleguides are rather
comprehensive (see, for example, De Souza & Bevan, 1990; Mosier & Smith,
1986; Tetzlaff & Schwartz, 1991; Thovtrup & Nielsen, 1991). These experiences
indicate that guidelines and styleguides are difficult to use in a practical

system development situation.

My own conclusions:

From the experiences of this author (see, for example, Lowgren & Nordqvist,
1990; 1992; Nordqvist, 1995), guidelines and styleguides are very difficult to
use in industrial system development for the following reasons. First,
guidelines and styleguides documents are very comprehensive and difficult

to understand by developers. This discourages developer usage. Second, use

79

of guidelines and styleguides is very demanding on system development
resources (time and personnel) when compared to obtained results. Use of
guidelines and styleguides, as a consequence, is not given priority. A majority
of the time they are never used in an evaluation setting. Nevertheless, it is
important to use guidelines and styleguides for user interfaces to be

consistent.

3.3.7 Prototyping

When shall prototyping be used:

Prototyping can, according to the authors, be used early in the system
development process to identify, concretize and evaluate the user
requirements on the computer system to be developed. Prototyping can also

be used in conjunction with user interface design.

Utilizing prototyping:

In prototyping the following activities are performed:

e identification of requirements (services) to be implemented in the
prototype,

o selection of suitable prototyping technique,
e prototype development,
e prototype evaluation,

e possible further development of the prototype.

The point of departure in identification of requirements to be implemented in
the prototype is usually an idea (or need) concerning a computer system, or

the set of requirements identified together with customer/user. From this,

74

requirements (services) to be implemented are chosen, and an approach for
implementation is determined (for example, horizontal or vertical
prototyping). Depending on requirements and how extensive implementation
will be, a prototyping technique is selected (for example, use cases, story-
boards, high-fidelity prototypes). The selected technique is used to develop
the prototype, which in turn is evaluated against, for example, user
requirements identified/usability requirements. Using the evaluation as a
basis, possible further development of the prototype is carried out. When
essential user requirements are identified and validated, the prototype can
function as a description of the set of requirements, or requirements can be
documented in a requirement specification. As mentioned earlier, the

prototype can also be evolutionary developed into the final system.

Result of prototyping:

Prototyping results, in conjunction with identification of user requirements, in
that identified requirements are concretized, validated and further
requirements are identified. In conjunction with user interface design the

outcome is a user interface design proposal.

Need for other methods:

The authors mention need for use testing (see, for example, Andriole &
Adelman, 1995) in evaluation of a prototype. The result from prototyping
seem to be regarded as directly usable in subsequent system development

work.

Practical experiences:

The practical experiences of prototyping are numerous. These suggest that
prototyping is a powerful technique for definition of user requirements on the

system to be developed. According to Andriole (1990; 1994), it is the most

75

successful method for defining user requirements (see also Miller-Jacobs,
1991; Gordon & Bieman, 1994, for discussions about the value of prototyping
in system development). However, in industrial system development,
prototyping has been difficult to fully introduce, as it is hard to plan and
manage prototyping. Therefore, project managers have been reluctant to
advocate prototyping as a tool for identification of user requirements
(Sommerville, 1992). In connection with software design, prototyping has

been used to support user interface design.

My own conclusions:

Based on my own experiences, following observations are made:

e prototyping is seldom used in connection with definition of user
requirements. Instead, prototyping is most often utilized in connection
with identification of software requirements and/or in user interface

design,

e in cases where prototyping is performed, prototype evaluation is
usually performed randomly. For example, a number of users try to
use the prototype in an unstructured way, or is only requested to

express their opinions.

The above experiences can result in developers not knowing what to develop
early in the system development process (see also Andriole, 1990). The
probability that a computer system is developed that fulfills user

requirements and is usable is then minimal.

Further observations are:

e prototyping is very powerful as a technique to minimize differences in

interpretation of user requirements. Prototyping avoids problems that

76

occur in the interpretation of complex and/or abstract requirements

using only ordinary text documents (see also Sommerville, 1996).

e if simple prototyping techniques (paper copies of screen displays,
storyboards) are combined with the ‘Wizard of Oz’ technique the

communicative effect of these techniques are augmented.

3.3.8 Contextual Design

When shall contextual design be used:

According to the authors, contextual design may be used throughout the
system development process. It can be regarded as an alternative to more
traditional system development methods (examples of traditional

development methods/models can be found in Boehm, 1988; Royce, 1970).

Utilizing contextual design:

The activities performed in contextual design are:
e contextual inquiry,
e modeling of work,
e (possible) re-design of work,
o design of computer system (user environment),

e design of user interface.

In contextual inquiry, users are observed and interviewed as they are
performing their work, to clarify what is done, why it is done, and how. The
results from these observations and interviews are then combined into affinity
diagrams. When this grouping is ‘fully developed,’ organizational aspects,

physical environment, roles performed by users and specific tasks performed,

77

are modeled. When necessary, these models are used to create abstract
models of possible work changes. With these models as a basis, focus areas
are used to design a computer system. Focus areas are also used to define
functions and objects necessary to perform work, and to design a user
interface. The proposed design is realized in a simple prototype and
evaluated by users in the real work environment. The prototype is then

further developed into the final system.

Result of contextual design:

Contextual design includes a description, in the form of notes and models, of
work performed by users, as well as suggestions for work changes, system
design and user interface design. According to the authors, the final result is a

developed computer system.

Need for other methods:

The authors do not express any need for other methods before, or after
contextual design. They advocate contextual design as a replacement for other
approaches to system development. However, note that (evolutionary)

prototyping is part of contextual design.

Practical experiences:

The practical experiences mentioned by the authors seem to emanate from
projects whose main purpose is testing and further developing contextual

design.

My own conclusions:

Practical experiences described by the authors are few, and it is difficult to

make any definitive conclusions about contextual design’s possible

78

advantages or disadvantages. From an industrial system development
perspective, the advantages with contextual design is the focus on the user
(customer), and what is done in a work situation. A disadvantage may be that
contextual design appears to be designed for system development where
there are no limitations on work situation study and prototype evaluation in a
work setting. In industrial system development, study of work situations can
be limited, and users are often unavailable (see also Nielsen, 1994). It is also
uncertain if contextual design can replace more traditional system
development methods, as it seems to neglect the need for more formal
software requirement analysis and software design. In development of more
complex computer systems, it is advisable to use formal analysis and design
techniques that offer necessary structure. Contextual design can possibly
supplement industrial system development. This method can deliver models
concerning, for example, the physical environment, that in turn can be useful

during system design.

3.3.9 Use Testing (Usability Testing):

When shall use testing be used:

Use testing shall, according to the authors, be used to evaluate prototypes,
early versions of computer systems, as well as fully developed computer

systems.

Utilizing use testing:

The activities performed in use testing are:
o definition of purpose with the use testing,
e identification of work tasks and users,

e performance of use testing,

79

o analysis of use testing results.

In definition of purpose for the use testing, aspects of prototype or developed
system to be studied, and what registrations to do, are determined. With the
purpose of the use testing as a basis, representative work tasks and users are
identified. Work tasks selected are then used during user evaluation of the
prototype, or the developed computer system. The user tries to accomplish
tasks using a prototype, or a developed computer system. In conjunction with
this task performance, for example, what users are doing, what problems they
have, how tasks are performed and how fast, are registered. These
registrations are analyzed to identify possible usability problems and possible

corrective actions.

Result of use testing:

The results of use testing are influenced by what is decided to be registered.
Generally, the results of use testing are explicit indicators of possible usability
problems that will occur when the computer system is operating in a real

work situation.

Need for other methods:

The authors do not express need for other methods. However, they point to
the need for realistic and representative work tasks. They also point to the
need for real users during use testing. This implies need for task analysis and
usability specification before use testing can be carried out. It is also necessary
to have a ‘system’ to use test; either a prototype or an already developed

computer system. Therefore prototyping is sometimes necessary.

80

Practical experiences:

Use testing is, according to many authors, the evaluation method that best
identifies possible usability problems (see, for example, Desurvire, 1994;
Karat, 1994). Use testing has also been used in many system development
projects and has proved its value (see, for example, Dumas & Redish; 1994;

Karat, 1992).

My own conclusions:

While use testing is the evaluation method that identifies most usability
problems, and best corresponds to real use situations, there are some
disadvantages with the method. In an industrial system development
situation, there is usually insufficient time and money to perform use testing
to the extent necessary. Especially if use testing is performed in the
experimental fashion as discussed by Lewis and Rieman (1993). Another
possible disadvantage is that use testing can be too artificial and arranged (to

collect objective data) to realistically reflect real use.

Despite these possible disadvantages, use testing is of value and should be
performed more often than is the case. In case resources for use testing are
scarce, it is possible to perform use testing as described in discount usability
engineering (see, for example, Nielsen, 1995) where a small number of users
informally use test an application. From my experience it is also possible to
use test simple prototypes (use-cases, paper copies of screen layout,
storyboards) as well as other models early in computer system development.
Although the empirical data obtained are not precise enough for definitive
conclusions concerning usability issues, it is often of value to use test as
practical evaluation often result in important information. Another reason for
carrying out use testing also on simple prototypes is the necessity to confirm

that the prototype (model) correctly describes the phenomenon under study.

81

4. USABILITY WORK AND INDUSTRIAL SYSTEM DEVELOPMENT

4.1 Introduction

Using the industrial system development process described in Chapter 2 as a
basis, Figure 8 shows this author’s interpretation of when methods presented
should be used. In this interpretation, a method is related to one, or at the
most two, system development activities; although some authors quite
reasonably say their method support more activities. This is interpreted to
mean that the result from a method may be used in more subsequent system
development activities. A method is related to a system development activity
as defined here, even when authors associate their method to an activity of a
different name. For example, Nielsen (1993) states that heuristic evaluation
should be used in connection with design and development of user interfaces.
System development, as presented here, differentiates between system design
and software design, therefore Nielsen is interpreted to advocate use of the

method in conjunction with software design.

Prototvping

| Ussbility specification. ¢ 0fGland Sg

S

Copnitive walkthrough Use testing

¢ Heuristic evaluation

Task analysis

Husmess analysis

Contextual design

Figure 8: Methods for usability work and their use in industrial system development

82

As depicted in Figure 8, authors are interpreted to mean that methods for
business analysis, task analysis, and prototyping are to be used during early
system development activities (Identification of need, Identification of user
requirements). Use of guidelines and styleguides, heuristic evaluation,
cognitive walkthrough (jogthrough), usability specification, prototyping, and
use testing, according to the authors, are used during later system
development activities (Identification of software requirements, Software
design, Implementation and unit testing, Integration and testing, Operation
and maintenance). Contextual design is used in all system development

activities. It is an alternative to the system development activities presented.

This interpretation of method use indicates that usability work is not carried
out in some system development activities (not even theoretically). It also
indicates that only minor usability work is performed in many system
development activities, and that there is no continuity in usability work in the
continuum of system development work. The consequence of this may be that
user requirements identified in early system development activities are ‘lost,’
and may or may not be found again in later activities when use testing and
other kinds of usability work are performed. Another consideration
illustrated in Figure 8 is that many methods focus on few system
development activities. This means that the potential benefits of usability
work are not fully utilized. As an example, use testing seems to be carried out
only in connection with implementation and unit testing, and integration and
testing, despite the fact that this method could be beneficial in other system

development activities, such as identification of user requirements.

As a preliminary attempt to increase the integration between usability work
and industrial system development, and to increase the utilization of methods
for usability work, a simple model together with examples of such an

integration is outlined in the following sections.

83

4.2 Integration of Usability Work and Industrial System Development: A

Preliminary Model

Figure 9: A model for integration of usability work and industrial system development

In principle, usability work can be seen as encompassing four activities;
definition, analysis, modeling and evaluation. These activities should be seen
as continuous iterations, where the result from definition is analyzed,
modeled and then evaluated, to be followed by definition again if necessary.
Definition, analysis, modeling and evaluation should, according to this
model, be carried out as part of all system development activities. Figure 9
above, portrays how definition, analysis, modeling and evaluation overlap.
The continuity in usability work throughout the entire system development
process, is also illustrated in Figure 9. The methods presented in Chapter 3
can be summarized as a combination of definition, analysis, modeling and
evaluation to a higher or lower degree. For example, in prototyping the
services (functions) to be implemented are first defined and analyzed, then

prototyped and finally, evaluated.

No individual method is enough to ensure that the computer system under
development fulfills user requirements and becomes usable. Thus, there is
reason to find a common denominator in these methods and to view them as

a tool box rather than as separate methods. Another reason for this approach

84

is the increased likelihood that the methods are considered as able to support
and complement each other. That earlier acquired results facilitate and make

subsequent usability work more efficient.

4.3 An Example of Integration of Usability Work and Industrial System

Development

This section gives an example on how to integrate usability work into
industrial system development. System development activities are discussed

from the perspective of usability work and examples of suitable methods and

techniques are presented.

4.3.1 Identification of Need

é.,eb

& Use testing

Prototyping

‘denﬁﬂc@(@
n

Business anatysis

Figure 10a: Integration of usability work and industrial system development

In accordance with the authors, (TELUB AB & System Development
Associates, 1990; TELUB AB, 1995), the use of business analysis (RASP) in
connection with identification of need is recommended. In the model

advocated, see Figure 10a, business analysis is supplemented with

85

prototyping and use testing. The reason for this is that it is:

o difficult for users to understand and assimilate models (function
graphs, object models), that are the outcome from business analysis
according to RASP. (This is also true for other business analysis
methods),

e difficult for users to decide if proposed design of future business, in the
form of function graphs and object models, will result in a more
effective business, unless these proposals are supplemented with

prototypes that can be use tested.

It is not necessary that advanced prototypes are developed, and
experimentally use tested. Rather, use of simple prototyping techniques, such
as use cases, paper copies of screen displays (“screen layouts” means here
suggestions on services to be delivered by the computer system, not pure
screen layouts), and storyboards are recommended tools. Simple use testing is
performed to increase understanding in users and developers of proposed
business design and its effects. Use testing can, in this case, be use tests of
simple prototypes where real users perform a small number of work tasks,
and where the goal is to identify use problems and user opinions as to how
proposed design will function during actual task performance. Another
important aspect possible to check with use testing is that the prototype (or
other model) is a correct description of the problem at hand. This validation of
prototypes and other models is of course also necessary in subsequent system

development activities.

86

4.3.2 Identification of User Requirements (Requirements Definition)

i d«gme!\m
<@
& Usability specification

&
&

%

<

S
&
g
2

Use testing

ldg%
G

Prototyping

fask analysis

Figure 10b: Integration of usability work and industrial system development

In identification of user requirements, see Figure 10b, task analysis (KAT),
prototyping, and usability specification will provide a significant quantity of
needed descriptors. By supplementing these three methods with use testing, a
more complete picture of user requirements is possible. The reasons for
advocating task analysis, prototyping, usability specification and use testing

are that:

e task analysis in most cases is a precondition for identifying what to
prototype (and develop),

o users have difficulty deciding if requirements are correct and if their
expressed needs are being correctly interpreted by developers. When
requirements and expressed needs are concretized with the help of
prototypes which can be use tested clear communication with users is
more likely,

o prototyping is an aid for defining reasonable usability requirements.

This implies that the first activity in connection with identification of user

requirements is a task analysis. While some task analysis is necessary, it is not

87

always necessary to perform a complete task analysis according to KAT. To
create conditions for identification of user requirements it is initially enough
to identify the work (business), and then do a preliminary selection of tasks to
be supported by the computer system. Tasks to be supported can then be
analyzed to identify goals, sub-goals, and procedures. With this analysis as a
basis, it is possible to create simple prototypes (use cases, paper copies of
screen displays or storyboards). The materials developed during
identification of need may be modified and reused. Through this practice user
involvement in development is fostered and iteration occurs. (This is true also
in subsequent system development activities). Using advanced techniques
and tools to create prototypes in this early stage of system development may
cause users, as well as the people who support the users in identifying
requirements, to inflexibly and too early decide on specific solutions. It is also
easier (and cheaper) to create alternative solutions when using simple

prototyping techniques.

Prototypes should be use tested to validate that requirements are appropriate
and to identify further requirements. Use testing is best restricted to only
investigating that necessary services are delivered by the prototype and that
work tasks are possible to carry out at all. The reason for advocating use
testing so early in system development is the importance of identifying user
requirements on the system to be developed, before development starts (see
also Andriole, 1990; 1996). If user needs are not known, a computer system

that efficiently supports their needs is unlikely to be developed.

As the user requirements are analyzed, prototyped and evaluated, the
usability specification can be specified. Even if those requirements in this
early stage of system development risk being described too generally to be of
direct use in later system development activities, they can serve as means for

creating an understanding concerning the usability requirements for those

88

involved in the system development effort (see, for example, Whiteside et al.,

1988).

4.3.3 Overall Design of the System

S & Use s i e ;
& s b&a“ S¢ Tns Cognitive walkthrough

§§ g? f Prototyping
& & Usability specilication
e X Contextual desipn

o

=

Tusk analysiy

Business anabysis

Figure 10c: Integration of usability work and industrial system development

According to Johnson and Johnson (1990; 1991), the results from task analysis
(KAT) can be used in connection with system design. Results from business
analysis (RASP), contextual design and prototypes developed are also
important input for system design, see Figure 10c. The result from business
analysis is important because it gives an overview of which services the
computer system should deliver, what other functions (services) are, and the
relation between the computer system and other functions (the business). The
result from task analysis serves, for example, as basis for defining general
allocation of tasks between users and the computer system (Johnson &
Johnson, 1991). Models of the physical environment created and focus areas
identified in conjunction with contextual design also offer valuable results
useful in system design. Prototypes can be used together with function graphs
and physical environment models to create an overview model of the total
system (user-task-organization-technology), which then can be use tested.

Here, use testing is an informal test to determine if the computer system

89

(prototype) design fulfills defined user requirements and if defined work
tasks can be performed. Also a simplified cognitive walkthrough (cognitive
jogthrough) can be carried out on this overall model. Further development of
the usability specification, for example refinement of performance measures

are also advocated.

4.3.4 Identification of Software Requirements (Software Requirements Analysis)

Awmﬁm
& o‘b@ o : Nmm :
& @& a@@ Use testing .
s & : -
& & Prototyping

F = Uisabitity speeification
{4 &
_§ Coniextual design

Task analysis
Business analyss

N

Figure 10d: Integration of usability work and industrial system development

As identification of software requirements focuses on translating user
requirements from a non-specialized representation (natural language, graphs
and prototypes) to a representation better suited for software development,
usability work does not have an explicit role. However, it is important to
ensure that user requirements are correctly “translated”. Therefore, it is
valuable to continue the analysis of user requirements and to further develop
models and prototypes in parallel with identification of software
requirements. It is also advisable to use test these models and prototypes and

to further develop the usability specification.

Further prototype development may be development of a completely new

prototype. This is often necessary in conjunction with development of more

90

complex computer systems. In prototyping to identify user requirements,
early ideas and interpretations of requirements, are frequently defective or
even erroneous. Prototyping is used to modify and give a better

understanding of user requirements on the system to be developed.

4.3.5 Software Design

Cognitive walkthrough

M

Use testing
; : Usability specificatic
Heuristic evaluation 2 o

Use of Gl and Sg

Projotyping

Figure 10e: Integration of usability work and industrial system development

Part of software design, is user interface design. Usability work is here
focused on user interface prototyping in combination with inspection and
testing of proposed design, see Figure 10e. Guidelines and styleguides that
may be useful during design are identified. Here, it is necessary to identify
two kinds of guidelines and styleguides. First, guidelines and styleguides
concerning appropriate interaction techniques (see, for example Smith &
Mosier, 1986). Second, guidelines and styleguides concerning design of
specific user interface elements. (These guidelines and styleguides are also

used during implementation & unit testing, and integration & testing).

User interface design proposals are implemented in one or more prototypes,

(here, more advanced prototyping techniques such as dynamic prototypes,

91

limited functionality simulations, high functionality prototypes or selective
fidelity prototypes will generate the more complex data needed at this stage).
Prototypes should be evaluated using identified guidelines and styleguides,
heuristic evaluation, cognitive walkthrough (cognitive jogthrough) and use
testing in some combination. Cognitive walkthrough (Cognitive jogthrough)
is important for inspection of user interface design, as this method explicitly
has the tasks to be performed with the computer system as a basis. Use testing
with the help of real users and real work tasks should be used later on in the
software design, when a user interface has reached its “final” design. Before
use testing, other techniques should be used to recognize simpler deficits in
design, so that users are not used up (see also Nielsen, 1993). The usability
specification should also be further developed, for use in implementation &

unit testing, and integration & testing.

4.3.6 Implementation and Unit Testing

Use of Gl and Sg
Usability specification ~

Heuristic gvaluation

Caogmitive walkibrough

Figure 10f: Integration of usability work and industrial system development

When software design, particularly user interface design, has the input from
usability work, simpler usability evaluations such as cognitive walkthrough

(cognitive jogthrough), heuristic evaluation, etc., are sufficient for the

92

usability work part of implementation and unit testing, see Figure 10f. It is for
example, possible to depend on usability specifications for evaluation of user
interface elements as they are being developed, (understanding of menus,
dialog boxes etc.). However, only the most important user interface elements
should be evaluated using this resource demanding method. In parallel with
this evaluation, heuristic evaluation and/or use of guidelines and styleguides
to continuously evaluate the user interface during implementation, are also
advisable. Use of both guidelines/ styleguides and heuristic evaluation are
sometimes recommended. In the requirement specification there may be
explicit requirements to adhere to some specific guideline and/or styleguide.

In this case, it is not enough to perform only heuristic evaluation.

Simple usability evaluations are sufficient if identification of need,
identification of user requirements, system design, identification of software
requirements, and software design have been performed with the help of
usability work (especially prototyping and use testing). It is not always
necessary to perform prototyping and use testing, which require major

resource investment, when implementing and testing software.

93

4.3.7 Integration and Testing

Figure 10g: Integration of usability work and industrial system development

When integrating and testing software it is valuable to again carry out use

testing, see Figure 10g, because of following reasons:

e the importance of testing that the user requirements are fulfilled,

e the importance of testing for system usability,

e here is the first time when it is possible to evaluate the whole system

from a usability perspective,

e use testing with real users and real work tasks create test conditions

that most closely approximate actual use.

In this use testing the scenarios (use cases) and the usability specifications

developed can be valuable input.

94

4.3.8 Operation and Maintenance

Figure 10h: Integration of usability work and industrial system development

In connection with operation and maintenance it is also important to focus on
use testing, see Figure 10h. This use testing is a supplement to delivery and
acceptance testing. The developed system should be evaluated in its real
environment, with real users and real work tasks. Scenarios (use cases) and
usability specifications developed can also here be used as input to the use

testing performed.

4.4 Conclusions

4.4.1 The Model

As illustrated in Figures 10a-h above, use of methods for usability work in all
system development activities is recommended. Emphasis on usability work
during all activities (especially early ones) in system development will
hopefully minimize the risk of having to make costly and extensive changes

late in the development process and after beginning actual system use.

95

The potential benefits of including usability work continuously in system

development are:

e the computer system is being more usable as the user and use of the
computer system is emphasized continuously during the system
development process,

e results from earlier usability work can be used in later (and parallel)
usability work, making it more efficient. For example, the result from
task analysis can be used in and facilitate heuristic evaluation as well as
cognitive walkthrough (jogthrough). Both of these methods require
work task knowledge, A

e there is considerable reduction in risk that user requirements are
forgotten, or wrongly interpreted, during identification of software
requirements, software design, implementation & unit testing, and

integration & testing.

One reason for focusing on usability work during early system development
activities is that it emphasizes user requirements and likely results in the
system under development being more effective in the actual work situation
(see also Andriole, 1990; Andriole & Monsanto, 1995). Another reason is that
deficiencies and errors in requirements detected early in the system
development process, are up to 200 times cheaper to correct than if detected
during operation and maintenance (Davis, 1990; 1993). A third reason is that
time delay and budget overruns in many cases are due to deficiencies in what
is here called usability work, as omission early on requires larger later effort

(Lederer & Prasad, 1992).

4.4.2 Experiences

The model has not been formally evaluated. What has been done is an

informal evaluation in the way that business analysis, task analysis,

96

prototyping and use testing have been used in connection with identification
of need and identification of user requirements. Also, prototyping, heuristic
evaluation and use of guidelines and styleguides have been utilized in
connection with software design (especially user interface design) and
implementation and unit testing. In both cases the methods were used in real
system development projects and/or system developers who have used
above mentioned methods in real system development projects were
interviewed. Examples of system development projects included are: a system
for training of air force command and control, a system for military airfield
command and control, a system for presenting and managing geographical
information, and a system for presenting attacking enemy air forces. An
indication of the magnitude of the projects is that they represent from 1 to 100
man months invested in the activities of identification of need, identification
of user requirements and system design. Preliminary experiences from this

evaluation are as follows.

In identification of need:

e business analysis imply a better understanding in users, as well as
those responsible for development, of which change requirements
could (and should) be fulfilled by a computer system (see also
Andriole, 1996),

e business analysis requires a major investment in time and staff; as
many people from business need to participate in the development
process and business is frequently complex,

e it is sometimes difficult for users to understand results of business
analysis (graphs, flow charts, object models),

e prototyping results in a better understanding of which computer
system should be developed, which services the computer system
should deliver (see also Andriole, 1996; Sommerville, 1996),

e it is easier for users to understand the effects of proposed business

design, if models and prototypes are use tested.

97

In identification of user requirements:

e task analysis (in some form) is a necessary supplement to other
methods, to identify work tasks to be supported and to obtain
information about how to support work tasks,

e task analysis requires excessive resources (time and man power) in
relation to the perceived utility, if carried out in exact accordance with
all steps in the method,

e prototyping results in a better understanding of what computer system
is necessary to develop (what services it should deliver),

e prototyping is often necessary for users to be able to actively contribute
in the process of identifying requirements, concretize requirements and
to help them understand their own requirements,

e prototyping sometimes causes users to “wish for everything,”

e prototyping sometimes results in users focusing on user interface
issues, instead of issues of relevance to what services the system should
deliver,

e prototyping sometimes results in too early fixation on an idea, or
requirement set, then used as a basis for development of the final
computer system. In the case where prototyping is used to identify
requirements for a complex computer system, early ideas or
requirement sets may miss some requirements and be defective. An
early idea or requirement set used to develop a final system
(evolutionary prototyping), risks developing a system that fails to
efficiently support user work. In many situations it is necessary to
discard an early prototype, and use the acquired experience for

development of a new prototype,

e use testing helps users to understand the effects of their requirements
and encourages them to identify other requirements than the most

obvious,

e developers (and in some cases users) sometimes think that theoretical

discussions about user requirements can replace use testing,

98

e use testing is sometimes perceived as requiring too much time to

perform,

o when task analysis, prototyping and use testing have not been
performed, user requirements tend to focus on what information is to
be handled in the computer system, and what information is to be sent
to and from the system. User requirements that focus on what the user

should be able to do with the system are not given priority.

In software design:

e user interface prototyping is efficient to communicate user interface
design proposals,

e heuristic evaluation is a fast and efficient way to inspect a design
proposal (see also Nielsen, 1993),

e heuristic evaluation is sometimes perceived as inadequate as it
primarily identifies “low-level” problems,

e use of guidelines and styleguides require too much resources
compared to perceived contribution to usability,

o use of guidelines and styleguides are usually “forgotten” in software
design, even if there is an explicit requirement to follow some guideline

and/ or styleguide.

In implementation and unit testing:

e same experiences as in software design.

Summary:
Preliminary experiences in carrying out usability work in industrial system

development can be summarized as follows:

o usability work contributes to a better understanding in users, with

respect to the system to be developed and the effects of the system,

99

usability work leads to more comprehensive user influence upon what
is being developed,

usability work places greater demand on users because they, more
explicitly, are responsible for what is being developed,

usability work leads to greater demands on developers because they
must understand what to develop in terms of user language,

methods for usability work often “disturb” the system development
process. Much is required of those who are going to use the methods
and much resources in time and participating people are required
(usability experts, users, developers, etc.),

it is easy to get an understanding of the necessity to carry out usability
work, but it is difficult to receive an adequate level of funding,

it is difficult for outsiders to develop an understanding of the need to
carry out usability work during early system development activities,
usability work result in (require) user participation in system

development.

100

5. THE NEED FOR EXTENDED INTEGRATION OF USABILITY
WORK AND INDUSTRIAL SYSTEM DEVELOPMENT

5.1 Introduction

The preliminary model presented here represents only a first step in
integration of usability work and industrial system development. Necessary

future work to deepen integration is characterized by following:

o the need for closer study of how different usability work methods can
be integrated to optimize use in an industrial system development
setting,

o further identification and definition of appropriate usability work
methods,

e the need for research and development that supplements and develops
existing methods. For example, to simplify some methods for more
effective application in industrial system development,

e further practical evaluation of the model and the “tool box” of methods
advocated here,

o development of different kinds of computer support. For example,
software that supports use of guidelines and styleguides, task analysis,
business analysis, and use testing,

e more complete integration of usability work and industrial system
development, so that usability work is perceived as a natural part of
system development,

o education of those participating in system development to deepen

understanding of usability work possibilities and deficiencies.

101

Below, a brief discussion of some of the issues above is presented. The focus is
on discussing each issue from the perspective of concretizing and

exemplifying what has to be done.

5.2 Further Integration of Usability Work

The model depicted in Chapter 4, describes usability work methods to be
carried out during system development to foster usability of a final product.
The model also describes how to apply these usability work methods during
system development activities. However, the model does not consider, in
enough detail, how results from usability work in one system development
activity relate to usability work in subsequent system development activities.
It is also beneficial for understanding of usability work advantages and
disadvantages to describe how usability work contributes, in a concrete way,
to different system development activities. Another issue not handled in the
model, is how usability work may effect the variability (development) of the
requirement set in system development (see, for example, Andriole, 1996;

Davis, 1993; Sommerville, 1992).

Most important is to elaborate the description of how results from one
method for usability work can be used by other methods. The utilization of
results was described in section 4.1, here it is concretized further. Below, a
brief description of results obtainable from different usability work methods
are presented, together with mention of how results can be used to support

other methods.

Method:

Business analysis.

Task analysis.

Usability specification.

Heuristic evaluation.

Cognitive walkthrough,
(cognitive jogthrough).

Use of guidelines and

styleguides.

Prototyping.

102

Result:

Description of present business, prioritized
change needs, model of proposed future

business.

Description of present work task knowledge,

model of proposed task design.

Knowledge of requirements for a system to be

deemed usable, basis for use testing.

Description of possible usability problems in
user interface based on general usability

principles.

Description of possible usability problems
based on user needs when carrying out one or

more tasks.

A list of deviations from defined guidelines and

styleguides.

Concretized and validated user requirements,
identification of additional user requirements.
Identification and definition of user interface

requirements and user interface design.

103

Contextual design. Description of work performed by a user,
suggestions for change of work, design of
physical environment, computer system, and

user interface.

Use testing. Indications of possible usability problems
during user performance of work tasks, using

the computer system (or prototype).

5.2.1 Role of Business Analysis

Results from business analysis is important for task analysis, prototyping,
contextual design, and use testing. For task analysis, a model of future
business facilitates identification, analysis, and modeling of tasks. In
prototyping, results from business analysis serve as a frame of reference in
discussion of what services a computer system should deliver. Results from
business analysis can also assist when studying the relationship between these
services and those services not to be supported by a planned computer
system. For contextual design, information about present business and
possible design of future business, provide context when discussing how
work should be designed. With use testing, a model of future business
contributes to the evaluation of computer system usability from a business
perspective. In summary, the greatest value of business analysis in relation to
other methods is for background information, as related to business
information. The result from business analysis serves as a foundation for the
other methods. In Figure 11, below, the use of results from business analysis is

illustrated.

104

Business analysis

Current
business

Change /
needs

Futare
business

OO0

Figure 11: Illustration of use of results from business analysis

5.2.2 Role of Task Analysis

Task analysis provides information of value in usability specification,
heuristic evaluation, cognitive walkthrough (cognitive jogthrough),
prototyping, contextual design and use testing. With usability specification,
information about present and/or future work tasks is used to define
usability goals and to choose tasks for inclusion in the usability specification.
Heuristic evaluation incorporates information about tasks in its analysis (see,
for example, Nielsen, 1993; 1994), therefore, task analysis is of value. The same
is true for cognitive walkthrough (cognitive jogthrough), where task
descriptions form the basis of the walkthrough to be carried out. Prototyping,
uses for example information about tasks to evaluate relevance of
“unstructured wishes”, that fail to relate to tasks to be supported by the
computer system being developed. Task analysis also provides information
concerning services to be included in prototyping. Information from task
analysis is probably also of value in contextual design for increased

understanding of tasks to be supported by a computer system.

Knowledge from task analysis can also help to ensure that the physical

environment is designed in accordance with tasks allocated between a

105

computer system and user (business people). With use testing, a task
description is of value when selecting tasks to be included in the use test. A
task description can also be useful in deciding criteria for measurement. (If a
usability specification has been developed, need for results from task analysis
in conjunction with use testing is not as important, see below). In Figure 12,

below, use of results from task analysis is illustrated.

Task analysis

e Tognitive
Knowledge walkthrough

iescription

\

©OOOOO

Task

design

Figure 12: Illustration of use of results from task analysis

5.2.3 Role of Usability Specification

Results from usability specification are closely related to use testing. Usability
specification contains information about what to measure, how to measure,
and expected results. Results from usability specification also contribute
information during heuristic evaluation and cognitive walkthrough. In
carrying out these methods, information from a usability specification can be

used to formulate criteria useful for identifying possible usability problems.

106

5.2.4 Roles of Heuristic Evaluation, Cognitive Walkthrough (Jogthrough), Use of
Guidelines and Styleguides

The result from heuristic evaluation, cognitive walkthrough (jogthrough) and
use of guidelines and styleguides, do not directly relate to other methods.
Results from these methods are not incorporated into analysis used by other
methods. However, heuristic evaluation, cognitive walkthrough (jogthrough)
and use of guidelines and styleguides can indirectly assist other methods.
From these methods, it is possible to more clearly identify and understand
critical parts of a computer system (especially the user interface). The methods
are also important for discovery of unanswered questions needing further
study, through, for example, prototyping and use testing. Heuristic
evaluation, cognitive walkthrough (jogthrough) and use of guidelines and
styleguides identify other kinds of usability problems, and can be regarded as
supplementary to use testing (see, for example, Jeffries et al., 1991). However,
experienced usability experts can identify need for prototyping and use
testing, during, for example, heuristic evaluation. Probability of identifying
need for further usability work increases when usability experts understand
business and tasks to be supported. The value, importance and role of the
methods will of course vary according to the level of experience of those
working on development. The results from these methods can also unburden
use testing. Less critical usability issues (e.g., low level problems in the user
interface) can be studied before use testing is carried out. These methods can
of course also be used to inspect prototypes. Thus results from these

inspections are of immediate application in prototyping.

5.2.5 Role of Prototyping

Results from prototyping have direct implication in a number of other
methods. With business analysis, simple prototypes can deliver valuable

information about advantages and disadvantages of proposed business

107

design. In task analysis, prototyping can help to make effects of different task
designs and task organization explicit. In contextual design, prototyping has
been described as an integral part. Use testing, cognitive walkthrough
(jogthrough), heuristic evaluation and use of guidelines and styleguides

require prototypes if no system exists to be evaluated.

5.2.6 Role of Contextual Design

Results from contextual design can be of value during use testing. When more
than the computer system (or prototype) is studied, information about the

physical environment provides detail needed for design decisions.

5.2.7 Role of Use Testing

Results from use testing may be viewed as part of the prototyping process.
Use testing is needed for conclusions concerning prototype performance. Use
testing can also be part of business analysis. Use testing (in some form) of
business models can provide important information on how a proposed
business design influences users and/or business people possibility to carry

out work. The same is true for task analysis.

5.3 Additional Methods Needed

As is evident in the descriptions of results derived from usability work
methods, the outcome is focused on business, work tasks, user requirements,
user interface and use of computer system (or prototype). The user is an

important member in, and supplier of information to, many of the methods.

108

However, user input and study is mainly from the perspective of business
and task in which they participate. Little is mentioned about the user, and his
or her characteristics as a human being. None of the methods explicitly
mention user physical and psychological needs/abilities (although these
needs and abilities are the foundation for cognitive walkthrough, heuristic
evaluation etc.). Contextual design explicitly focus on user (customer) in
connection with computer system development. However, the method seems
to assume that user focus alone is enough to identify and consider user

needs/ abilities.

In my opinion, it is necessary to supplement the usability work “tool box”
presented here with methods for identifying and describing the computer
system user needs/ abilities. Approaches in this direction is for example, user
profiling (Andriole, 1989; 1996), cognitive (systems) engineering, (Andriole &
Adelman, 1991; 1995; Hollnagel, Mancini & Woods, 1988; Woods, 1988;
Woods & Roth, 1988), user modeling (Kelly & Colgan, 1992; Wilson, Johnson,
Kelly, Cunningham & Markopoulos, 1993), and GOMS (Card et al. 1983; John,
1995; John & Kieras, 1996).

5.4 Further Development of Methods for Usability Work

As mentioned earlier, for the methods to be more fully adapted to the
industrial system development situation, it is necessary to simplify and/or
further develop some of them. One reason for this is that many of the
methods (for example, business analysis, task analysis) require excessive
resource investment (see, for example, the experiences mentioned in section
4.4). This may cause methods not to be used when time and funding for
development and delivery of a computer system are limited. Experiences
from system development also suggest that little time is dedicated to early

system development activities (see, for example, Andriole, 1990; Davis, 1993).

109

This fact can cause an unwillingness on the part of project management to
dedicate resources to usability work. Particularly if resource demands are

high compared to perceived value for the project.

Work necessary to simplify and/or further develop different methods, is
beyond the scope of the present work. To simplify and/or further develop a
method it is necessary to consider the theory that is the basis for the method
(see, for example, Johnson, Drake & Wilson, 1990, for a discussion of the value
of a theoretical frame of reference when developing a method). If a method is
further developed or simplified without considering theory, outcome from
method use may be defective. Another reason is the necessity to practically
evaluate a further developed or simplified method to verify that use will still

result in the right outcome.

Briefly presented here are some actions needed to make methods described
more natural parts of the system development process. The first action
recommended is to simplify business analysis, task analysis and use testing.
To adjust these methods so that they may be carried out in a “mini way”, to
support initial and more general attempts. This modification does not
advocate always utilizing a “mini method.” It is necessary to remember that
simplified methods have limitations compared to original methods. Although
some literature does indicate that simplified methods have value in system

development (Nielsen, 1995; Rowley & Rhoades, 1992).

Second, it is important to illustrate the dynamics in business models (graphs,
flow charts, etc.,) developed in business analysis. Many businesses are so
complex that a static description is insufficient for users and/or business

people to understand a business process (see, for example, Hughes, 1996).

110

Third, it is valuable to supplement use testing with environmental simulation
(in some way), especially if a computer system is being developed to support
complicated and extensive work situations. Sometimes, it is necessary to
simulate how other business parts, users, and the external environment act
and react, when users evaluate a computer system by carrying out work tasks.
This simulation does not have to be performed by computers; use of ‘Wizard

of Oz’ techniques (Maulsby et al., 1993) can in many cases be enough.

5.5 Practical Evaluation

The preliminary evaluation of the model and the methods described in section
4.4 is not sufficient. A more thorough and deep practical evaluation, to test
and study advantages and disadvantages of the model and the methods, and
to identify needs for new methods, is required. The most important actions to

perform in such an evaluation are to:

e use the model and the methods throughout the system development
process, from identification of need to operation and maintenance. The
purpose being to study advantages and disadvantages in every system
development activity, and to study how the methods work together. To
study the process of transferring results from usability work in one
system development activity to other system development activities
will also provide useful information,

e study possible effects of usability work on a requirement set that is
being developed. According to Andriole (1994), Brown, Earl and
McDermid (1992), for example, the most serious deficiencies in present
system development concern deficiencies in the requirement set
(requirement specification). Important issues to study are for example;
Does focus on usability work continuously during the system
development process result in requirements changes being regarded as

natural?; Can these changes be integrated in a natural way when

111

prototypes are developed?; Does a focus on usability work early in the
system development process result in a more complete requirement
set, earlier in the system development process?,

e identify reactions toward usability work by business people, users,
system developers, and customers. If these groups of people do not
consider usability work as important, usability work will probably not
be a natural part of system development,

 study developers during practical work to acquire in-depth knowledge
of their needs and demands,

* study use of usability work methods, to identify further development

possibilities and needs.

5.6 The need for Computer Support in Usability Work

The need for computer support, for example different kinds of CASE
(Computer Aided Software Engineering) systems, in system development has
been recognized for a long time (Brown, et al., 1992; Sommerville, 1996). In
user interface development, adoption of UIMSs (User Interface Management
Systems) or User Interface Tools has been advocated (Lowgren 1991; Myers,
1995). In usability work computer support can also be useful. According to
Andriole (1996), tools (computer support) to implement methods, processes
and principles into the system development process are necessary aids that
reduce resource demands. Without tools, the methods, processes and
principles tend to increase workload excessively. In my view, the same is
applicable to usability work. Another reason for computer support is to
support the difficult work of ensuring that user requirements identified early,
are taken care of later in the system development process (Wilson, et .al.,

1993).

112

It is possible to divide computer support for usability work into two groups:

e computer support for a particular method,

e computer support to support the process of usability work.

The extent to which computer support can aid a particular method and/or the
process of usability work can vary widely. It is possible to identify a range of

support levels. For example, computer support that assists:

1. in documentation of the result derived from the application of a
particular method,

2. in utilization of a particular method,

3. in carrying out usability work in a particular system development
activity,

4. in transfer of results from usability work in one system development
activity to usability work in subsequent system development activities,

5. integrated usability work during the entire system development

process.

Greatest benefit occurs when there is computer support on the most
comprehensive level (level 5), where usability work is supported in an
integrated way during system development. Almost the same ideas can be
found in I-CASE (Integrated CASE, see, for example, Cronholm, 1994).
Computer support on lower levels is of course also useful. At present, only
computer support on levels 1, and 2, seem to be available to assist usability
work. A number of tools that support documentation of usability work exist,
for example, word processors and drawing programs. There are also different
kinds of tools (programs) appropriate for prototyping, for example,
HyperCard, Visual Basic, Visual C++, etc., (see also the description of CAUSE
tools in Nielsen, 1993). However, above mentioned computer support only
assists in documentation and accomplishment in the sense that they are

possible to use in documentation and performance. They do not support

113

documentation and performance through assisting tool users in, what to
document, how to document, or what to prototype, how to prototype and

how to evaluate the prototype.

There are also different kinds of tools developed, that support the system
development process in a more traditional way, with no direct reference to
usability work. In Chapter 6, these tools and a discussion of in what respect

they support usability work are briefly presented.

114

6. TRADITIONAL COMPUTER SUPPORT IN SYSTEM
DEVELOPMENT

6.1 Introduction

This chapter provides short descriptions of different kinds of computer
support, or tools, developed to support the system development process.
Described here are CASE systems and User Interface Tools. The description is
followed by a brief discussion of CASE systems and User Interface Tools,
from the perspective of usability work. More detailed descriptions of CASE
systems and User Interface Tools may be found in McClure (1989),
Sommerville (1996) and Myers (1993; 1995), respectively.

6.2 CASE Systems

Computer Aided Software Engineering (CASE) systems (in accordance with
Sommerville, 1996, “systems” is used as a general term for all kinds of CASE
technology: tool, workbench or environment) is a common term for tools
aimed at supporting and bringing improved efficiency to the system
development process. (Another common term is Computer Aided System
Engineering tools, Eisner, 1987, Goldkuhl, 1991). According to Bubenko
(1989), Cronholm (1994), Goldkuhl (1992) and Sommerville (1996), CASE

systems often consist of the following building blocks:

e a textual and/or graphical editor to create models (for example, flow
charts and/ or object models),

e arepository, to store results from modeling,

e afunction for verification and consistency checking of models,

o a function for transformation of descriptions from one level to another,

¢ a function for report generation,

115

e a function for import and export of data.

CASE systems can, according to Sommerville (1996), be divided in three

different levels:

e CASE systems that support the production process,

o CASE systems that support project management,

e CASE systems that support development of CASE systems, META-
CAGSE systems.

Only the two first levels are discussed here. Within these levels, it is possible
to divide CASE systems into the main groups; Tools, Workbenches and
Software Engineering Environments (Brown, et al., 1992; Sommerville, 1996).
Software Engineering Environments are also called Integrated Project-
Support Environments, IPSEs (Sharon & Bell, 1995), or [-CASE (Andriole,
1996; Cronholm, 1994).

Tools support individual sub-activities within the system development
process. Example of tools are, data dictionary tools, diagram drawing tools,
prototyping tools, interactive debugging tools, documentation tools and tools

for analyzing software code.

Workbenches can either support activities within the system development
process (for example, software design, implementation and testing), or actions
necessary during the entire system development process (for example,
configuration management). Examples of workbenches are programming
workbenches, analysis and design workbenches, testing workbenches, cross-
development workbenches, configuration management workbenches,
documentation workbenches and project management workbenches.

Workbenches consist of a set of tools that are integrated at some level. (For a

116

detailed discussion of different types of integration, see, for example, Sharon

& Bell, 1995; Sommerville, 1996; Wasserman, 1990).

The purpose of software engineering environments is to support the entire, or
main part of a system development process. Software engineering
environments usually consist of a number of tools and workbenches, that are
integrated to support the system development process. A typical combination
of tools and workbenches might support software requirements analysis,
software design and implementation & unit testing (in Sommerville, 199,

these activities are named analysis and design, and programming).

A simple description of the division of CASE systems, is presented in Figure
13, below.

Code Data
dictionaries

generators
) | Workbenches | [Workbenches{ .

ansnsonnanmancunansunsungiionnonn ennonmenny sunsamensENDE HpuReRRUKSRKOHN

Software engineering environments

Figure 13: Different types of CASE systems and their relation

CASE systems can also be divided in Upper-CASE and Lower-CASE. Upper-
CASE systems are systems that support early system development activities,

such as requirements definition (Cronholm, 1994), or software requirements

117

analysis (Sommerville, 1996). Lower-CASE systems support such later
activities as software design and implementation & unit testing (Cronholm,
1994; Sommerville, 1996). Most Upper-CASE are tools, while Lower-CASE can

be tools, workbenches or software engineering environments.

There are CASE systems for almost every system development activity.
However, the support delivered are at different levels. For the system
development activities software design, and implementation & unit testing,
there is a range of available support systems. These systems deliver a high
degree of support in areas such as data modeling, software design and
implementation. For workbenches, the support delivered may also include
transformation of design descriptions to code. For system development
activities early and late in the process, for example, identification of need and
operation & maintenance, there is not so much support in CASE systems.
Support is mainly in documentation management and text editing systems.
Exceptions are Upper-CASE systems mentioned in relation to description of
business analysis (sub-section 3.2.1, also discussed in Goldkuhl, 1991). Upper-
CASE systems support, for example, documentation of business analysis

results and consistency checking of developed models.

According to Fisher (1988), the advantages with CASE systems are mainly

that they contribute to:

e development of complete requirements specifications,
e development of complete design specifications,

¢ development of timely design specifications,

e decreased time needed for implementation,

o more effective development and maintenance of code.

Following are short descriptions of some of the workbenches mentioned
above.

118

6.2.1 Analysis and Design Workbenches

According to Sommerville (1996), analysis and design workbenches are
collections of tools that support analysis and design activities in a system
development process. These workbenches are normally used to support
development and analysis of models, such as data flow models, ER-models, or
object models. Workbenches for analysis and design usually support a specific
analysis and design method, like structured analysis and design, or object-
oriented analysis and design. However, there are also workbenches that

support a number of methods.

Analysis and design workbenches can, according to Sommerville (1996),

consist of following components:

e a diagram editor to develop data flow diagrams, structured diagrams,
ER-graphs, object models and other illustrations of software structure,

e tools for analyzing a developed design to identify errors, deficiencies
and inconsistencies,

e a repository to store results from modeling,

e a query language a developer can use to search for already developed
designs, and connected information, in the repository,

e a data dictionary containing information about entities used in a
design,

e a tool for development and generation of design documentation,

e a tool for import and export of design information to, and from, other
development tools,

e code generators that automatically generate code and code skeletons

from the design.

Analysis and design workbenches are developed for a number of analysis and

design methods, for example, HOOD (Robinson, 1992), Objectory (Jacobson,

119

Christenson, Jonsson & Overgaard 1992), Structured Systems Analysis and
Design Methodology, SSADM (Ashworth & Goodland, 1990), Jackson System
Development, JSD (Jackson, 1983).

6.2.2 Programming Workbenches

A programming workbench is, according to Sommerville (1996), a collection
of tools aimed to support the software development process. This type of
workbench was the first type of application for CASE systems. Support
consisted of software development tools, such as compilators, editors and

debuggers.

A programming workbench can, according to Sommerville (1996), for

example, include the following tools:

e a compiler to transform a source program to object code, to create an
abstract syntax tree (AST) and a symbol table,

e a structure editor to edit syntactic representations of the program
(AST),

e alinker to link object code program and already compiled components,

o aloader to load executable programs into memory before execution,

e a cross-reference function to produce a cross-reference list that lists
where all program names are declared and used,

e a printer function to print source program,

e a static analyzer to be used in analyzing source code to identify
deficiencies,

e a dynamic analyzer that, for example, gathers information concerning
execution of different parts of source code, and statistics of processor
usage,

e an interactive debugger for developers to check order of execution and

to supervise the condition of a program during execution.

120

One example of a programming workbench is, according to Brown et al.
(1992), UNIX PWB (Programmer’s WorkBench). According to Sommerville
(1996), many language compilers (C++, Pascal, Lisp, Smalltalk) including

additional tool support, are also examples of programming workbenches.

6.2.3 Testing Workbenches

Sommerville (1996), defines testing workbenches as a collection of tools to test
and detect errors in software. Most testing workbenches are built by
purchasing a testing workbench and adapting it to organizational demands.
Because of this internal development (usually not performed when analysis
and design, or programming workbenches are purchased), it is difficult to
formulate a common description of testing workbenches. According to

Sommerville (1996), a testing workbench may consist of following tools:

a test manager to manage and supervise performance of tests,

o atest data generator to develop test data,

e an oracle to develop predictions of expected test results. (Results can be
results from earlier software versions, or theoretically generated
results),

e a function that compares obtained and expected test results, and
reports differences,

e areport generator to define and develop test reports,

e a dynamic analyzer similar to that described in programming
workbenches,

o simulators to simulate, for example, target system where software is to

be executed on, the user interface, input and output to software.

Examples of testing workbenches are WinRunner and XRunner (Mercury

Interactive Corporation, 1993a, b, c).

121

6.2.4 Conclusions

Use of CASE systems has not resulted in the productivity improvement in
system development predicted. According to Sommerville (1996), this is

because CASE systems:

e do not take care of the main problems in system development,
complexities in the product and in the development process,

e are not integrated at the level required; there are no CASE systems that
support an entire system development process. It is also impossible to
integrate present CASE systems to support an entire process,

e are complicated and difficult to learn. It is also difficult to adjust CASE
systems to another system development method than the one for which

the system was originally developed.

Another factor possibly influencing the absence of productivity improvement
is that few CASE systems support early system development activities.
Exceptions are the kind of computer support mentioned in conjunction with
business analysis. When Upper-CASE systems are defined to also include this
kind of tools (see, for example, Cronholm, 1994; Goldkuhl 1991), the situation
is somewhat more positive. However, problems with integration are still
present, as these tools are not integrated with CASE systems for analysis and

design (Sommerville, 1996).

6.3 User Interface Tools

User Interface Tools is a collective term for tools developed to support one or
more of the design, implementation and evaluation of user interface activities
(Myers, 1995). Within this term are User Interface Management Systems
(UIMSs), Toolkits, User Interface Development Environments, Interface

Builders, Interface Development Tools and Application Frameworks. User

122

Interface Tools can also be seen as a sub-entity of CASE systems (see, for

example, Fisher, 1988; Sommerville, 1996).

According to Lowgren (1991), Myers (1989; 1995) and Shneiderman (1992),
possible advantages in using User Interface Tools during user interface

development are, for example, the following:

o the user interface is being more usable, because:
1. user interface prototypes can be developed and evaluated prior to

the development of an underlying application,

2. user interface is more consistent because tools used decrease

possible design solutions,

3. it is easier to adjust user interface to different user groups, since user
interface can be changed without influencing the underlying

application,

4. other professionals than programmers can actively participate in
development. For example, human factors specialists and graphic

designers,

e the user interface is easier to develop and maintain, because:

1. the user interface code is separated from the application code,
2. itis easier to reuse user interface elements,

3. less user interface code has to be developed, since much of the

basic code for the user interface elements is delivered by the tools.

Below, is a brief description of some of the User Interface Tools mentioned

above. For a more detailed description, see, for example, Myers (1993; 1995).

123

6.3.1 Toolkits

A toolkit is a tool box, or a library of widgets, containing for example menus,
buttons, scroll-lists and dialog boxes. To implement a user interface using a
toolkit, usually programming expertise is required. An advantage in using a
toolkit is that the user interface developed will have a similar look and feel, as
other user interfaces developed using the same toolkit. Disadvantages with
toolkits are the restricted support for the design situation. Within the
constraints provided by a toolkit’s pre-defined widget set, it is possible to
develop any user interface. Examples of toolkits are Motif toolkit, Microsoft

Windows toolkit, and Macintosh toolkit.

6.3.2 Interface Builders

Interface builders are tools that support a user interface developer in creating
for example, menus, dialog boxes and buttons. User interface elements are
selected from a library or a tool box containing widgets, and then placed at
appropriate places in the user interface under development. The behavior of
user interface elements is defined in attribute forms (Myers, 1995). Interface
builders make development of traditional user interfaces easier and faster.
However, design possibilities are limited to toolkit options in the interface
builder. Interface builders do not guide the design of user interface, as
developers can freely decide where to place user interface elements in the user
interface to be developed. Examples of interface builders are, according to
Myers (1995), Windowsmaker for Microsoft, and UIMX for X Windows and
Motif.

124

6.3.3 User Interface Management Systems

User Interface Management Systems (UIMSs) are tools that support
development (design and implementation) and execution (dialog
management) of user interfaces (Léwgren, 1991; Myers, 1995). UIMSs usually
consists of a development module and a run-time module. The development
module normally contains a graphical editor, and/or a specially developed
language, that can be used by a developer to create user interface elements,
define their behavior, and to define dialog between user and application. The
run-time module usually contains a toolkit utilized to present user interface
elements, and a dialog manager. The dialog manager administer user input
and also ensures that right actions are performed by an application. Very few

UIMSs have an evaluation module to support evaluation of user interfaces.

In my opinion, UIMSs can be divided into a number of groups, depending on
the approach selected to support development and management of user
interface (alternative groupings can be found in Bergsten, Bern, Kool &
Wingstedt, 1993; Myers, 1995). The groups identified are; Traditional UIMSs;
Direct Manipulation UIMSs; Automatic generation UIMSs; and Application
Frameworks (the last group is described in a separate sub-section, below).
These groupings need not be seen as absolute; some UIMSs can be assigned to
more than one group. The primary reason for this grouping is to discuss in

what ways different approaches influence user interface development.

Traditional UIMSs, are those supporting development and management of
user interfaces, by providing developers access to a high-level language.
Developers specify user interface elements using the high-level language.
Example of languages are: state transition networks; event languages; and
declarative languages. The program created is interpreted by a management

module in the UIMS that define the result of actions from user and operations

125

from application software. Examples of UIMSs of this kind are, according to
Myers (1995), VAPS from Virtual Prototypes Inc., and Open Dialogue from
Hewlett Packard.

Direct manipulation UIMSs, are UIMSs that support development and
management of user interfaces, by giving the developer access to a graphical
specification language. With this language, a user interface is created by
“drawing” a user interface using widgets and/or other user interface
elements. Examples of this kind of UIMSs are, according to Myers (1995),
HyperCard by Apple, and Toolbook from Asymetrix Corp.

Automatic generation UIMSs, are those that support development and
management of user interfaces, by automatically generating a user interface
from a high-level description. The high-level description is created by a user
interface developer and can, for example, consist of a model of included
interaction objects, what they should do, and how these objects relates to each
other and to the underlying application. A model of this kind is sometimes
called a description of the user interface on the semantic level (Lowgren,
1991). Example of this kind of UIMS is UIDE (Sukaviriya, Foley & Griffith,
1993).

According to Lowgren (1991), UIMSs have not been as successful in
development of user interfaces as predicted (see also Myers, 1995). UIMSs are
also not used as much as predicted in conjunction with industrial system
development. Reasons for this are, according to Lowgren (1991), Myers (1995)
and Reiterer (1994), primarily that UIMSs:

e usually are difficult to integrate into a system development
environment,

e are not adapted to what developers need.

126

Reasons why UIMSs are difficult to integrate include factors such as software
language incompatibility and limited usability. Many of the UIMSs (at least
the ones developed from a research perspective) utilize development
environments such as LISP, which make them difficult to integrate with other
development environments. Other UIMSs are especially developed for certain
platforms, for example UNIX, and are difficult to integrate with other
software like Microsoft Windows.

That UIMSs are not adapted to what developers need is, according to
Lowgren (1991), primarily due to the fact that development of UIMSs has not
being influenced by developer needs. Influence has rather been from a
technical point of view. According to Lowgren (1991), an understanding of
the process of developing a user interface is required to influence the

development of UIMSs.

Other influential factors are that many UIMSs (at least the ones called
traditional UIMSs) require profound programming expertise, as well as deep
knowledge of the specific tool. They are difficult, if not impossible, for use by
human factors specialists and graphic designers who lack such knowledge.
Probably, they are not interested in, and have not enough time for, learning a
complex language and an advanced UIMS environment. Automatic
generation UIMSs are at present time not mature enough (see, for example,

Myers, 1995), to be an alternative in industrial system development.

6.3.4 Application Frameworks

Application frameworks are especially developed UIMSs for development of
user interfaces for a specific type of platform or a specific kind of application.

Examples of applications frameworks are, according to Myers (1995), MacApp

127

(described in Schmucker, 1986) and Unidraw (described in Vlissides & Linton,
1990). In my opinion, also UIMSs for development of data bases, for example

4GL tools, can be called application frameworks.

Another type of application frameworks are the ones, developed out of the
concept of small software modules. These can be put together to create special
application programs such as document management programs (Paley,
Hansen, Kazar, Sherman, Wadlow, Neuendorffer, Stern, Bader & Peters, 1988,
referenced in Myers, 1995). In these application frameworks, the cut and paste
technique is further developed. In a specific document it is possible to
incorporate tools such as a drawing program and/or a calculation program.
Using this approach it is possible to use functionality from these programs
without opening the separate programs. Examples on this approach can be

found in OLE from Microsoft and OpenDoc from Apple.

6.3.5 Conclusions

User interface tools primarily support implementation and functioning
(management) of user interfaces. If we look at user interface tools from the
perspective of the activities in the system development process, as described
earlier in the thesis, it is possible to make following conclusions. User

interface tools support:

e part of software design,
e part of implementation and unit testing,

e part of operation and maintenance.

128

User interface tools do not support:

o identification of need, identification of wuser requirements
(requirements definition), overall system design, identification of

software requirements, and integration and testing.

User interface tools do not comprehensively support software design. They
do support design of specific user interface elements. Not supported is design
of user interface as a whole. With respect to implementation and unit testing,
user interface tools support implementation, and in exceptional cases testing.
The MIKE system (Olsen & Halversen, 1988), the Framer system (Fischer &
Lemke, 1988; Fischer & Lemke, 1989; Fischer, Lemke, Mastaglio & Morch,
1990), the KRI system (Lowgren & Nordqvist, 1990; 1992) and TUNE
(Nordqvist 1996), illustrate how to support evaluation of user interfaces. Only
the MIKE system can be called a user interface tool. All others are modules
that can possibly be used together with a user interface tool. In operation and
maintenance, many user interface tools can support further development of a
user interface carried out in connection with the different kinds of
maintenance mentioned by Sommerville (1992). This is especially true for user
interface tools making it possible to change a user interface without need to

change the application code.

User interface tools do not support early and late activities in the system
development process, as none has been developed for this purpose. (That user
interface tools are sometimes used as prototyping tools during early activities
in system development does not necessarily mean that support is provided).
User interface tools have been developed to support design, implementation

and evaluation of user interfaces.

Development of user interfaces, and utilization of user interface tools are

often regarded as a stand-alone activity. This has caused minimal effort to

129

integrate those tools with other available tools, for example different kinds of
CASE systems. Although efforts has been made (see, for example, Johnson et
al,, 1990; Lowgren 1991; Myers 1995, for a description of these approaches),
much work remains before user interface tools are integrated with other

system development tools.

Another factor that influences the value of user interface tools in system
development, particularly user interface development, is that they are not
adapted to user interface developer needs. According to Lowgren (1991)
UIMSs are not adapted to the requirements of developers. For user interface
tools in general, Myers and Rosson (1992); Myers (1995); Rosson, Maass, and
Kellogg (1988), also mention deficiencies in this respect. For example, Myers
and Rosson (1992) consider the task to investigate user needs, and user
requirements on the user interface to be developed, as the main difficulties in
conjunction with development of user interfaces. Myers (1995) point to the
need for tools that support task analysis. Rosson et al., (1988) advocate that
user interface tools support creation of task scenarios and discussion of
different design ideas. Existing user interface tools do not support these

activities to the needed level of detail.

6.4 Traditional Computer Support in System Development and its
Relevance for Usability Work

Above mentioned computer support tools for the system development
process has, despite the deficiencies described, contributed to more efficient
industrial system development (Myers, 1995; Sommerville, 1996). However,
the question remains as to the extent that these tools support a system
development process that focuses on users and use of the system. In other
words, do these tools support usability work, and if so, how? Below, an initial

analysis discusses the main points of this question.

130

In looking at the conclusions made for CASE systems and user interface tools,
from the perspective of usability work in industrial system development, it is
apparent that traditional computer support for system development seldom
supports usability work. Following is the basis for this conclusion. The point
of departure is the simple “model” of support levels presented in section 5.6.

From this, CASE systems and user interface tools:

e do not support documentation of results of most methods for usability
work,

e partially support utilization of a single method,

e do not support accomplishment of all aspects of usability work in a
specific system development activity,

e partially support transfer of results from usability work in one system
development activity to subsequent system development activities,

e do not support integrated usability work throughout the entire system

development process.

When comparing these conclusions, with the model and the methods

advocated in earlier chapters, it is possible to concretize them further.

Traditional computer support for system development supports
documentation of results from business analysis (see, Upper-CASE,
Cronholm, 1994), and prototyping (user interface tools). Also supported is the
utilization of some methods (business analysis, prototyping) in that some
CASE systems (Upper-CASE) and user interface tools can be used in these
activities. Not supported is accomplishment of all aspects of usability work in
a specific system development activity. The tools do not give any answers to
issues as, what methods to use, how to combine them, and how results from
one method can contribute to another method. Traditional computer support
for system development partially supports transfer of results from usability

work in one system development activity to subsequent activities, as user

131

interface tools can be used to further develop the prototypes. They do not
support integrated usability work, as basic integration between different tools

is missing (Sommerville, 1996).

Using the usability work model, advocated in this thesis, it is also possible to
conclude the following. Traditional computer support for system
development does not support the evaluative aspects of usability work to any

great extent. CASE systems or user interface tools do not contain significant

functionality for evaluation of user interface designs (see, for example, Myers,

1995; Lowgren, 1991) or other usability aspects.

To contribute to the elimination of these deficiencies in computer support for
usability work, a number of studies are presented in Chapter 7. These studies
present different simple tools that support evaluation. Three of the studies
focus on the issue of evaluating user interfaces in conjunction with design and
implementation. The fourth study provides a simple illustration of how to
support evaluation that user requirements are in a computer system being

developed.

132

7. SUMMARY OF THE STUDIES

7.1 Introduction

The studies in this thesis have the general and common goal of studying the
possibility to support development of computer systems, that fulfills user
requirements and are usable, with different types of basic computer support.
While the studies focus on low-level problems (for example, consistency in
user interfaces, design of user interface elements), computer support for these

can hopefully contribute to increased overall usability in computer systems.

7.2 Study 1: A Knowledge-Based Tool for User Interface Evaluation and
its integration in a UIMS

This study had three objectives. The first was to develop a prototype tool for
knowledge-based evaluation of user interfaces (the KRI system). Design goals
for this prototype called for it to have capacity to illustrate possibility to use
knowledge-based techniques (specifically the critiquing approach). In that
way making it possible to utilize expert knowledge to support evaluation of
user interfaces. Secondly, this study also discussed how a tool of this kind
could be integrated in a User Interface Management System (UIMS). Thirdly,
the study also tried to illustrate the possibility to support evaluation on more

than the presentation level.

Justification for the study was the identified need to supplement UIMSs with
the capacity to evaluate user interfaces (Myers, 1989; Olsen, Green, Lantz,

Schulert & Sibert, 1987).

133

7.2.1 A Knowledge-Based Tool for Evaluation of User Interfaces, the KRI System

The following are the KRI system’s primary components:

e aknowledge-base containing evaluation knowledge,
e an inference mechanism,
e adatabase containing guidelines concerning user interface design,

e ataxonomy of user interface aspects (elements).

The knowledge-base consists of a set of rules. These were drawn up after
studying user interface experts evaluating user interfaces and interpreting
applicable guidelines. The inference mechanism is based on forward chaining
where the rules are used to identify and report design flaws. The database
contains guidelines from Smith and Mosier (1986), used as a reference for
possible comments concerning deficiencies in user interface design. The
knowledge-base and the database emphasize knowledge relative to

presentation and syntax levels of the user interface.

The taxonomy had two functions. First, to give users of the KRI system the
choices for the evaluation of user interface elements. The taxonomy is
presented as a graph in the user interface of KRI to facilitate evaluation
choices. Secondly, the taxonomy serves as a foundation for structuring the

knowledge-base.

Evaluation of a user interface using the KRI system was largely performed in

the following manner:

1. the developer developed a design proposal (user interface),
2. the representation (presentation and syntax) of the design proposal

was loaded into the KRI system,

134

3. using the graph, the developer selected in an interactive way what user
interface elements to evaluate,

4. with these selected elements as criteria, the KRI system inspected the
user interface representation and executed the applicable rules,

5. when a user interface element did not follow a rule in the knowledge-
base, it was noted as a comment in the result file,

6. when the KRI system had completed the evaluation, the developer
studied the result file (comments), referenced guidelines and change

suggestions.

Practical use of KRI:

The KRI-tool was used to evaluate an application consisting of three separate
tables for entering data and six pull-down menus. The necessary activation of
tables before data entry could be performed through use of specially
dedicated functions keys.

In evaluation of the function keys a comment concerning the mismatch
between presentation order of the tables and the implicit order of the
functions keys was generated. The reason for this comment was that the
tables were activated with function key 3 for the top table, 1 for the middle
table and 2 for the bottom table.

Practical use of the KRI system demonstrated that knowledge-based
technique can be used to support evaluation of user interfaces. However,
when user interface experts studied the comments generated, a number of
comments were judged as trivial, or that they failed to address semantic
(meaning), user, or task (pragmatic) issues. The reason for this limitation in
the KRI system was that the user interface representation used did not handle

these issues.

135

7.2.2 Integration with a UIMS

Systems such as the KRI system must be integrated with a UIMS to better
support evaluation during user interface design. Using the Seeheim model
(Tanner & Buxton, 1985) as a basis, an extended model supplemented with a
knowledge-based evaluation module (KBE) was developed, see Figure 14

below.

KBE
Ul
design
Ul User
spec. log

Figure 14: An extension of the Seeheim model

This KBE module is intended to support both design of a user interface (ui)
and evaluation (analysis) of registrations from use of a user interface. During
design of a user interface, the KBE module can be used to evaluate design
proposals. This is achieved by integrating the evaluation functionality in the
KRI system with a commercially available UIMS, TeleUSE (Telesoft, 1989).
Based on the representation (X widgets) in TeleUSE it is possible to evaluate

the design proposal with respect to presentation aspects.

By utilizing the time stamped protocol (interaction log) generated by TeleUSE

during use of a user interface, the knowledge in the KBE module can be used

136

to evaluate user interaction with the system. Although this log only delivers
information about the lexical (presentation) level, it is possible to have
information about, how often menu alternatives etc., are chosen, usual
sequences, errors in user interface handling and help requests, for example. In
this way it is possible to supplement the low-level evaluation performed at
design-time with information related to user and task issues. From this run-
time evaluation it is possible to obtain evaluation information usually only

attainable from high-level representations.

7.2.3 Conclusions

The results of the study indicated the possibility to utilize knowledge-based
techniques (and in that way expert knowledge) to support design and
evaluation of user interfaces. The study also principally discussed, how the
evaluation functionality in the KRI system could be integrated with a UIMS.
With this integration, developers have access to evaluation support for the
presentation aspects of user interface elements in conjunction with design.
Through use of the knowledge-base to analyze the interaction log it is also
possible to obtain information on deficiencies in user interface design related

to user interaction with the computer system.

7.3 Study 2: Knowledge-Based Evaluation as Design Support for
Graphical User Interfaces

The aim of this study was to further investigate ways to make human factors
knowledge available when a User Interface Management System (UIMS) is
used to develop user interfaces. This study focused on three issues mentioned
in study 1. First, to investigate the possibility to use traditional knowledge

sources such as guidelines and styleguides in computer support for user

137

interface evaluation. Second, to augment a UIMS with this kind of
knowledge-base. Third, to further explore performance of run-time
evaluations during development of user interfaces and in that way support

evaluation of user interface aspects related to user and task.

In the study, a prototype knowledge-based tool (KRI/AG) containing
knowledge from guideline and styleguide collections was developed. This
tool was integrated with a UIMS, to extend the design and implementation
environment with an evaluation module. The knowledge-based tool can be
used at the convenience of a developer to evaluate design proposals
developed in the UIMS. With this approach the developer can have
information concerning further development of the design as needed. In other

words, formative evaluation of user interface is supported.

7.3.1 The KRI/AG System

The KRI/ AG system consists primarily of a parser and a knowledge-base, see

Figure 15 below.

KRI'AG Comments

TeleUse

UIL Knowledge Text
—_—D Parser —>| base —_—>

Figure 15: Overall architecture of KRI/AG

The parser is used to translate the representation (UIL) of the user interface,

created in the UIMS tool (TeleUSE) to a representation understood by

138

KRI/AG. The representation contains information concerning static parts of

the user interface, for example, buttons, menus and forms.

The knowledge-base is used to evaluate the user interface representation and
to generate possible comments about design deficiencies. The knowledge-base
contain rules generated from guideline and styleguide documents (for
example, Brown, 1988; Open Software Foundation, 1988; Smith & Mosier,
1986). In KRI/ AG, there are rules concerning graphic design, menu design,

menu dialogue and other dialogue.

Practical use of KRI/AG:

KRI/ AG was used to evaluate a user interface consisting of a map window, a
number of tools for manipulation of overlay symbols (military units, etc.,) in
the map, a number of option menus for inspection or change of symbol
attributes and two pull-down menus containing global commands. The
evaluation resulted in a number of comments. An example of a generated
comment is: “There is no Help menu in the menu bar. Every application
should have a Help menu. The recommended standard menus in the menu
bar are File, Edit, View, Options and Help, in that order. (Motif Style Guide p.
7-42).”

Practical use of KRI/AG to evaluate a user interface showed that guidelines
and styleguides (in this case, Motif) can be used to automatically evaluate a
UIMS-developed user interface. However, analysis of these evaluations
revealed that most of the design knowledge was useful only when the actual

use situation was considered.

139

Support issues:

Two important issues related to development of support systems for user
interface design were identified during development and evaluation of
KRI/AG. The first related to how developers of user interfaces shall be
supported. The second concerned the level of evaluation appropriate for a

design support tool.

Concerning the first issue, a number of authors (see, for example, Tetzlaff &
Schwartz, 1991; Lemke & Fischer, 1990) have advocated the use of toolkits,
good design examples and user interface skeletons rather than guideline and
styleguide documents. However, practice has shown that despite this kind of
support it is still possible to develop user interfaces that violate guidelines as
well as styleguides. Possible deviations from guidelines and styleguides are
deficiencies in consistency within and between applications. From the
preliminary results obtained in this study, it is possible to believe that the
KRI/AG system can support designers working on design issues related to

consistency in user interface.

Concerning level of evaluation at which a design support tool is most
effective, this study, and study 1, showed that evaluation at the task level
provides the best data. Evaluation at the task level can be performed in two
ways. One is to use a design representation where information about user
tasks as well as domain knowledge are represented (see, for example, Foley,
Kim, Kovacevic & Murray, 1989). Another is to collect and analyze logs
(registrations) from real use of a user interface. In the study the second way
was discussed, here called run time evaluation (RTE). The reason for this was
that; this method was regarded as more compatible with commercially
available design tools; there was no additional complexity in the design

situation (rich and complex representations are harder to create and

140

interpret); and it did not depend on a priori assumptions about the use

situation as does the first method.

An RTE function to collect and analyze logs can be integrated with KRI/ AG
and TeleUSE. With this addition to KRI/AG, it is possible to evaluate logs
generated by TeleUSE in conjunction with practical use of a user interface.
Since TeleUSE utilizes X events and a specially developed language and
event mechanism to manage events (called D language), it is only possible to
collect logs on low-level aspects. Examples of data that may be collected are:
keyboard input, button presses, mouse position. Utilizing a combination of
knowledge-based and algorithmic techniques, logs may be analyzed and
comments generated on deficiencies in a user interface not possible to assess
in design time evaluation. Some of the user interface properties that might be

evaluated with the RTE functionality are:

1. long sequences for common operations,

2. change of interaction technique within a task,

3. inconsistency in manipulation syntax (object-command or command-
object),

4. detection of errors in handling of user interface, and use of help,

5. identification of accelerators for most common user actions.

Also a conceptual framework to relate the idea of runtime evaluation (RTE) to
software development was developed, see Figure 16 below. According to this
framework a task can be simulated or real-life. Simulated tasks can be defined
from requirements specifications or they can consist of general interaction
with the user interface. Simulated tasks can be tested in the development
environment. Real-life tasks must be the real tasks the system is intended to
support and they have to be carried out in the real environment. Users can
also be simulated or real-life. A simulated user can be someone in the

development team or a person chosen at random willing to pretend being the

141

intended user of the system. A real-life user is one of the users for whom the

system is intended.

real-life “ 45
User
simulated 2.3 1
simulated real-life
Task

Figure 16: The space of RTE and properties possible to evaluate

In Figure 16, the properties possible to evaluate using RTE mentioned above
are inserted in the evaluation space (number in parentheses means the
property can be evaluated to some extent). According to the framework, it is
possible to evaluate, for example, properties 2 and 3 with simulated users and
simulated tasks, while properties 4 and 5 requires real-life users and tasks.
From this it was concluded that simulated users and/or simulated tasks can
be used to evaluate some user interface properties. Thus making it possible to
carry out evaluation early in the system development process and to minor

costs.

7.3.2 Conclusions

The study showed how human factors knowledge, in the form of guidelines
and styleguides, can be included into computer support to evaluate a UIMS-
produced user interface design. This kind of tool can probably reduce the

number of design flaws related to user interface consistency.

142

The study also indicated that to address deficiencies in user interface
associated with user and task the use situation must also be considered. As a
possible solution to this problem a function for run time evaluation (RTE) was
suggested, together with examples of user interface aspects possible to

evaluate utilizing the RTE function.

Finally, a framework for relating evaluation of user interface properties to
different phases in the system development process was presented. This
framework illustrated that some user interface aspects could be evaluated
using simulated users and tasks, and in that way be included early in the

system development process.

7.4 Study 3: TUNE: A Tool for User Interface Evaluation

The purpose of this study was to develop a prototype tool (TUNE), that
facilitated inclusion of human factors knowledge, in the form of guidelines
and styleguides (GLSG), in development of user interfaces. The reason for this
was the increased awareness of the difficulty to use present GLSG documents
in conjunction with development of user interfaces (de Souza & Bevan, 1990;
Mosier & Smith, 1986; Tetzlaff & Schwartz, 1991). This difficulty has resulted
in that developers are reluctant to use this type of documents (Smith &
Mosier, 1984; Thovtrup & Nielsen, 1991). A number of methods and computer
support tools have been developed to overcome this barrier (Study 1 and 2 in

this thesis; Nielsen & Molich, 1990; Perlman, 1989a, b).

Due to approaches often used in industrial system development, use of these
methods and tools may not be practical. For example, in many system
development projects UIMSs are not used and so the UIMS solutions in Study

1 and 2 cannot be adapted. Therefore, a prototype for a simpler computer

143

support tool (TUNE) was developed. TUNE was designed to illustrate how to
facilitate the usually time consuming and laborious process of evaluating
whether a user interface complies with GLSGs (specifically, The Windows
Interface: An Application Design Guide, Microsoft, 1993). TUNE was tested by

evaluating selected applications.

7.4.1 TUNE

TUNE mainly consists of test programs for static and dynamic tests

(implemented in C++)and a GLSG database, see Figure 17 below.

TUNE

Static test

A
4

Application|
tested

>| Dynamic tests

Test
result

1
1
]
[}
—
]
]
1
]
[}
I
I
[}
[}
y

GLSG database

Figure 17: Overall architecture of TUNE

Static tests are utilized to evaluate the existence and appearance user interface

elements. Examples of static tests are:

e existence of menus and menu items,

e appearance of mnemonics and short-cuts.

Dynamic tests are utilized to evaluate if user interface elements behave as

specified in the GLSG being used. Examples of dynamic tests are:

e function of menu items, mnemonics, short-cuts and buttons,

144

e presentation of dialog boxes when menu items followed by three dots

are selected.

The rules for accomplishing the tests are in the GLSG database or the test
programs. In the GLSG database are rules that can be chosen, depending on
the specific user interface elements in the application being evaluated. In the
test programs are rules considered as generic for all applications. Utilizing the
rules, TUNE evaluates a user interface by inspecting the information about
user interface elements in an application and checking that static properties
are as specified in GLSGs. For a GLSG for dynamic behavior, TUNE activates
the user interface element and checks that the behavior is as specified in
GLSGs. Deviations from GLSGs are written to a result file that may be

inspected after an evaluation.

Practical use of TUNE:

TUNE were used to evaluate three applications, and the results are
summarized as follows. A number of deviations from GLSGs were identified.
Most of the deviations were related to the fact that the developer had
forgotten some GLSGs. A number of design flaws were also repeated in the
user interface. Developers had objections to evaluation results on very few
occasions, in those cases they preferred other labels for menu items than the

ones defined in GLSGs.

TUNE was also evaluated against a number of pre-defined goals. These goals
were; reduction of time needed for evaluation of GLSG compliance; support
the task of evaluating all user interface elements; enhance consistency in user
interfaces; and support iterative design of user interfaces. The study to
investigate if these goals were realized was performed by comparing TUNE

testing of the three applications and manual evaluation by three usability

145

experts. The results from the evaluation are described briefly below. (Note,

results from manual evaluation are presented as mean values).

Reduction of time needed for evaluation of GLSG compliance:

In Figure 18, below, time used (min) for manual and TUNE evaluation is

depicted.

Manual | 115 21 1135

TUNE | 20 4 27

Figure 18: Time used (min) for manual and TUNE evaluation for three

applications

As illustrated in Figure 18, time used in TUNE evaluation is about 20% of
time used in manual evaluation. From this it is possible to conclude that

TUNE reduces time needed for evaluation of GLSG compliance.

Support the task of evaluating all user interface elements:

Figure 19, below, illustrate number of evaluated user interface (ui) elements
for TUNE and manual evaluation compared to total number of ui elements

for three applications.

146

A B €
Manual 231 38 290
TUNE 252 36 305

Total number | 255 39 308

Figure 19: Number of evaluated ui elements together with total number of

ui elements

The results in Figure 19 indicates that TUNE evaluation result in that more ui
elements are evaluated compared to manual evaluation (at least for
application A and B). The reason for the discrepancy between TUNE
evaluation and total number is that TUNE did not evaluate the Exit menu
item (including mnemonic and shortcut). Figure 19 also illustrate that the
difference between TUNE and manual evaluation is greater when the

application is more complex (more ui elements).

Enhance consistency in user interfaces:

Figure 20, below, illustrates number of recognized deviations for manual and
TUNE evaluation for three applications. The basis for using number of
deviations as an indication of enhanced consistency was our hypothesis that
the more deviations recognized (and corrected) the more consistent user

interface.

A B &

Manual | 69 (222)| 33 (73) | 58 (97)

TUNE 85 42 83

Figure 20: Number of recognized deviations in manual and TUNE

evaluation for the three applications

147

From Figure 20 it is possible to conclude that TUNE evaluation result in that
more deviations are recognized. However, this is only true if only
implemented GLSGs are considered. If all GLSGs and the usability experts
expertise is also included, manual evaluation result in detection of more

deviations (numbers in parentheses).

Support iterative design of user interfaces:

Since TUNE can be used to evaluate user interface designs in progress it is
possible to use TUNE in iterative design. Also interviews with designers who
have used TUNE indicated that they experience TUNE as a support tool in

iterative design.

7.4.2 Conclusions

Preliminary conclusions from utilizing TUNE can be summarized as follows:

e evaluation using TUNE is less time consuming than manual
evaluation,

e evaluation using TUNE causes more user interface elements to be
evaluated, especially for complex applications,

e TUNE identifies more deviations compared to manual evaluation,
within its scope of GLSG coverage,

e TUNE supports iterative design, as a developer can use it for personal

support when evaluating a user interface under development.

It is important to observe two basic limitations in TUNE. TUNE only
evaluates simple user interface elements such as menus, menu items, dialog
boxes and buttons. TUNE only evaluates presentation and behavior of user
interface elements. Evaluation with respect to task and user is not supported

in TUNE. Despite these constraints, the study illustrated that TUNE can

148

support a developer in the laborious work of inspecting user interface

compliance with defined GLSGs.

7.5 Study 4: Computer Support for User Requirement Evaluation in
System Development

The purpose of this study was to illustrate how to support evaluation of user
requirements fulfillment in an application being developed. To do this, a
prototype for evaluating if defined user requirements are in a computer
system was developed (TURE, Tool for User Requirement Evaluation). The
reason for the study was the need to find a means of supporting the
comprehensive and laborious process of validating that user requirements are
covered in the developed computer system. This process is currently
performed manually. TURE was used in a system development project to
investigate advantages and disadvantages of this approach in comparison to

manual evaluation of user requirement compliance.

Z:5.1 TURE

As a platform for the development of TURE, WinRunner (Mercury Interactive
Corporation, 1993, a, b, ¢) was used. WinRunner is a tool for development of
automatic software tests of applications that use Microsoft Windows. TURE
consists of the following components: The Learn GUI Objects function in
WinRunner and a number of specially developed test scripts. The Learn GUI
Objects function is used to create a representation of the user interface in the
application being evaluated. This representation includes, for example, logical
names (labels on buttons, menus etc.,) and physical descriptions (window,
dialog box, menu, etc.,) of user interface elements. The test scripts consist of

functions in a C-like programming language, containing defined user

149

requirements. These functions are then used to check that defined user
requirements are in the application. The overall architecture of TURE is

illustrated in Figure 21 below.

Leamn GUI

objects Tem l——p | Comment:
Application to| g, $ométion scripts
be evaluated

WinRunner I——

Figure 21: Overall architecture of TURE

Creation of test scripts necessitates some kind of requirements documentation
(a system requirements specification, for example). With the requirements
documentation as a basis, user requirements are transformed into a test script.
The level of detail in the requirements documentation influences creation of
test scripts. When requirements lack sufficient detail, it is necessary to ask the
user to be more specific about their requirements. If this is impossible, details
in test scripts must usually wait until a more detailed documentation (for
example, a software requirements specification) is developed. In Figure 22,
below, an example of a user requirement and the resulting test-script is

illustrated.

Example of a user requirement:

Selection of the command “List of address” shall result in presentation of a dialog
box “List of address” in the working area.

Part of the resulting test script (tets if there is a command for “List of address”):

if (menu_select_item(“Options; Lits of address...”)!=E_OK)
report message(“2.4.7.6.4.4 There is no command for List of address™);

Figure 22: An example of user requirement and resulting test-script

150

When a prototype, or a version of the application, has been developed, the
Learn GUI Objects function is used to create a representation of the user
interface. In the case the requirements documentation is very detailed, and all
user interface elements are defined (and implemented in the test-script), an
evaluation can be performed almost immediately. Otherwise, it is necessary to

further develop the test script using the generated representation as a basis.

TURE used in practice: A case study:

The study to investigate possible advantages and disadvantages using TURE
in practical system development, was carried out by comparing manual and
TURE evaluation in evaluating a developed computer system. Performance
measures compared were time to create validation specification (a validation
specification is a detailed check list for every requirement specified, used in
manual evaluation of an application) and test scripts respectively, and time
used in manual and TURE evaluation of the application. The results from this

case study is depicted in Figure 23 below.

Manual TURE

Time used in conducting

the evaluation. B i

Time used in creating

i ; 8
validation spec./test-scripts L h

Figure 23: Comparison of manual and TURE evaluation

As illustrated in Figure 23, the time used for creating validation specification
and test-scripts were the same (Note, the number given in the figure should
not be seen as absolute, measurement detail was restricted to 15-min

intervals). The reason for this was mainly the fact that both validation

151

specification and the test-scripts were created from scratch and that both

requires roughly the same amount of work.

Concerning time used for manual and TURE evaluation the results indicated

that use of TURE was much faster.

7.5.2 Conclusions

The result from the study showed that almost equal amounts of time were
needed in creation of test scripts and validation specification. The case study
also showed that less time was needed to accomplish evaluation using TURE,
compared to manual evaluation. However, these results should not be
generalized to evaluation of other applications. Further studies are necessary
to make any conclusions about possible advantages in wider use of TURE.
The study only demonstrated that it is possible to use computer support when
evaluating if user requirements are implemented in an application. Also, it is
important to note that TURE only inspects user requirements reflected in a
user interface. Much work remains before TURE can be considered an

efficient tool for use during system development.

Further results from practical use of TURE indicated that:

e it was possible to identify a number of deviations from defined user
requirements,

e some of the deficiencies were due to defects in the test-script (some
requirement were implemented using other user interface elements
and TURE searched for originally defined elements),

e tracing identified deviations back to user requirements was simplified

by identification of original requirements in the test report (comments),

152

o the possibility to replay the evaluation session facilitated

communication with developers,

additional activities are necessary when evaluating an application, for
example, validation of user requirements, control if user interface
elements have been replaced or changed names, incremental

development of test-scripts during system development.

7.6 Concluding Remarks

The studies accomplished within this thesis have illustrated and exemplified

the following:

it is possible to support development of user interfaces with tools that
inspect user interface design proposals,

this support is on a low level and focuses on appearance and behavior
of individual user interface elements,

it is possible to utilize knowledge from usability experts, as well as
guideline and styleguide collections with this type of tool,

it is possible to further develop this type of tools and to, at least
partially, evaluate user interfaces with respect to user and task issues,
tools for evaluation of the appearance and behavior of individual user
interface elements can be integrated with UIMS tools,

it is possible to develop support systems to, at least partially, inspect
what user requirements are implemented in the computer system
developed,

the tools illustrated in this study are simple prototypes, therefore no
definitive conclusions can be drawn,

further work is necessary.

Below, a short discussion of above conclusions are presented.

153

Studies 1, 2 and 3 illustrated the feasibility of supporting development of user
interfaces with evaluation tools. These tools can be stand-alone modules, or

integrated modules in a UIMS.

Studies 1, 2 and 3 demonstrated that these types of tools support design at a
low level. Developers participating in the evaluation of the tools felt that
identified design flaws were trivial and/or not related to user and task.
However, even if the identified design flaws are trivial, it is of value to
identify them. Many complex computer systems can include hundreds of user
interface elements. If the number of simple design flaws is large, there will be
dramatic impact on computer system usability. Another reason for the
importance of identifying simple design flaws is that for some applications
consistency in and between systems can be of great importance. Command
and control systems and process control systems are examples of two types of

systems where simple design flaws could have dramatic impact.

Studies on user interface design and evaluation used knowledge from user
interface experts as well as knowledge in guideline and styleguide
documents. This is a valuable new feature. The potential to implement
guidelines and styleguides in computer support for evaluation of user
interfaces suggests that this kind of knowledge can be used more often in

industrial system development.

Studies 1 and 2 also discussed the possibility to further develop the evaluation
functionality to include registration and analysis of user interaction with a
computer system. While this technique does not directly address design flaws
related to user and task, it is possible to draw some indirect conclusions about
design flaws relative to these factors. For example, frequent use of the help
function or long sequences for accomplishing usual actions indicates

deficiencies in adaptation of user interface to user and task.

154

Studies 1 and 2 illustrated how to integrate the evaluation functionality with a
UIMS tool. Regrettably, this integration has not been developed further.
Preliminary work indicates need for development of a function for analysis
and compilation of the great number of “events” generated by the UIMS

during user interaction with a computer system.

Study 4 demonstrated that it is possible to develop computer support for
evaluation that user requirements (some of the user requirements related to
the user interface) are implemented in an application. This study should be
considered as a pilot study and no definitive conclusions should therefore be
drawn. The study provides only a preliminary indication that it is possible to
support evaluation of whether defined user requirements are implemented.
While the study goal was not about handling user and task aspects along with
user interface evaluation, some comments are possible. Further development
of the tool presented in this study may extend its function to include
evaluation of user interfaces from a user and task perspective. User
requirements exemplified in the study suggest that it is possible to also use
this kind of scripts as a basis for evaluation of user interface design issues.
Supplementing the RTE functionality described in study 2 with this type of
script can make a more extensive evaluation of user interfaces from the
perspective of user and task practical. This idea of course needs further study

to be more fully investigated.

All tools presented in the studies are prototypes. They should be regarded as
simple illustrations of what is possible. However, a number of the tools can
probably be of value in development of user interfaces, particularly if further

developed.

Further research is necessary to investigate how the above mentioned tools

can support the process of developing user interfaces and usability work.

155

There are a number of issues that need further study. Here, a few of them,

already mentioned in the studies, are discussed.

First, it is very important to continue the study of how to make it possible to
handle user and task issues in design, development and evaluation of user
interfaces. The studies did not provide a clear answer, although possible

solutions are indicated.

Second, from my experiénce in usability work in industrial system
development, it is important to further develop the kinds of tools described to
make them possible to use (and evaluate) in a number of real system
development projects. This is necessary to avoid the mistakes presented in

Lowgren (1991) that occurred during development of UIMSs.

Third, it is important to further study how to integrate, in an efficient way,
tools containing user interface design knowledge with UIMSs and other kinds

of User Interface Tools.

Fourth, it is necessary to further study how the process of developing user
interfaces is related to, and influenced by other system development activities.
To develop support for user interface development, it is necessary to
understand how other activities in the system development are accomplished.
Although some preliminary studies of the system development process and
user interface development have been made (see, for example, Bellotti, 1988;

Rosson et al., 1988) extended studies within this area are necessary.

Finally, it is necessary to continue the study of how the tools exemplified
above can be integrated in industrial system development, with methods for

usability work, and with other tools. This issue is elaborated in Chapter 8.

156

8. FUTURE WORK

8.1 Executive Summary of Work Performed

The material in the previous chapters can be summarized into three parts. The
first part, in Chapters 1 to 4, uses a traditional description of the system
development process to exemplify integration of usability work into system
development activities. A definition of usability work and a number of
methods for usability work are used to describe this integration. The use and
outcome from the application of these methods is described for different
system development activities. The second part , Chapters 5 to 6, uses the
foundation of the first part to describe the need for further and more
comprehensive integration of usability work into industrial system
development. Also traditional computer support in system development and
its relevance for usability work is discussed. Part 3, Chapter 7, reviews studies
on simple computer-based tools to support usability work, primarily user

interface development.

The work of integrating usability work and industrial system development is
of course not completed. The work in this thesis can be considered as a point
of departure. In the remainder of this Chapter ideas concerning possible

future attempts are briefly described and reviewed.

Usability work is extensive and requires performance of many activities to be
effective; in turn, the need for a range of supporting sub-activities arises.
Therefore, preliminary proposals for computer supported usability work
(CSUW) in system development, are presented. Other ideas with respect to

future work, are described in the end of each chapter, presented earlier.

157

8.2 CSUW in Industrial System Development

8.2.1 Introduction

To facilitate identification and discussion of possible CSUW in different
system development activities, each system development activity is briefly
reviewed. Following is a short description of usability work advocated for
each system development activity. Finally, ideas concerning possible
computer support are presented. Where computer support for the different
methods exists (to my knowledge), they are also mentioned. CSUW proposals
should be considered as preliminary. The goal is to present and discuss

simple ideas on how to support usability work.

The justification for advocating CSUW are summarized as follows:

o the need to document usability work results, to facilitate use in
subsequent and parallel usability work and system development
activities,

o the need to continuously develop obtained results further (for example,
different kinds of models and prototypes) as additional knowledge is
acquired,

o the necessity to make usability work easier and faster to perform. A
number of the methods exemplified in this document require excessive
resources (time, people and money). All efforts resulting in usability
work delivered faster and cheaper, will encourage its integration into
the industrial system development process,

o the need for communicating usability work results so that all
participants benefit. Computer support that facilitates development of
prototypes is important in this communication process (see, for

example, Andriole, 1990, 1995; Wood & Kang, 1992),

158

e in the case where method support is included in the computer support
(see, for example, some CASE systems) use of the method by other than
experts is facilitated.

See also section 5.6, for further motives for CSUW.

8.2.2 Identification of Need

Short summary of system development activity:

Identification of need is the first activity in the system development process.
Here, usually a need, or idea, concerning specific computer support or
improvement of business, is presented by a customer or user. The need or
idea is often expressed in general terms, resulting in the necessity to identify

and concretize specific needs or ideas.

Short summary of usability work:

To support identification of need, inclusion of business analysis, prototyping
and use testing is advocated as a means of providing more complete data.
Prototyping is here accomplished using simple prototyping techniques. Use
testing consists of simple use tests where users perform a small number of
work tasks and use problems are identified. Also the accuracy of the model is

use tested.

Possible computer support:

In connection with identification of need, computer support for business
analysis, prototyping and use testing will speed up work and reduce

investment of staff time.

159

In business analysis (basically consisting of identification and description of
current business, identification and prioritization of change needs and
modeling of new business) the following computer support will contribute to
usability work. First, computer support to describe current business in a way
both resulting in an overall description of the complete business and
containing detailed information. This would make it possible for business
people and developers to fully understand the business. Second, computer
support to assist in the prioritization of change needs. Third, computer
support for modeling business change. Important here is that the models
present a general view of the business and can be understood by all involved
in development. Computer support is also useful in illustrating dynamics in
the changed business, to increase probability that participants in the business

analysis understand potential effects of change proposals.

The method for business analysis described here uses computer support,
MacRASP (other business analysis methods also use computer support, for
example, the TRIAD method, Willars, 1993a, b). This computer support
mainly assists in description of current business, modeling of changed
business and consistency checking of descriptions and models. Support for
prioritization of change needs or for illustration of business dynamics is

minimal.

Hughes (1996) discuss tools for illustrating business process dynamics (based
on system dynamics). Also tools like Ithink (High Performance Systems, Inc.,
1994) and ReThink (Gensym Corporation, 1995) can be valuable.

In conjunction with identification of need, prototyping consists mainly of
development of use cases, screen layouts (describing services) and
storyboards. Simple computer support is sufficient to assist in documentation

of results from prototyping (for example, word processing and drawing

160

programs). More advanced functions that illustrate dynamics in prototypes
are usually not necessary. Prototypes supplements business models to
increase probability that business people/users understand proposed

business design.

Use testing can also be supported using simple documentation support to
document the work tasks forming the basis in use testing, use problems and

user opinions about prototypes and other models.

The concretized needs or ideas from this system development activity need to
be documented using natural language. Therefore, some form of
documentation support is also needed here. Probably some CASE-system
supporting documentation can be of value. An interesting support alternative,
in the form of computer-based templates, is presented in Andriole (1996).
These templates can, according to Andriole, 1996, be used (and further

developed) in the entire system development process.

8.2.3 Identification of User Requirements (Requirements Definition)

Short summary of system development activity:

In identification of user requirements, the developer and user identifies and
defines user requirements on the computer system to be developed. In this
process, detailed analysis of identified needs (ideas) is performed. The
purpose being to identify all user requirements on the future computer
system, and to describe these requirements in a way understood by

developers as well as users.

161

Short summary of usability work:

In identification of user requirements, task analysis, prototyping, usability
specification and use testing were advocated. Prototyping is here also
accomplished with simple prototyping techniques. Use testing is carried out
with real users and work tasks. The aim of use testing being to verify that
necessary services are going to be delivered by the computer system (to be

developed) and that tasks can actually be performed.

Possible computer support:

Computer support for task analysis, prototyping, usability specification and
use testing during identification of user requirements will facilitate usability
work through, for example, reduction of time for completion of these

activities.

Task analysis includes collection of task information, analysis of the
information and modeling of tasks. Computer support for these activities
offers structured documentation for easier analysis. Documentation support
to better organize collected information is needed. This documentation
support will support task analysis in a more profound way if also
functionality to directly structure information into groupings of goal, sub-
goals, procedures, objects and actions are included. It is also useful to include
support for analysis of the information. For example, to identify
representative, central and generic components in tasks. Modeling of work
tasks will also benefit through support for building of goal structures,
procedure structures and taxonomic structures in accordance with TKS (Task
Knowledge Structure). A prototype tool, ADEPT, has been developed, that
probably can support development of task models (Johnson, Wilson,
Markopoulos & Pycock, 1993; Johnson, et al., 1995; Wilson, et al., 1993; Wilson
& Johnson, 1995). While this tool is focused on user interface design, it can

probably be useful also in the identification of user requirements activity.

162

Tools like Top Down are, according to Andriole, 1996, also useful for creating
task models. Tools also of value to support task analysis are, according to
Andriole, 1989, DecisionMap and Expert Choice, at least if there is a need to

prioritize tasks to be included in the computer system to be developed.

As prototyping mainly uses the same kind of simple prototyping techniques
as in identification of need, the need for support is similar. An interesting
prototyping technique for developing simple prototypes is presented in
Landay and Myers (1995). They have developed a tool for Sketching
Interfaces Like Krazy (SILK), allowing developers to sketch user interfaces

using an electronic stylus.

Usability specification does not need extensive computer support. Word
processing and drawing programs, supplemented by functionality to divide
general usability specifications into more detailed usability specifications, and
to check for consistency, will support development. Without this kind of
functionality it can be difficult to manage the set of usability specifications

needed in development of large and complex computer systems.

Use testing can in conjunction with identification of user requirements be
supported by the same kind of computer support as in identification of need.

Of value to document is:

e need for other services,

e necessary change of services to better suit work tasks,

e in what respect tasks are possible to perform,

e critical comments concerning correctness of the prototype (model),

e critical comments concerning work task performance.

163

Also some kind of computer support to document identified user
requirements is necessary. This kind of computer support was mentioned in

sub-section 8.2.2.

As a supplement to the above, support for the process of determining if all
defined services (user requirements) are in the prototype will provide more
complete usability data. A simple prototype tool was described in Study 4
(Computer Support for User Requirement Evaluation in System
Development) that perhaps can be used to support this process (if further

developed, of course).

8.2.4 Overall Design of the System

Short summary of system development activity:

In overall design of the system, focus is on issues concerning distribution of
functions to different parts of the system. Questions concerning what
functions to be performed by the computer system and by the user can (shall)

also be addressed.

Short summary of usability work:

Usability work advocated in connection with this activity was business
analysis, task analysis, contextual design (part of) and prototyping. The
results of business analysis, task analysis and prototyping were obtained
previously and the models and descriptions are immediately usable.
Contextual design (part of) is carried out during system design. Models,
prototypes and descriptions can also be integrated to create a model of the
“complete system,” which can be use tested to check that general user
requirements are fulfilled. The results from User Profiling, Cognitive

(Systems) Engineering and GOMS are probably also of value. These methods

164

provide, for example, information important for the allocation of functions
between computer system and wuser. Also, cognitive walkthrough
(jogthrough) and further development of the usability specification were

advocated.

Possible computer support:

In overall design of the system, use of results (models, descriptions,
prototypes, etc.) from earlier usability work provides a foundation upon
which to base the design. For these results to be usable, computer support that
finds different models, descriptions and prototypes, compares them, checks
for consistency and presents results from evaluation of the models and
prototypes is recommended. The possibility to inspect models and prototypes
with early usability specifications as a basis also aids design. Integration of
models and prototypes to create a general model of the complete system, and
to use test it, is advisable. Therefore, computer support to illustrate and

integrate models and prototypes are useful.

Cognitive walkthrough (jogthrough) will benefit from support focused at
documentation of work tasks, task actions, users and their knowledge. To
further develop the usability specification the support tool described in 8.2.4

can be used.

165

8.2.5 Identification of Software Requirements (Software Requirements Analysis)

Short summary of system development activity:

In analysis of software requirements, user requirements are transformed into
a description appropriate for software development. For example, flow charts,

object models and so on.

Short summary of usability work:

During identification of software requirements, performance of prototyping
by continuously developing prototypes further was advocated. Here, further
development could also mean development of a completely new prototype.
Also, further development of other models (for example, business models and
task models) and the usability specification was advocated. Use testing of

prototypes and other models were also considered necessary.

Possible computer support:

Further development of prototypes and other models, and continuous
evaluation that software requirements in a proper way reflect the user
requirements are key issues. Therefore, it should be useful to have the same
kind of computer support as in the preceding system development activities.
In the case where further development of a prototype means development of
a completely new prototype, it can be of value to utilize some of the tools that
support more advanced prototyping techniques. For example, one of the User

Interface Tools described earlier.

To verify that defined software requirements reflect user requirements,
computer support will simplify the process. In my opinion, this need may be

solved in at least two ways. First, to provide computer support for manual

166

handling and comparison of documented user requirements and software
requirements. This can maybe be done with some kind of hyper-text tool.
Second, to develop algorithms that automatically compare documented user

and software requirements.

An interesting tool that probably can support the difficult work of verifying
that software requirements reflect user requirements is presented in Shipman
and McCall (1994). This Hyper-Object Substrate (HOS) system supports
incremental formalization of information expressed in an informal way by

users.

8.2.6 Software Design

Short summary of system development activity:

In software design, functions are allocated to different software modules and
software is structured in some convenient way (for example, object-oriented
design and/or functional design). Further, flow of information, data
structures and algorithms are defined and described. In software design, also

user interface design is performed.

Short summary of usability work:

The usability work advocated here, promoted the use of guidelines and
styleguides, in the sense that relevant guidelines and styleguides should be
identified. Also, prototyping of user interface design was advocated.
Prototyping is carried out using simple as well as more advanced prototyping
techniques. The prototype is then evaluated using guidelines and styleguides,
heuristic evaluation, cognitive walkthrough (jogthrough) and use testing in a

combination adapted to the situation. Use testing with real users and work

167

tasks is done later, when design has reached a more final form. Also, further

development of the usability specification is performed.

Possible computer support:

To identify guidelines and styleguides, and to evaluate the user interface
design with these as a basis, is a laborious process (see, for example, de Souza
& Bevan, 1990; Mosier & Smith, 1986; Tetzlaff & Schwartz, 1991). As a
consequence, guidelines and styleguides are not used (Smith & Mosier, 1984;
Thovirup & Nielsen, 1991). From this, it is possible to conclude that computer
support will assist this work and encourage guidelines and styleguide use.
Also a number of computer support tools have been developed. Perlman
(1989a, b) has developed a hyper-text based checklist. Sadler (1993) has
developed an interactive media to support user interface design. Reiterer
(1994) presents a multimedia tool and expert system to support the process of
developing user interfaces. Studies 1 and 2 in this thesis present a knowledge-
based tool, integrated with a UIMS, that automatically check for user interface
compliance with defined guidelines and styleguides. Study 3, describes a
computer-based tool for automatic inspection of user interfaces (MS Windows

based user interfaces) compliance with MS Windows styleguides.

In software design, prototyping is focused on modeling user interface design.
For this purpose, it can be appropriate to use more advanced prototyping
techniques. To support this work, it is possible to utilize some of the User
Interface Tools described earlier and to develop, for example, limited
functionality prototypes, high functionality prototypes or selective fidelity
prototypes. However, for User Interface Tools to be of real value in a design
situation, it is necessary to supplement them with design knowledge on at
least two levels. The first level is related to general design of user interface,
where the knowledge is focused on what interaction technique to choose in

different situations. The second level concerns more detailed knowledge for

168

design of user interface elements. With respect to the first level, it is possible
to utilize different kinds of hyper-text tools (MITRE, 1991; Perlman, 1989, a,
b), or multimedia tools (Reiterer, 1994). The computer support tools presented
in Studies 1, 2 and 3, can be used in evaluation based on level 2 knowledge.
However, these tools cannot be used before a design proposal has been

developed.

Concerning heuristic evaluation and cognitive walkthrough (jogthrough)
there is value in using simple computer support to assist in documentation of

results from these inspections.

In use testing it can be of value to have computer support to register and
analyze user interaction with the prototype. Registration can be supported on
at least two levels. The first level, described in, for example, Dumas and
Redish (1994), supports evaluation by giving access to a computer-based
form, where an evaluator can make notes concerning observations about what
a user is doing or saying. The second level, supports an evaluation by
automatically registrating user actions on a prototype. For example, button
presses, selection of menu items and time to react on information presented.
This type of registration usually requires some kind of analysis tool to
compile and present low level interactions for usability work to be efficient.
From my experience, it is laborious and time consuming to manually compile
and analyze this kind of registrations, also for simple applications (see also
Harrison, Owen & Baecker, 1994). The VANNA system and Timelines system
(Harrison et al., 1994), are two support systems for collection and analysis of
data generated in conjunction with use testing. With these systems it is
possible to collect, analyze and visualize quantitative and qualitative data, by
using, for example, pre-defined event and interval markers and color coding.
Perhaps also usable is the kind of tool described in study 2, where a runtime

evaluation module was illustrated.

169

8.2.7 Implementation and Unit Testing

Short summary of system development activity:

This activity mainly consists of implementation (programming) of different
software modules in accordance with software design and testing of the

modules to verify specified function.

Short summary of usability work:

Simple kinds of usability work was advocated here for example, cognitive
walkthrough (jogthrough), heuristic evaluation and use of guidelines and
styleguides. Also, utilizing usability specifications to continuously evaluate

user interface elements implemented was recommended.

Possible computer support:

In the same way as in software design, it can be of value to have access to
similar tools mentioned in this context. Where a usability specification was
documented in a computer support, this tool can also be used during

implementation and unit testing.

The above mentioned computer support can perhaps be supplemented with
computer support (TURE from Study 4) recommended for identification of
user requirements. Utilizing user requirements implemented in TURE, it
might be possible to test implemented software modules taking into

consideration the services implemented in the modules.

170

8.2.8 Integration and Testing

Short summary of system development activity:

In integration and testing, software modules are integrated and then tested to
ensure that integrated modules work as defined. This process is iterated until

all software is integrated and tested.

Short summary of usability work:

During integration and testing, use testing with real users and real work tasks

was advocated.

Possible computer support:

The same kind of computer support tools for use testing, described in

connection with software design can be of value in integration and testing.

8.2.9 Operation and Maintenance

Short summary of system development activity:

When the computer system has been installed and acceptance testing has been
carried out, the system is set in operation. After this, continuous maintenance
activities usually are accomplished as long as the system is used. The purpose
with these maintenance activities is to correct errors and deficiencies, and to

further develop the computer system.

171

Short summary of usability work:

Usability work advocated in connection with operation and maintenance was

use testing in a realistic environment.

Possible computer support:

Use testing in the real environment implies further requirements for
computer support. For example, in this context it can be of value to simulate
actions from other businesses and other users, in order to achieve a more
realistic evaluation situation. Also the kind of support tools for registration
and analysis of user interaction described in connection with software design

and integration & testing can be valuable (see, for example, Nielsen, 1993).

8.3 Summary

Above, a number of different computer support opportunities has been
exemplified. These proposals are not complete. They should be seen as an
attempt to initiate a discussion about the possible need for computer support
tools and what they shall support. Hopefully, this brief description of
different kinds of computer support will lead to initiation of work focused on
supporting usability work in industrial system development. Although, a

number of tools have been developed, most are prototypes or research tools.

Important aspects that should influence this future work (hopefully both
research and development) are mentioned by Lowgren (1991). They can be
summarized as need for increased focus on practical system development and
continuous feedback of experiences from practical use. Besides the
development of computer support that focuses on usability work, it is also

necessary to study how these possible computer support tools can be

172

integrated with traditional computer support for system development, for

example CASE systems and User Interface Tools.

173

REFERENCES

Adelman, L. (1992). Evaluating Decision Support and Expert Systems. John
Wiley & Sons, Inc., New York. USA.

Adelman, L., and Donnell, M. L. (1986). Evaluating Decision Support
Systems: A General Framework and Case Study. In S. J. Andriole (ed.),
Microcomputer Decision Support Systems: Design, Implementation, and
Evaluation. QED Information Sciences, Inc., Wellesley, Massachusetts.

USA, pp. 285-309.

Adler, P., and Winograd, T. (1992). The Usability Challenge. In P. Adler, and
T. Winograd, (eds.), Usability: Turning Technologies into Tools, New York:
Oxford University Press, pp. 3-14.

Allusi, E. A. (1991). The Development of Technology for Collective Training:
SIMNET, a Case History. Human Factors. Reprinted in L. Voss. A
Revolution in Simulation: Distributed Interaction in the ‘90s and Beyond.

Pasha Publications Inc., 1993 , Arlington, VA. 22209. USA, pp. 168-187.

Andersen, N-E, Kensing, F., Lundin, J.,, Mathiassen, L., Munk-Madsen, A.,
Rasbech, M., and Soérgard, P. (1990). Professional Systems Development,
Experiences, Ideas and Action. Prentice Hall International Ltd., United

Kingdom.

Andriole, S. J. (1989). Handbook of Decision Support Systems, TAB Professional
and Reference Books, Blue Ridge Summit, PA. USA.

Andriole, S. J. (1990).Information System Design Principles for the 90s, GETTING
IT RIGHT!. AFCEA International Press, USA.

174

Andriole, S. J. (1991). Storyboard Prototyping for Requirements Verification.
In S.]J. Andriole and S. M. Halpin (eds.), Information Technology for
Command and Control, Methods and Tools for Systems Development and
Evaluation. IEEE Press, New Jersey, USA, pp. 82-98.

Andriole, S.J. (1994). Prototype or elseJEEE Software. May.

Andriole, S. J. (1996). Managing Systems Requirements: Methods, Tools, and
Cases. McGraw-Hill Companies, Inc., USA.

Andriole, S. J., and Adelman, L. (1991). Prospects for Cognitive Systems
Engineering. In S.]. Andriole and S. M. Halpin (eds.), Information
Technology for Command and Control, Methods and Tools for Systems
Development and Evaluation. IEEE Press, New Jersey, USA, pp. 52-59.

Andriole, S. J., and Adelman, L. (1995). Cognitive Systems Engineering for User-
Computer Interface Design, Prototyping, and Evaluation. Lawrence Erlbaum

Associates, Publishers, Hillsdale, New Jersey, USA.

Andriole, S. J., and Monsanto, C. A. (1995). Interactive Collaborative

Requirements Management. Software Development, May.

Apple Computer (1992). Human Interface Guidelines: The Apple Desktop
Interface. Author.

Ashworth, C., and Goodland, M. (1990). SSADM: A Practical Approach.
McGraw-Hill.

ASTM (1991). Standard Guide for Rapid Prototyping of Computerized
Systems. ASTM Designation E 1340-91, American Society for Testing
and Materials, 1916 Race St., Philadelphia, PA 19103, USA.

175

Bellotti, V. (1988). Implications of Current Design Practice for the Use of
HCI Techniques. In D. M., Jones, and R., Winder (eds.), People and
Computers IV, Proceedings of the Fourth Conference of the British Computer
Society, Human- Computer Interaction Specialist Group, University of
Manchester, 5-9 September, Cambridge University Press, Cambridge,
pp- 13-34.

Bergsten, P., Bern, M., Kool, P., and Wingstedt, U. (1993). Verktyg for grafiska
anvindargrinssnitt. Rapport nr. 20. Swedish Institute for System

Development, Stockholm, Sweden.

Beyer, H., and Holtzblatt, K. (1993). Contextual Design: Toward a Customer-
Centered Development Process. Software Development ‘93 Spring

Proceedings, Santa Clara, California, Feb., USA.

Boar, B. (1984). Application Prototyping: A Requirements Definition Strategy for
the 80s. New York: Wiley Interscience, USA.

Bodart, F., Hennebert, A-M., Leheureux, J-M., Provot, 1., and Vanderdonckt,
J. (1994). A Model-Based Approach to Presentation: A Continuum from
Task Analysis to Prototype. Proceedings of Eurographics Workshop on
Design, Specification, Verification of Interactive Systems. Bocca di Magra,
8-10 June, pp. 25-39.

Boehm, B. W. (1988). A Spiral Model of Software Development and
Enhancement. IEEE Computer, 21, (5), May, pp. 61-72.

Brown, C. M. L. (1988). Human-Computer Interface Design Guidelines. Ablex
Publishing Company, Norwood, USA.

176

Brown, A. W,, Earl, A. N., and McDermid, J. A. (1992). Software Engineering
Environments, Automated Support for Software Engineering. McGraw-Hill
Book Company, London, United Kingdom.

Bubenko, J. (1989). Selecting a Strategy for Computer-Aided Software
Engineering. SYSLAB, Stockholm University, Sweden.

Card, S., Moran, T., and Newell, A. (1983). The Psychology of Human-

Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum.

Carroll, J. M. (1995). The Scenario Perspective on System Development. In J.
M. Carroll (ed.), Scenario-Based Design, Envisioning Work and Technology
in System Development. John Wiley & Sons, Inc., New York, USA, pp. 1-
17.

Carroll, J. M., and Rosson, M. B. (1985). Usability specifications as a tool in
iterative development. In Hartson, H. R. (ed.),Advances in Human-

Computer Interaction. Ablex, pp. 1-28.

Carlshamre, P. (1994), A Collective Approach to Usability Engineering:
Technical Communicators and System Developers in Usability-
Oriented Systems Development, Linkdping Studies in Science and
Technology, Thesis No. 455. Department of Computer and Information

Science, Linkoping University, Sweden.

Chapanis, A., and Budurka, W. J. (1990). Specifying human-computer
interface requirements. Behaviour & Information Technology, vol. 9, No. 6,

pp- 479-492.

177

Christel, M. G., and Kang, K. C. (1992). Issues in Requirements Elicitation.
Technical ~ Report ~ CMU/SEI-92-TR-12 ESC-TR-92-012. Software

Engineering Institute, Carnegie Mellon University.

Cronholm, S. (1994). Varfoér CASE-verktyg i systemutveckling? - En motiv-
och konsekvensstudie avseende arbetssitt och arbetsformer. Humaniora
och Sambhillsvetenskap FHS-rapport 5/94, Licentiatavhandling. Institutionen
for Datavetenskap, Linkopings Universitet, Linképing, Sweden.

Davenport, T. H. (1993). Process Innovation. Harvard Business School Press,

Boston, Massachusetts, USA.

Davis, A. M. (1990). Software Requirements: Analysis and Specification.
Prentice-Hall, Inc., USA.

Davis, A. M. (1993). Software Requirements: Objects, Functions and States.
Prentice-Hall, Inc., New Jersey, USA.

Defense Information Systems Agency (1994). Department of Defense Technical
Architecture Framework for Information Management, Volume 8: Department

of Defense HCI Style Guide. Author, June.

De Souza, F., and Bevan, N. (1990). The Use of Guidelines in Menu Interface
Design: Evaluation of a Draft Standard. In D. Diaper, D. Gilmore, G.
Cockton, and B. Schakel (Eds.), Human-Computer Interaction - Interact
"90. North-Holland, pp. 435-440.

Desurvire, H. W. (1994). Faster, Cheaper!! Are Usability Inspection Methods
as Effective as Empirical Testing? In J. Nielsen and R. L. Mack (eds.),
Usability Inspection Methods. John Wiley & Sons, pp. 173-202.

178

Desurvire, H. W., Kondziela, J. M., and Atwood, M. E. (1992). What is
Gained and Lost When Using Interface Evaluation Methods Other than
Empirical Testing? In A. Monk, D. Diaper, and M. D. Harrison (eds.),
People and Computers VII. Cambridge: Cambridge University Press, pp.
89-102.

Diaper, D. (1989). Task Analysis for Knowledge Descriptions (TAKD): The
Method and an example. In D. Diaper, (ed.), Task Analysis for Human-
Computer Interaction. Ellis Horwood, pp. 108-159.

Dix, A. Finlay, J., Abowd, G. and Beale, R. (1993). Human-Computer

Interaction. Prentice Hall International Limited. United Kingdom.

Dumas, J. S., and Redish, J. C. (1994). A Practical Guide to Usability Testing.
Ablex Publishing Corporation, Norwood, New Jersey. USA.

Engvist, H., and Lethovaara, K. (1996). Personal communication.

Eisner, H. (1987). Computer Aided Systems Engineering. Prentice Hall,
Englewood Cliffs, New Jersey, USA.

Fernandez, K. (1992). User Interface Specifications for Navy Command and
Control Systems. AC/141(IEG/5)WP/122, June.

Fischer, G., and Lemke, A. (1988). Framer: Integrating Working and
Learning. Manuscript submitted to [JCAI 89.

Fischer, G., and Lemke, A. (1989). Design Environments: From Human-
Computer Communication to Human Problem-Domain
Communication and Beyond. In [JCAI"'89 Workshop: A New Generation of
Intelligent Interfaces, pp. 53-58.

179

Fischer, G., Lemke, A., Mastaglio, T., and Morch, A. (1990). Using Critics to
Empower Users. In CHI 90 Proceedings, pp. 337-347.

Fisher, A. S. (1988). CASE, Using Software Development Tools. John Wiley &
Sons, Inc., New York, USA.

Flygvapnet (1993). Handbok Systemarbete LI FV. Ver.2.0. Author. Sweden.

Foley, J., Kim, W., Kovacevic, S., and Murray, K. (1989). Defining Interfaces
at a High Level of Abstraction. IEEE Software. January, pp. 25-32.

Goddard Space Flight Center (1992). Human-Computer Interface Guidelines.
Author, Aug.

Goldkuhl, G. (1991). Stéd och Struktur i Systemutvecklingsprocessen. Paper
presented at the Conference on Systemutveckling i praktisk belysning.
Norrkoping, Sweden.

Goldkuhl, G. (1992). Metodanpassning av CASE-verktyg. Institutionen for

datavetenskap, Linképings Universitet, Sweden.

Goldkuhl, G. and Réstlinger, A. (1988). Forindringsanalys: Arbetsmetodik och
forhdllningsssitt for goda forindringsbeslut. Studentlitteratur, Lund,

Sweden.

Gordon, V. S., and Bieman,]. M. (1994). Rapid Prototyping: Lessons
Learned. IEEE Software, pp. 85-95.

Gould, J. D., Conti, J., and Hovanyecz, T. (1983). Composing Letters with a
Simulated Listening Typewriter. Communications of the ACM. 26, 4,
April.

180

Green, M. (1985). Report on Dialogue Specification Tools. In G. Pfaff (ed.),
User Interface Management Systems Springer Verlag, Berlin, Germany,

pp. 9-20.

Hammer, M., and Champy, J. (1993). Reengineering the Corporation: A
Manifesto for Business. Harper Collins Publishers Inc., New York, USA.

Harrison, B., L., Owen, R, and Baecker, R. M. (1994). Timelines: An
Interactive System for the Collection and Visualization of Temporal
Data. In W. D. Davis and B. Joe, (eds.), Graphics Interface '94. Banff,
Alberta, 18-20 May, Palo Alto, CA: Morgan Kaufmann Publishers, pp.
141-148.

High Performance Systems, Inc. (1994). The Visual Thinking Tools for the
90’s. Author.

Hollnagel, E., Mancini, G., and Woods, D. D. (1988). Cognitive Engineering in
Complex Dynamic Worlds. London: Academic Press, United Kingdom.

Holtzblatt, K., and Beyer, H. (1993). Making Customer-Centered Design
Work for Teams, Communications of the ACM. October, Vol. 36, No. 10,
pp- 93-103.

Holtzblatt, K., and Jones, S. (1993). Contextual Inquiry: A Participatory
Technique for System Design. In D. Schuler and A. Namioka (eds.),
Participatory Design: Principles and Practices. Lawrence Erlbaum

Associates Publishers, Hillsdale, New Jersey, pp. 177-210.

Hughes, G. M. K. (1996). Process Reengineering Case Studies. In S. J.
Andriole, Managing Systems Requirements: Methods, Tools, and Cases.
McGraw-Hill, USA.

181

IEEE P1233-1993 (1994). Guide for Developing System Requirements
Specifications. Draft. Institute of Electrical and Electronics Engineers, Inc.
New York, USA.

IEEE std 830-1993 (1994). IEEE Recommended Practice for Software
Requirements Specifications. Institute of Electrical and Electronics

Engineers, Inc. New York, USA.

Jackson, M. A. (1983). System Development. Prentice-Hall.

Jacobson, 1., Christenson, M., Jonsson, P., and (")vergaard, G., (1992). Object-
Oriented Software Engineering. Reading: Addison-Wesley Publishing
Company, USA.

Jeffries, R., Miller, J. R.,, Wharton, C., and Uydea, K. M. (1991). User
interface evaluation in the real world: A comparison of four techniques.

CHI'91 Conference Proceedings, pp.119-124.

John, B. E. (1995). Why GOMS?. Interactions, October, pp. 80-89.

John, B. E., and Kieras, D. E. (1996). Using GOMS for User Interface Design
and Evaluation: Which Technique? ACM Transactions on Computer-

Human Interaction. Vol. 3, No. 4, December, pp. 287-319.

Johnson, H., and Johnson, P. (1989). Integrating task analysis into system
design: Surveying designers’ needs. Ergonomics. 32, pp. 1451-1467.

Johnson, H., and Johnson, P. (1990a). Integrating task analysis and system
design: Surveying designer’s needs, Ergonomics. 32, 11, pp. 1451-67.

182

Johnson, H. and Johnson, P. (1991). Task Knowledge Structures:
Psychological basis and integration into system design. Acta
Psychologica. 78, pp. 3-26.

Johnson, P. (1992). Human Computer Interaction: Psychology, Task Analysis and
Software Engineering. McGraw-Hill Book Company, London.

Johnson, P., Johnson H., Waddington, R., and Shouls, A. (1988). Task
Related Knowledge Structures: Analysis, Modeling and Application. In
D. M. Jones and R. Winders (eds.), People and Computers: From Research
to Implementation, HCI'88. Cambridge University Press, United
Kingdom, pp. 137-155.

Johnson, P., and Johnson, H. (1990b). Knowledge Analysis of Tasks: Task
Analysis and Specification for Human Computer Systems. In A.
Downtown (ed.), Engineering the Human-Computer Interface. McGraw-

Hill.

Johnson, P., Drake, K., and Wilson, S. (1990). A Framework for Integrating
UIMS and User Task models in the Design of User Interfaces. In D. A.
Duce, M. R. Gomez, F. R. A. Hopgood, and]. R. Lee (eds.), User Interface
Management and Design; Proceedings of Workshop on User Interface
Management Systems and Environments. Springer Verlag, pp. 203-216.

Johnson, P., Wilson, S., Markopoulos, P., and Pycock, J. (1993). ADEPT -
Advanced Design Environment for Prototyping with Task Models.
Demonstration Abstract. In Proceedings of INTERCHI'93. April, ACM
Press, p. 56.

Johnson, P., Johnson, H., and Wilson, S. (1995). Rapid Prototyping of User
Interfaces Driven by Task Models. In J. M. Carroll (ed.), Scenario-Based

183

Design, Envisioning Work and Technology in System Development. John
Wiley & Sons, Inc., New York, USA, pp. 209-246.

Karat, C-M. (1992). Cost-Justifying Human Factors Support on Software
Development Projects. Human Factors Society Bulletin. 35 (11), pp. 1-4.

Karat, C-M. (1994). A Comparison of User Interface Evaluation Methods. In
J. Nielsen and R. L. Mack (eds.), Usability Inspection Methods. John Wiley
& Sons, pp. 203-233.

Karat, C-M., Campbell, R. L., and Fiegel, T. (1992). Comparison of Empirical
Testing and Walkthrough Methods in User Interface Evaluation. In
Proceedings of the ACM CHI'92 Conference. (Monterey, CA, May 3-7), pp.
397-404.

Kelly, C., and Colgan, L. (1992). User Modeling and User Interface Design.
In People and Computers VII, Proceedings of HCI'92 Conference.
Cambridge University Press, pp. 227-239.

Landay, J. A., and Myers, B. A. (1995). Interactive Sketching for the Early
Stages of User Interface Design. In Proceedings of CHI'95, Mosaic of
Creativity. May 7-11, ACM Press, pp. 43-50.

Lederer, A. L., and Prasad, J. (1992). Nine Management Guidelines for
Better Cost Estimating. Communications of the ACM. 35, 2 (February), pp.
51-59.

Lemke, A., and Fischer, G. (1990). A Cooperative Problem Solving System
for User Interface Design. In Proceedings of the Eight National Conference
on Artificial Intelligence, pp. 479-484.

184

Lewis, C. (1982). Using the ‘“Thinking-Aloud’ method in Cognitive Interface
Design. Research Report RC9265. IBM T.]. Watson Research Center,
Yorktown Heights, NY, USA.

Lewis, C, and Rieman, J. (1993). Task-Centered User Interface Design.

Shareware, ftp.cs.colorado.edu.

Lowgren, J. (1991). Knowledge-Based Design Support and Discourse
Management in User Interface Management Systems. Linkdping Studies
in Science and Technology, Dissertations No. 239. Department of Computer

and Information Science, Linkdping University, Sweden.

Lowgren, J. (1993). Human-Computer Interaction: What Every System Developer
Should Know. Studentlitteratur, Lund, Sweden.

Lowgren, J., and Nordqvist, T. (1990). A Knowledge-Based Tool for User
Interface Evaluation and its Integration in a UIMS. In D. Diaper, D.
Gilmore, G. Cockton, and B. Shackel (eds.), Human-Computer Interaction

Interact 90. North-Holland, pp. 395-400.

Lowgren, J., and Nordgvist, T. (1992). Knowledge-Based Evaluation as
Design Support for Graphical User Interfaces. In CHI 92 Proceedings,
pp. 181-188.

Maulsby, D., Greenberg, S., and Mander, R. (1993). Prototyping an
Intelligent Agent Through Wizard of Oz. Proceedings of ACM
INTERCHI'93 Conference. Amsterdam, The Netherlands, April 24-29.

Mayhew, D. J. (1992). Principles and Guidelines in Software User Interface
Design. Prentice Hall, Englewood Cliffs, NJ.

185

McClure, C. (1989). CASE is Software Automation. Prentice Hall.

Mercury Interactive Corporation (1993a). X Runner/WinRunner Technical
Overview, ver. 1.0. California, USA: Author.

Mercury Interactive Corporation (1993b). WinRunner User’s Guide,
California, USA.: Author.

Mercury Interactive Corporation (1993c). Context Sensitive Testing, User’s
Guide, California, USA.: Author.

Microsoft (1993).The Windows Interface: An Application Design Guide.
Microsoft Press, Redmond, Washington, Author.

Miller-Jacobs, H. H. (1991). Rapid-Prototyping: An Effective Technique for
System Development. In J. Karat (ed.), Taking Software Design Seriously.
Academic Press, Inc., pp. 273-286.

MILSTD 498 (1994). Military Standard for Software Development and
Documentation, AMSC No. N7069.

MITRE (1991). Dynamic Rules for User Interface Design, DRUID 2.0 B MITRE
Corporation, Bedford Massachusetts, USA.

Mosier, J. N., and Smith, S. L. (1986). Application of Guidelines for
Designing User Interface Software, Behaviour and Information Technology.
3, pp. 39-46.

Myers, B. A. (1989). User-Interface Tools: Introduction and Survey. IEEE
Software. January, pp. 15-23.

186

Myers, B. A. (1993). State of the Art in User Interface Software Tools. In H.
R. Hartson and D. Hix (eds.), Advances in Human-Computer Interaction.
Vol. 4, Ablex Publishing Corporation, Norwood, New Jersey, USA, pp.
110-150.

Myers, B. A. (1995). User Interface Software Tools. ACM Transactions on
Computer-Human Interaction, Vol. 2, No. 1, March, pp. 64-103.

Myers, B. A, and Rosson, M. B. (1992). Survey on User Interface
Programming. In Proceedings of CHI'92 Conference on Human Factors in

Computing Systems. pp. 195-202.

Nielsen, J. (1990). Paper versus computer implementations as mockup
scenarios for heuristic evaluation. Proceedings of IFIP INTERACT'90
Third International ~Conference on Human-Computer Interaction.

Cambridge, UK, 27-31 August, pp. 315-320.

Nielsen, J. (1992). Finding Usability Problems Through Heuristic
Evaluation. Proceedings of the ACM CHI'92 Conference. (Monterey, CA,
May 3-7), pp. 373-380.

Nielsen, J. (1993). Usability Engineering. Academic Press, Inc. San Diego CA.

Nielsen, J. (1994). Heuristic Evaluation. In J. Nielsen and R. L. Mack (eds.),
Usability Inspection Methods. John Wiley & Sons, Inc., pp. 25-62.

Nielsen, J. (1995), Applying Discount Usability Engineering, IEEE Software.
January, pp. 98-100.

187

Nielsen, J., and Molich, R. (1990). Heuristic Evaluation of user interfaces.
Proceedings of ACM CHI’90 Conference. (Seattle, WA, 1-5 April) pp. 249-
256.

Nordqvist, T. (1995). Computer-Supported for User Requirement
Evaluation in System Development. Research Report, TULEA 95:37.
Luleé University of Technology.

Nordgvist, T. (1996). TUNE: A Tool for User Interface Evaluation. In
Proceedings of the Sixth Australian Conference on Computer-Human
Interaction, (OZCHI'96). Hamilton, New Zealand, November 24-27, pp.
129-134.

Naslund, T. (1994). Usability is extremely important - but it's somebody
else’s job, I hope. In P. Kerola, A. Juustila and]. Jarvinen (eds.),
Proceedings of the 17th IRIS (Information Systems Research Seminar in
Scandinavia). University of Oulu, Dept. of Information Processing

Science, pp. 653-667.

Olsen, D., Green, M., Lantz, K,, Schulert, A., and Sibert, J. (1987). Whither
(or wither) UIMS? In Proceedings of CHI+GI 87, pp. 311-314.

Olsen, D. R,, Jr., and Halversen, B. W. (1988). Interface Usage Measurements
in a User Interface Management System. In ACM SIGGRAPH
Symposium on User Interface Software and Technology Proceedings UIST 88.
ACM, New York, pp. 102-108.

Open Software Foundation (1988). OSF/Motif Styleguide, revision 1.1,
Cambridge Massachusetts, USA.

188

Open Software Foundation (1993). OSF/Motif Styleguide, rev. 1.2. Prentice
Hall, Englewood Cliffs, New Jersey, USA.

Palmer, J. D. (1990). Software System Requirements Engineering for
Command and Control. In S. Andriole (ed.), Advanced Technology for
Command and Control Systems Engineering. AFCEA International Press,
Fairfax, Virginia, 22033-3899 USA, pp. 18-31.

Perlman, G. (1989a). System Design and Evaluation with Hypertext
Checklists. Proceedings of the 1989 IEEE Conference on Systems, Man and
Cybernetics, pp. 1187-1193.

Perlman, G. (1989b). The checklist method for applying guidelines to design
and evaluation. Proceedings of INTERFACE 89, pp. 271-276.

Polson, P. G., Lewis, C., Rieman, J., and Wharton, C. (1992). Cognitive
Walkthroughs: A method for theory-based evaluations of user
interfaces. International Journal of Man-Machine Studies. 36, pp. 741-773.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., and Carey, T.
(1994). Human-Computer Interaction. Addison-Wesley, Wokingham,
England.

Raghavan, S., Zelesnik, G., and Ford, G. (1994). Lecture Notes on
Requirements Elicitation. Educational Materials CMU/SEI-94-EM-10.
Carnegie Mellon University, Software Engineering Institute.

Reiterer, H. (1994).User Interface Evaluation and Design, Research Results of the
Projects Evaluation of Dialogue Systems (EVADIS) and User Interface Design
Assistance (IDA). R. Oldenbourg Verlag, Munich, Germany.

189

Rettig, M. (1994). Prototyping for Tiny Fingers, Communications of the ACM.
April.

Robinson, P. J. (1992). Hierarchical Object-Oriented Design. Prentice Hall,
Englewood Cliffs, New Jersey, USA.

Rosson, M. B., Maass, S., and Kellogg, W. A. (1988). The Designer as User:
Building Requirements for Design Tools from Design Practice.
Communications of the ACM. Vol. 31. No. 11, November, pp. 1288-1298.

Rowley, D. E.,, and Rhoades, D. G. (1992). The Cognitive Jogthrough: A
Fast-Paced User Interface Evaluation Procedure. Proceedings of the ACM
CHI'92 Conference. (Monterey, CA, May 3-7), pp. 389-395.

Royce, W. W. (1970). Managing the Development of Large Software
Systems: Concepts and Techniques. In Proceedings IEEE WESTCON. Los
Angeles, USA, pp.1-9.

Sadler, H. J. (1993). Making it Macintosh: An Interactive Human Interface
Instructional Product for Software Developers. In INTERCHI 93
Adjunct Proceedings, pp. 37-38.

Sage, A. P. (1992), Systems Engineering. John Wiley & Sons, Inc., New York,
USA.

Sage, A. P., and Palmer, J. D. (1990). Software Systems Engineering. John
Wiley & Sons, Inc., USA.

Schmucker, K. J. (1986). MacApp: An Application Framework. Byte, 11, Vol.
8, August, pp. 189-193.

190

Sharon, D., and Bell, R. (1995). Tools that Bind: Creating Integrated
Environments. [EEE Software. 12, (2), March, pp. 76-85.

Shipman III, F. M., and McCall, R. (1994). Supporting Knowledge-Base
Evolution with Incremental Formalization. Proceedings of Human Factors
in Computing Systems, CHI 94. April 24-28, Boston, Massachusetts, USA,
pp- 285-291.

Shneiderman, B. (1992). Designing the User Interface: Strategies for Effective
Human-Computer Interaction. Second edition. Addison-Wesley, Reading,

Massachusetts, USA.

Smith, S. L. (1988). Standards Versus Guidelines for Designing User
Interface Software. In M. Helander (ed.), Handbook of Human- Computer
Interaction. Elsevier Science Publishers B. V. North-Holland,
pp- 877-889.

Smith, S. L., and Mosier, J. N. (1984). The User Interface to Computer-Based
Information Systems: A Survey of Current Software Design Practice.
Behaviour and Information Technology. 3, pp. 195-203.

Smith, S. L., and Mosier, J. N. (1986). Guidelines for Designing User
Interface Software, Technical Report, MTR-10090. The MITRE
Corporation, Bedford, MA, 01730, USA.

Sommerville, 1. (1992). Software Engineering. Fourth edition. Addison-
Wesley Publishing Company Inc., USA.

Sommerville, 1. (1996). Software Engineering. Fifth edition. Addison-Wesley
Publishing Company Inc., USA.

191

Sukaviriya, P., Foley, J. D., and Griffith, T. (1993). A Second Generation
User Interface Design Environment: The Model and the Runtime
Architecture. In Human Factors in Computing Systems Proceedings

INTERCHI93. ACM, New York, pp. 375-382.

Tanner, P., and Buxton, W. (1985). Some Issues in Future User Interface
Management Systems (UIMS) Development. In G. Pfaff, (ed.), User

Interface Management Systems. Springer Verlag, Berlin, Germany.

Telesoft AB (1989). TeleUSE Reference Manual. 1.0 edition. Linkdping,
Sweden, Author.

TELUB AB and System Development Associates (1990). RASP: En Gversikt.
Author. Sweden.

TELUB AB (1995). RASP Handbok. Author. Sweden.

Tetzlaff, L., and Schwartz, D. R. (1991). The Use of Guidelines in User
Interface Design. In CHI "91 Proceedings, pp. 329-333.

Thovtrup, H., and Nielsen, J. (1991). Assessing the Usability of a User
Interface Standard. In CHI 91 Proceedings, pp. 335-341.

U.S. Department of Defense (1985). Defense System Software Development.
DOD-STD-2167. June.

Vlissides, J. M., and Linton, M. A. (1990). Unidraw: A Framework for
Building Domain-Specific Graphical Editors. ACM Transactions on
Information Systems. 8, Vol. 3. (July), pp. 204-236.

192

Waddington, R., and Johnson, P. (1989a). Designing and Evaluating
Interfaces Using Task Models. In G. X. Ritter (ed.), 11t World Computer
Congress (IFIP Congress 1989). North-Holland.

Waddington, R., and Johnson, P. (1989b). A Family of Task Models for
Interface Design. In A. Sutcliffe and L. Macaulay (eds.)HCI89.

Cambridge University Press.

Wasserman, A. 1. (1990). Tool Integration in Software Engineering
Environments. In Proceedings of International Workshop on Environments.

Berlin, pp. 137-149.

Wharton, C., Rieman, J., Lewis, J., and Polson, P. (1994). The cognitive
walkthrough: A Practioners Guide. In J. Nielsen and R. L. Mack (eds.),
Usability Inspection Methods. John Wiley & Sons, Inc., pp. 105-140.

Whiteside, J., and Wixon, D. (1987). The Dialectic of Usability Engineering.
In H-J., Bullinger, and B. Shackel, (eds.). Human-Computer Interaction -
Interact '87. Amsterdam: Elsevier, pp. 17-20.

Whiteside, J., Bennett, J., and Holtzblatt, K. (1988). Usability Engineering:
Our Experience and Evolution. In M. Helander (ed.), Handbook of
Human- Computer Interaction. Elsevier Science Publishers B. V. North-

Holland, pp. 791-817.

Wiklund, M. E. (1994), Usability in Practice, Academic Press, Inc.,
Cambridge, Massachusetts, USA.

Willars, H. (1993a). TRIAD, Modelleringshandboken N 10:1, SISU Rapport.

Sweden.

193

Willars, H. (1993b). TRIAD, Modelleringshandboken N 10:2, SISU Rapport.

Sweden.

Wilson, S., Johnson, P., Kelly, C., Cunningham,]., and Markopoulos, P.
(1993). Beyond Hacking: A Model Based Approach to User Interface
Design. In J. Alty, D. Diaper, and S. Guest, (eds.), Proceedings of CHI'93.
Cambridge University Press, pp. 217-231.

Wilson, S., and Johnson, P. (1995). Empowering Users in a Task-Based
Approach to Design. In G. M. Olson, and S. Schuon, (eds.), Proceedings
on Symposium on Designing Interactive Systems: Processes, Practices,

Methods & Techniques, DIS ’95. ACM, pp. 25-31.

Wixon, D., Holtzblatt, K., and Knox, S. (1990). Contextual Design: An
Emergent View of System Design. In Proceedings of CHI'90: Conference on
Human Factors in Computing Systems. Seattle, WA, New York:
Association for Computing Machinery, pp. 329-336.

Wood, D. P., and Kang, K. C. (1992). A Classification and Bibliography of
Software Prototyping, Technical Report, CMU/SEI-92-TR-13. October.
Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania 15213, USA.

Woods, D. D. (1988). Commentary: Cognitive Engineering in Complex and
Dynamic Worlds. In E. Hollnagel, E., G. Mancini and D. D. Woods
(eds.), Cognitive Engineering in Complex Dynamic Worlds. Academic
Press, USA, pp. 115-129.

Woods, D. D., and Roth, E. M. (1988). Cognitive Engineering: Human
Problem Solving with Tools. Human Factors. 30(4), pp. 415-430.

194

Woods, D. D., and Roth, E. M. (1988). Cognitive Systems Engineering. In M.
Helander (ed.), Handbook of Human-Computer Interaction. Elsevier

Publishing Company, Amsterdam, Netherlands.

Workshop Proceedings (1991). Requirements Engineering and Analysis,
Technical Report, CMU/SEI-91-TR-30.

Voss, L. D. (1993). A Revolution in Simulation: Distributed Interaction in the
“90s and Beyond. Pasha Publications Inc., Arlington, VA. 22209, USA.

Study 1

Human-Comouter Interacticn — INTERACT '30
D. Diaper et al. (Egitors)

Eisevier Science Puplisners B.V. {Ncnh-Hollana)
2 IFIP, 1990

W
Nel
[

A Knowledge-Based Tool for User Interface Evaluation
and its Integration in a UIMS

Jonas Lowgren
Dept. of Computer and Information Science. Linkdping University
S-381 83 Linképing, SWEDEN

Tommy Nordquist
National Defense Research Establishment (FOA52). P.O. Box 11653
S-381 11 Linképing, SWEDEN

Abstract

This paper describes and discusses a knowledge-based user interface evaluation tool. based
on the critiquing paradigm. The tool uses knowledge acquired from experts and from collections
of guidelines to evaluate a formal description of a user interface design. generating comments
as well as suggesting improvements.

After describing the system architecture and reporting some experiences. the paper focuses
on the possibility of incorporating a knowledge-based design tool in a User Interface Manage-
ment System (UIMS), making it possible to give constructive advice to the designer as well as

comments. We report some preliminary results from a project aimed at this integration.

1 Introduction

User Interface Management Systems (UIMSs) were orig-
inally conceived as tools for facilitating user interface
development within the existing software development
process. Issues such as rapid prototyping and reusabil-
ity are well understood and often put forward as ad-
vantages gained from using a UIMS. Recently, however,
there has been a notable interest in additional support
and functionality, not earlier considered part of normal
user interface development software. For instance, My-
ers writes:

[UIMSs| do not support evaluation. Very few
user-interface tools provide any support for
evaluating the user interface. More research
into how the computer could do such evalu-
ation is needed before such support is prac-
tical. (Myers 1989, p. 23)

Similar observations have been made by several authors,
including Olsen et al (1987) and others. This paper
presents a contribution to the research called for by My-
ers in that we present a knowledge-based system that
illustrates the feasibility of computer-supported user in-
terface evaluation. Furthermore, we show how a tool
of this kind can be incorporated into a UIMS, provid-
ing support for user interface designers in designing and
evaluating user interfaces.

Other researchers have contributed work in the same
area. notable contributions including the Framer system

(Fischer and Lemke 1988, 1989) and a tool cailed De-
signer (Weitzman 1988). However. whereas the Framer
project focussed on an argumentative environment for
design. and Designer only represents low-level graphic
design knowledge, our aim is to support evaluation of
user interfaces on several levels, as we shall see presently.

2 The KRI system

The KRI system (Knowledge-based Review of user In-
terfaces) was developed as a pilot project in order to
assess potential advantages and disadvantages with a
knowledge-based critiquing approach to the problem of
supporting evaluation of user interfaces. To be precise,
we are dealing with what is known as ezpert-based evalu-
ation (Howard and Murray 1987) which comprises eval-
uation based on an expert’s subjective knowledge. The
project addressed evaluation of form-filling user inter-
faces with menu-driven navigation by means of function
kevs. This section describes the prototype system and
discusses some results and conclusions that arose.

2.1 System architecture

The KRI system. being a fairly traditional stand-alone
knowledge-based svstem. comprises the following prin-
cipal components:

e a knowledge base containing evaluation knowledge:

o a database with user intérface design guidelines:

Online help

Tep fccus Data presentation

Status info
Routine feedback

Error feedback

Query language

Natural language

Menu selection

Dialogue type

Graphical interaction

Sequence control

Error handling |

Function keys |

Interruptions

Form filling

Context def.

1 Command language]

Figure 1: A part of the user interface aspect taxonomy.

o a user interface aspect taxonomy.

The evaluation knowledge base is represented in rule
form and contains evaluation knowledge from two main
sources: (1) transcripts of several expert evaluations of
a user interface under development, and (ii) the ex-
pert’s interpretations of the general user interface de-
sign knowledge compiled in guideline documents (Smith
and Mosier (1986) and others). In the KRI system only
knowledge pertaining to the user interface levels of lay-
out and syntax was implemented. The reason for this,
as we shall see in the subsequent section. was that the
user interface representation used in the system only
supported reasoning about these levels.

The inference mechanism of the system is forward
chaining, with the rules designed to detect and report
mistakes in the design. This is the most straightforward
way of building a critiquing system. but as we discuss
in section 4, it is not the only way.

The guidelines, which were taken from Smith and
Mosier (1986), are not in themselves actively used in
the reasoning process of the system. Since the rule base
contains interpretations of some of the guidelines. the
contents are still there, but the reason for storing the
guidelines also in a textual form is different. They are
used as justifications for some of the comments gener-
ated by the system. We found this to be reassuring to
the users of the KRI system.

The aspect tazonomy, part of which is illustrated in
Figure 1, is used in two ways. First, it is presented to
the user of the KRI system as a graph, in which the user
can mark the topics of interest for the current session.
Secondly. it is used internally as a means of structuring
the knowledge base.

2.2 User interface representation

In order for the KRI system to be able to reason about
properties of the user interface that is being evaluated.
the user interface has to be represented in the system
in some way. Given the type of user interfaces that we
chose to focus on. viz. systems where the user employs
function keys to navigate in a number of menus and a
tree of forms to be filled out, we selected a simple ver-
sion of a transition network where the nodes contain in-
formation about which objects (menus and forms) that
are currently visible and active. and the tokens labeling
the arcs correspond to keystroke commands. The sys-
tems are supposed to run on a character graphics termi-
nal with a keyboard featuring arrow and function keys.
The objects of the interface are also represented sepa-
rately with information about their appearance. Thus
this representation gives us both lexical and syntactical
properties of the user interface.

2.3 System operation

In this section. we describe the work sequence of an eval-
uation session using the KRI system.

When the designer has developed a design suggestion
or a part of a design, it is possible to have this evaluated
by the system in the following sequence. First, the user
interface representation is loaded into the system.

Next, the evaluation session is initiated. The first
thing that the user has to do is to select relevant as-
pects of the evaluation taxonomy for this session. This
selection phase is performed in an interactive way, where
the system decomposes the current selections into more
detailed topics. at each stage giving the user the oppor-
tunity to select the ones that are of interest. To let the
user compose his own evaluation plan is a convenient
way of addressing the generally very difficult problem of

planning evaluation sessions in a supportive way. When
the user is satisfied with the foci of interest for the re-
view, the system starts evaluating the user interface de-
sign.

In this phase, the system walks through the evalua-
tion plan that the user has just specified and executes
the rules that are associated with each evaluation do-
main. The forward chaining reasoning process gener-
ates conclusions and comments about the aspects of the
evaluated interface that the knowledge in the rulebase
covers. The system also processes the messages some-
what; for instance, when the same flaw is detected in
several components of the evaluated user interface, the
messages are aggregated to one single comment.

When the system has completed the evaluation, it
is possible for the user to browse through the results
and examine the comments generated in the evalua-
tion phase. The user can select evaluation domains to
analyze further. He can also select specific messages
and have the system present the reasons for generat-
ing the messages along with suggested improvements.
It is also possible to have the system search the guide-
lines database and present directly quoted guidelines as
a source of reference. The following example, where the
KRI tool was applied to evaluate an independently de-
veloped application, illustrates the kind of comments
that the system generates.

2.3.1 Example of evaluation comments

The user interface under evaluation consisted of three
separate tables where the user could enter data. Six
pull-down menus were available in the top area of the
screen. Each table had to be activated before data entry,
i.e., the cursor had to be moved to that table. This could
be accomplished either by menu selection or by using
dedicated function keys. When the evaluation reached
the “Function keys” evaluation domain. the following
comment was generated (translated to English by the
present authors):

There is a mismatch between the presen-
tation order of the tables and the implicit
(ASCII code) order of the function keys used
to access the tables.

The reason why the system generated this comment is
that the tables (counting from the top of the screen)
were activated with function keys 3, 1, and 2, respec-
tively. The most interesting thing about this comment,
however, is that it came as a surprise to the designer of
the user interface in question. He had used the func-
tion keys to reflect the order that he intended to be
the most suitable for carrying out the task. not consid-
ering the more simple-minded, lexical interpretation of
the ordering. His conclusion was that it might be worth
considering changing the screen layout.

G
O
~1

3 Epistemological issues

In this section we discuss the evaluation knowledge rep-
resented in the system and how it can be acquired. Since
the level of knowledge is inherently reiated to what it is
intended to reason about. i.e., the user interface repre-
sentation. we also discuss briefly the issue of user inter-
face representation levels.

User interface design knowledge is compiled and pub-
licly available in collections known as guideiine docu-
ments. Consider and compare the following two guide-
lines:

1. [For a menu,] related options should be grouped
from general to specific.

2. [For a button. the selectable area should be at
least 0.25 in (0.6 cm) square.

They are both taken from a collection of computer graph-
ics guidelines compiled by Davis and Swezey (1983. p.
122), and illustrate well the span of such guideline collec-
tions. Ranging from presentation aspects through syn-
tactic and semantic (related to meaning) to pragmatic
(task-related) considerations, these guidelines are writ-
ten for humans to use and interpret. When we want
to implement this knowledge in specific design rules,
we have to interpret and tailor the guidelines in order
to arrive at something usable. As Smith (1988) points
out, this tailoring is also related to the specificity of the
guidelines: the more general they are, the more they
have to be qualified before they can actuaily be appiied.

3.1 Knowledge acquisition issues

As pointed out above, the available collections of guide-
lines provide an immense source of knowledge about user
interface design. This knowledge has to be classified and
sometimes specialized before it can be used in 2 reason-
ing system, and a highly relevant question is to what
extent the guidelines are applicable at all for this pur-
pose. Let us dwell for a moment upon how the guide-
lines relate to the actual knowledge acquisition that was
carried out within the KRI project.

Our main method of knowledge acquisition was col-
lecting transcripts of a human factors expert evaiuat-
ing several user interfaces. The transcripts were then
“plaved back” to the expert and the resulting discussion
generated the major part of the knowledge implemented
in the system. However, we found that many of the ex-
pert’s comments pertained to higher levels such as task-
and user-related issues (pragmatics) that we were un-
able to handle due to the fact that our user interface
representation concerned only presentation and syntax.
The issue of user interface representation level is further
discussed below.

Figure 2: The Seeheim UIMS runtime model (adapted from Tanner and Buxton (1985)), left. and

our proposed enhancement, right.

The generality of the guidelines was demonstrated
by the observations that (i) it was almost always possi-
ble to find a guideline that catered for a remark made
by the expert, but (ii) there were almost no guidelines
that were specific enough to be implemented directly in
the system. Those that were, tended to generate com-
ments that the expert perceived as trivial. In conclu-
sion, guidelines do not seem to replace human experts
for knowledge engineering purposes.

3.2 User interface representation

When experts examined the comments generated by the
KRI system, a number of these comments were judged
either trivial or failing to take semantic aspects or user-
and task characteristics into account. The reason for the
system’s inability to evaluate user interfaces on these
levels is of course that the user interface representation
used is not concerned with them. This turns out to be
a difficult tradeoff situation: high-level representation
techniques such as, for instance, the semantic-level rep-
resentation used in the UIDE system (Foley et al 1987)
are not commercially feasible when considering compat-
ibility and methodology issues. They are also sometimes
very demanding to use. On the other hand. they open
up possibilities for user interface evaluation on a level
that can not be attained in the more conventional pre-
sentation and syntax representations.

4 Enhancing a UIMS

In the previous section. we saw that the KRI system in-
deed demonstrated the feasibility of a knowledge-based
critiquing approach to user interface evaluation support.
However, for a system of this kind to support design-
time evaluation and hence the user interface design-
ers. it has to be integrated in the design environment
(the UIMS). Furthermore. as pointed out by Fischer
and Lemke (1938), the integration of working and learn-

ing that would be obtained by integrating an evaluation
package in the design environment has many potential
educational benefits. The rest of this section is devoted
to describing a current project that is being carried out
with the aim of augmenting an existing UIMS with a
knowledge-based evaluation module, designed along the
lines of the KRI system. In this context, we also dis-
cuss how some of the problems of attaining an adequate
user interface representation can be addressed using the
UIMS runtime structure. For reasons of space. we can
not go into detailed discussions. The interested reader
is referred to Lowgren et al (1989) for a more thorough
treatment of this integration project.

4.1 An architecture

Already in 1983, Tanner and Buxton formulated a model
of the runtime structure of a UIMS (Figure 2, left). This
model, which has gained widespread acceptance. covers
the activities involved in designing a user interface us-
ing a UIMS, and the resulting specifications and data.
The design process results in a user interface specifica-
tion (in some representation format) that is executed
together with the application at runtime. The UIMS is
responsible for collecting a log of all interactions occur-
ring between user and application across the interface.
This log may then be evaluated in some way, not further
detailed by Tanner and Buxton.

Our proposed enhancement is shown to the right in
Figure 2. We can see that the knowledge-based evalua-
tion module (KBE) is intended to support user interface
generation as well as evaluation of the interaction log.
The current project that we describe below mainly ad-
dresses the issue of design-time support. However. we
submit that using the interaction log can contribute to
the quality of the evaluation in several ways. For ex-
ample, it is possible to use information from the log to
compensate for a less expressive user interface represen-
tation. These two aspects of evaluation are discussed in
the two following subsections.

4.2 Design-time support

During the phase of user interface design, the KBE mod-
ule is used for evaluating the user interface specification
being constructed. This is accomplished by integrat-
ing the evaluation functionality into a design tool. a
UIMS. We are currently in the process of integrating
evaluation support into TeleUSE. a commercially avail-
able UIMS developed by TeleSoft (TeleSoft 1989). It
is a general UIMS for graphical interfaces based on the
Seeheim model, dividing the user interface into presen-
tation, syntax, and semantic components. The presen-
tation level is expressed in terms of X Windows widgets,
while the syntactic aspects of a user interface is imple-
mented in an event handling language based on the D
language developed by Hill (1986) in his Sassafras UIMS.
This language supports multithreaded dialogue and is
responsible for synchronizing the presentation with the
application functionality.

The current objective of the project is to support
evaluation on the presentation level, i.e., we are aug-
menting the TeleUSE graphical editor with a knowledge-
based module that is capable of evaluating a textual
representation of a collection of X widgets. We have de-
cided to implement evaluation on demand as opposed
to continuous monitoring. In other terms, there is an
evaluation command available for the user of the graph-
ical user interface editor. When this command is in-
voked, the selected interface objects or the whole inter-
face constructed so far is sent to the evaluation module
which generates comments and possibly suggestions for
changes.

4.2.1 Functionality of the KBE at design-time

There are a number of interesting design decisions to
be made when integrating a KBE into a user interface
design tool, including:

o TYPE OF ADVICE. Should the system only point
out flaws in the design (like the Framer system),
or should it have (at least limited) capabilities of
generating design solutions?

SPECIFICITY. A system based on general design
knowledge of the type found in guidelines collec-
tions can of course only generate comments on a
general, domain-independent level. We feel, how-
ever, that one of the most important benefits of an
evaluation system integrated into the design en-
vironment is its potential to support and enforce
organization- and end user-specific design rules.

Locus OF CONTROL. Should the system auto-
matically comment upon every mistake it detects,
or should we leave to the designer to call upon the
evaluation functionality?

4.3 Post-runtime evaluation

As was demonstrated earlier, the level of user interface
representation determines the level of reasoning in the
evaluation system. X widgets only determine appear-
ance. and hence that is all that we can evaluate at
design-time. But by using the interaction log, it is pos-
sible to compensate to some extent for this deficiency.
This log, which is essentially a time-stamped protocol
of all events pertaining to the user interface, contains
a lot of information that can be potentially useful for
evaluation purposes. Even though the information is on
a lexical level, it allows us to reason about several as-
pects of the user interface design, including selection fre-
quencies (for menu items and the like); user proficiency,
quantified analogously to the keystroke model (Card et
al 1983); common subsequences that could possibly be
factored out; the empirical syntaz implicitly formed at
runtime; errors and help requests, indicating the dia-
logue states that are particularly difficult for the user to
handle.

In conclusion, we believe that using the runtime log
for evaluation purposes is 2 way of addressing the dif-
ficuit tradeoff between powerful user interface represen-
tations and designer acceptance.

5 Conclusions

The KRI project has indicated a certain potential for
success in using knowledge-based techniques for Ul de-
sign support and evaluation. We have illustrated how
this kind of support tool may be used to enhance a tra-
ditional UIMS. In addition to supporting the designer in
his construction of user interfaces, the tool we propose
would also make use of the interaction log collected at
runtime. This would to some extent address the prob-
lem of needing a very rich user interface representation
for the purposes of adequate evaluation, a representa-
tion that may be too demanding to use to gain general
acceptance. The interaction log to some extent compen-
sates for deficiencies in the user interface representation
of the UIMS. Work is under way to implement this ar-
chitecture, which we feel would be a most valuable tool
in the hands of a user interface designer.

Smith (1988) acknowledges that a design tool such as
the one outlined in the present paper would shorten the
design time and ensure design consistency. However,
as he correctly points out, a tool that enforces design
guidelines may not be capable of accommodating desir-
able exceptions and innovative concepts. This is pre-
cisely why a critiquing approach to design support is so
attractive, combining compliance and non-intrusiveness
with the design power equivalent to that of an enforcing
tool.

400

Acknowledgments

The authors are grateful to Sture Higglund for his valu-
able comments which helped improve this paper. Géran
Forslund and Bjérn Peters did a nice job of implement-
ing the KRI system. The current project group includes
Per Asplund at FOA, Kent Lundberg, Karl-Erik Hedin
and Leif Larsson at TeleSoft, Staffan Ldf and Géran
Forslund at Epitec, and Sture Hagglund at Linkdping
University, all of whom contributed to the work de-
scribed in the latter parts of this paper.

References

S. Card, T. Moran, and A. Newell (1983). The Psy-
chology of Human-Computer [nteraction. Lawrence
Erlbaum Associates, Hillsdale, NJ.

E. Davis and R. Swezey (1983). Human factors
guidelines in computer graphics: a case study. [nt.
Journal of Man-Machine Studies, 18:113-133.

G. Fischer and A. Lemke (1988). Framer: integrat-
ing working and learning. Manuscript submitted to
1JCAI 89.

G. Fischer and A. Lemke (1989). Design environ-
ments: from human-computer communication to hu-
man problem-domain communication and beyond.
In IJCAI’89 Workshop: A new generation of intelli-
gent interfaces, pages 33-58. Position paper.

J. Foley, C. Gibbs, W. C. Kim, and S. Kovacevic
(1987). A Knowledge Base for User-Computer In-
terface Design. Technical Report GWU-IIST-87-11,
The George Washington University, Washington DC,
August.

R. Hill (1986). Supporting concurrency, commu-
nication, and synchronization in human-computer
interaction—the Sassafras UIMS. ACM Trans. on
Graphics, 5(3):179-210.

S. Howard and M. D. Murray (1987). A taxonomy of
evaluation techniques for HCIL. In Proc. [nteract 37.
pages 453-459.

J. Lowgren., T. Nordqvist, and S. Lof (1939).
Knowledge-Based Support for User Interface Evaiu-
ation in User Interface Management Systems. Re-
search report LiTH-IDA-R-89-32, Linképing Univer-

sity.

B. Myers (1989). User-interface tools: introduction
and survey. I[EEE Software, January.

D. Olsen, M. Green, K. Lantz, A. Schulert. and J.
Sibert (1987). Whither (or wither) UIMS? In Pro-
ceedings of CHI+GI’87, pages 311-314.

S. L. Smith and J. N. Mosier (1986). Guidelines for
Designing User Interface Software. Report ESD-TR-
86-278, Mitre Corp., Bedford, MA.

S. L. Smith (1988). Standards versus guidelines for
designing user interface software. In M. Helander,
editor, Handbook of Human-Computer Interaction,
pages 877-889, Elsevier Science Publishers (North-
Holland).

P. Tanner and W. Buxton (1985). Some issues in fu-
ture user interface management system (UIMS) ce-
velopment. In G. Pfaff, editor, User Interface Man-
agement Systems, Springer Verlag, Berlin.

TeleUSE Reference Manual (1989). 1.0 edition, Teie-
Soft AB, Linkdping, Sweden.

L. Weitzman (1988). Designer: 4 Knowledge-Based
Graphic Design Assistant. Technical Report ACA-
HI-017-88, MCC, Texas.

Study 2

May 3 -7, 1992

KNOWLEDGE-BASED EVALUATION AS DESIGN
SUPPORT FOR GRAPHICAL USER INTERFACES

Jonas Léwgren

Dept. of Computer and Info. Science
Linkoéping University
S-5381 83 Linkdping, Sweden
jlo@ida.liu.se

ABSTRACT

The motivation for our work is that even though user in-
terface guidelines and style guides contain much useful
knowledge. they are hard for user interface designers
to use. ‘e want to investigate ways of bringing the
human factors knowiedge closer to the design process.
thus making it more accessible to designers. To this
end, we present a knowledge-based tool. containing de-
sign knowiedge drawn fromn general guideline documents
and toolkit-specific style guides. capable of evaluating
a user interface design produced in a UIMS. Our assess-
ment shows that part of what the designers consider
reievant design knowledge is related to the user’s tasks
and thus cannot be applied to the static design repre-
sentation ol the uiss. The final section of the paper
discusses ways of using this task-related knowledge.

Keywords: :ser interface evaluation. design support.
suldelines. style guides.

INTRODUCTION

The need for human factors knowledge in the design
of information systems has been increasingly acknowi-
cdged over the last decade. It is by now unanimousiy
agreed that issues such as usability, consistency and
overail appreciation can all be facilitated by the appli-
2ation of human factors expertise to the design process.

A popular medium for the propagation of human fac-
‘ers knowiedue has been documents containing general
oo environment-spectiic design rules. The former kind

SBoth authors contributed equaily to tiie contents and the
presentation of this work.

Sermussion 10 cooy witnout fee all ar part of trus matenal is granted
oroviged that the ccoies are not made or cistributea for direct com-
mercial acvantage. tne ACM copyngnt notice and the title of the puohica-
10N ang its Qate appear. ana NONCE IS given that copying IS By permis-
sion ot the Associanon tor Computing Machinery. 7o cogy otherwise.
r 10 repuplisn. requIres a fee ana/or SDecINC permission.

1982 ACM 0-89791-513-5/92/0005-0181 150

181

Tommy Nordquist

Nat. Defense Research Est. (FOA 331)
P.O. Box 1163

S-381 11 Linkdping, Sweden

is cailed guidelines: the latter style guides. The knowl-
edge in these documents is characterized by being sup-
ported by general consensus. often validated through
experience or controlled experiments and by being ex-
haustive. Style guides in particular often represent de
facto industrial standards and the knowledge is often
prescriptive rather than suggestive (i.e., “must’ rather
than “should”). However, several objections have been
put forward to this tvpe of knowledge dissemination.
Hammond et a/ (9] point to the problem that guide-
lines have to be general in order to be applicable in
most situations, which in turn makes them too general
for any specific situation. The context dependencies
present in real design problems are also hard to capture
in general guidelines. Ience. human factors knowledge
in the form of guidelines can be hard for designers to
use in their daily work. There is also some empiricai
nvidence to support this conclusion: de Souza and Be-
van [4] showed by means of an experiment that design-
ers had difficuity in interpreting over 90 percent of the
general guidelines given for a design task. Tetzlaff and
Schwartz {19] reported similar findings.

The Need For Support

[t would appear that guidelines and style guide doc-
uments are inefficient ways of communicating human
factors knowiedge to the designer. Not only are the
documents difficuit to use, but it is also hard for the
designers to remember to apply all relevant rules to a
particuiar design problem. Our answer to this dilemma
is Lo tnvestigate ways of bringing human factors support
closer to the design process. thus inaking the human
{actors knowicdge more accessible and operative. The
approach we have chosen is to augment the design and
implementation environment of a User Interface Man-
agement System (UIMS) with a knowiedge base contain-
ing human tactors knowledge. This knowledge is used
1o evaiuate the design built in the C1MS on the designer’s
request. yieiding wnat is known as a criuzquing system.
The aim 1s Lo provide formative evaiuation, which is
defined as evaluation during system design, intended to

V7 CHI 92

May 3 -7, 1992

TeleUSE KRVAG Comments
i

o e | uiL Text | |
base t
| i_i
G ~ -

Figure 1: The overall architecture of the current impiementation.

provide feedback for subsequent design iterations {10].
\We have chosen to address user interfaces built with the
Motif™¥ tooikit since it is one of the emerging de facto
standards in the software industry, and since the Motif
Style Guide [15] contains much design knowledge on a
detailed level.

Related Work

Automatic evaluation of user interface design represen-
tations has been investigated for at least ten vears; some
early examples include Reisner’'s work [16] on assess-
ing simplicity and consistency of commands represented
in a BNF grammar and the work by Bleser and Fo-
ley {I] on evaluation of a grammar representation with
respect to high-level design issues. A more recent ap-
proach. using knowledge-based techniques. is iilustrated
by the Framer system by Lembke and Fischer [11] which
is a user interface design environment containing a cri-
tiquing system based on general design knowiedge. The
major differences between Framer and our work are
our emphasis on improving upon available knowledge
sources, particularly guidelines and style guides, and
our notion of runtime evaluation as described below.

ARCHITECTURE

The overall architecture of the KRI/AG prototype sys-
rem is iilustrated in figure 1. The current design envi-
ronment is the widget editor of the TeleUSE viss from
Telesoft. which runs under the X Window SystemT?.
This editor. called the viP. is a graphical widget builder
where the various Motif widgets are used as building
blocks in constructing a user interface. The design rep-
resentation can be stored in UIL (5], a de facto stan-
Jard representation for widget instances, which is the
language understood by the evaluation system. It is
important to point out that the UIL representation cov-
ers only the “static” user interface. i.c.. the components
which can be designed in the UIMS prior to execution of

the system. This includes butions. menus. forms, etc.
but typicaily exciudes the appearance and behaviour of
the domain objects. In the current prototype, the VIP
runs on a Sun SPARCstation.

KRI1/AG is implemented in Epitool. a hybrid expert
system shell from Epitec featuring an object-oriented
concept reptesentation with inheritance as well as a
rule language for writing forward or backward chain-
ing rules. The UIL representation of the user interface
to be evaluated is transferred to the DECstation on
which KRI/AG runs and parsed into the internal object
representation of Epitool. The knowledge base is then
applied to the user interface representation. possibly
vielding a number of comments on the design.

The Knowiedge Base

As stated above. the knowledge base of KRI/AG is built
mainly from publicly available sources such as guide-
lines collections (e.g., Smith and Mosier {18] and Brown
{3]) and the Motif Style Guide {15]. The reason for this
is that in an eariler project (13}, we performed knowi-
edge acquisition almost exclusively along more conven-
tional lines (i.e.. eliciting knowledge from a user inter-
face evaluation expert). In this project. we wanted to
represent the human factors knowledge of the public
sources in a more accessible form.

It can be noted that there is still a fair amount of
iluman expertise represented in the process. One of us.
who did most of the interpretation of the guideline doc-
uments. is an expert in user interface evaluation. We
also used a scenario technique. where an independent
expert was given 20 exampies of user interface design
flaws together with our tentative comments upon them.
This material formed the basis for the knowledge acqui-
sition session with the expert. and the results served to
validate our analyses of the guidelines. To summarize.
the task of building a knowledge base from guidelines
and style guides is by no means trivial or mechanical.

182

\JURE

May 3 -7, 1992

iule PopupMenuTitle :n OSF_Motif Is
ForAll ?inst WhichIs MotiiSXmPopupMenu;
$54
¥ot (Class(Menultem(?inst, 1)
Then
MakeComment ("The popup menu ", ?inst.Name,
"does nct have a title. Zvery menu should
have a unigue title placed at the top.
(Motif Style Guide 4.2.3)");
£nd;

Figure 2: A ruie from the KRI/AG knowiedge base. Note the
typical siructure where the user interface representation is
:xamined with respect to design flaws 1in this case a missing
title in a popup menu.

In its current state, the knowiedge base of KRI/AG
comprises about 70 rules and 30 functions*. The tech-
nique used for producing the comunents is what is
known as analytice! critiquing {6], which means that
the proposed solution (in this case. the user interface
design) is analyzed with respect to possible flaws. The
alternative is the differential approach. where the cri-
tiquing system generates its own solution to the prob-
lem and compares it with the one proposed by the user,
pointing out the differences and deviations. We have
argued clsewhere [12] that the domain ot user interface
design 1 general is not eligible to a differential treat-
ment: the reasons are mainiy that the problem 1s not
well-defined and that there are many examples of mul-
tiple soiutions with equal vaiidity.

Figure 2 shows an actual rule from the KR1/AG knowl-
edge base. illustrating the type of knowledge used in an-
alytical critiquing systems. The level of the knowiedge
is obviousiy limited to what can be represented in UIL.
viz. the layout and composition of widgets. This means
that the level of evaluation is accordingly limited to the
levels of presentation and syntax.

Table | shiows a more dotailed view of the current
contents ol the knowiedge base in KRI/AG. We can see
that rougnly 50% of the knowledze hase consist of gen-
eral rujes. constructed from the zuideline documents.
The reason for this is mainiv that we spent more time on
analysing those documents and validating the results.
The remaining 40% consist of Motif-specitic knowledge.
Almost ail of it is concerned with menu layout. orga-
nization and interaction. [his is an important part of

'The Enitool environment uses the coneept ol fuactions to
denote procecurai domain knowiedge units wineh return values.
For purposes of knowiedge base size assessments. they mayv be
consicdered equal to riies.

“XmLabel"))

183

)| Generai | Mouf i

|

! Graphical layout || i0 4
["Menu layout Tl | 28

| Menu qialogue] 15 | 7

{ Other dialogue | 0 1 0

Table 1: .\ breakdown of the topics covered by the current
KRI/AG knowledge base and the distribution over general
guidelines and Motif Style Guide rules. Numbers are percent
of the total knowledge base.

the Motif Style Guide, but not as dominant as it might
appear in our knowledge base. ¥e expect to be able to
extend the Motif-specific part of the knowiedge base as
the analysis of the Style Guide proceeds.

EXAMPLE

This section illustrates the use of KRI/AG to evaluate
the user interface of an actual application, built using
the TeleUSE uiMs.

The Tactical Map Editor. ..

Figure 3 illustrates the appearance of the application we
chose for evaiuation. [t is an editor for tactical mapsina
military setuing, developed at FOA 331. The main win-
dow shows a detaiied view of an area. with a static map
overiayed with symbols representing military units and
borders between the areas of responsibility for the dif-
ferent units. The small window to the left is an overview
of the whole area covered by the geographic data avaii-
able. The square indicates the area currently presented
in the main window.

Six tools (shown beneath the overview window) are
available for the manipulation of the overlay symbols on
the map: Create Unit. Create Border, Create Po-
sition, Clear. Move and Edit (“Fdrband”. “Grans’,
“Position”, “Radera”, “Flytta” and “Redigera’. respec-
tively). The form in the lower left corner is used to in-
spect or edit attribute values for the seiected unit and
to provide new values when a new unit is created. Seven
of the nine fields are actually option menus which pop
up on a mouse click. giving the user a choice of all per-
inissible values for the field in question.

There are two pulldown menus containing global
commands. The left one (“Arkiv”) is the typical File
menu. containing commands such as Load. Save and
Exit. The rizht one contains commands to set various
presentation properties. [inally. the text field at the
bottom right is used to present various kinds of textual
information.

W7 (HI'92

May 3 -7, 1992

ArErv instiliningar

|

LAGESKARTA

é

Figure 3: The user interface of the tactical map editor.

..Evaluated

\We used VIP to generate a UIL description of the user
interface shown in figure 3 and passed the description
‘o KRI1/AG. The system generated a number of com-
ments in Swedish, which we present below (transiated
to English and aggregated since the system. for exam-
ple, generated the same comment for each of the seven
option menus).

o The {text field at the bottom] does not have a label.
There should be a label or header above or to the
left of it. (Smith and Mosier 1.4:5 and 1.4:17)

o The text fields in [the dialog boxes which appear
when the user selects Save As or Open|} do not
irave default values. (Smith and Mosier 3.1.2:3 and
1.8:1)

o The items in the option menus are in alphabeti-
cal order. If there is a logical order. it should be
used. Otherwise, if the frequency of use is known,
it should be used in ordering the items. (Smith and
Mosier 2.3:16-17)

o There is no Help menu in the menu bar. Every
application should have a Help menu. The recom-

184

mended standard menus in the menu bar are File.
Edit. View, Options and Help, in that order.
(Matif Style Guide p. 7-42)

The menus in the menu bar do not have mnemon-
ics. Specifically, the File menu should have the
mnemonic F. (Motif Style Guide 3.3.3, pp. 7-42.
7-46)

The items in the File menu are not standard.
The following items should be in the menu: New,
Open.... Save, Save As..., Print or Print.. ..
Clase and Exit. (Motif Style Guide p. 7-23)

None of the items in the menus of the menubar have
accelerators. [t is a good idea to use accelerators
for the most frequently used items. (Motif Style
Guide 3.3.2. 4.2.3. pp. 7-3, 7-4)

By empirical assessment of our previous project [13], we
found that references to the guidelines documents were
central to acceptance of the evaluation tool. In that sys-
tem, there was an option which displayed the relevant
guideline for each comment generated during evalua-
tion. In KRI/AG. we provide only a reference to the

W CHl '92

May 3 -7, 1992

source documents. [t wouid. however. be straightfor-
ward to provide an option to present the actuai guide-
line texts and pictures onjine.

DISCUSSION

Recall that the motivation for our work was the obser-
vation that guidelines and style guides seem to be hard
to use In practice. The KRI/AG prototype described
above represents a first step towards facilitating the use
of these knowledge sources in design. This section dis-
cusses two of the most important issues raised by our
approach: how to support designers. and the appropm-
ate level of evaiuation for a design support tool.

How To Support Desigrers

[n their study of the use of guidelines tor user interface
design, Tetzlatf and Schwartz {19] conciuded that since
suidelines were found hard to use. the dependence upon
them siould be minimized. [nstead, toolkits and inter-
active examples of good designs should be used and the
role of the guidelines should be mainly to provide infor-
mation which is intrinsicaily unavailable through those
vehicles. The similar idea can be found in impiemented
form in the Framer design environment {11] where a li-
brary of initiai design skeletons is available to provide
starting points for the designer.

Widget builders such as the vIP actually represent a
move towards the idea of reusable examples, since some
of the widget tempiates in the modern toolkits are fairly
complex and come with a good deal of encapsulated
appearance and behaviour. Prominent exampies are
the FileSeiectionDialog and other ready-to-use popup
dialogues in Motif. Iowever., as many exampies from
practice show, it is still not impossible to construct user
interfaces which violate general design rules and tooikit-
specific style ruies. These vioiations. of course. impair
usability as weil as the overail impression of the pro-
duced system. A particular issue when toolkit-specific
style rules are concerned is inter-application consistency
(recall the missing mnemonics and Help menu in the
map editor example above). ‘e believe that a good
way of reducing these violations is to augment the de-
sign environment with knowiedge of general design and
specific style, as demonstrated by the KRI/AG system.

When And How? The current system prototype re-
views the design oniy when the designer explicitly re-
quests comments. [his is contrary 1o other work in the
area of knowicdge-based design environments. lu par-
ticular. Lemke and Fischer {11} report that their ini-
tial Framer system worked in the same way as KRI/AG.
They found that it was sometimes hard for the sys-
tem to give meaningful comments on a design. since
the designer had chosen a suboptimal path in the de-
sign space early on and pursued it too far before sub-
mitting the design for comments. When they reworked

185

the critiquing moduie to continuousiy monitor the de-
signer's work and react as soon as it found anything
worth commenting, the resuiting system was “more ef-
fective.” I 'nfortunately, they do not report any con-
troiled experiments. Ve regard the issue of critiquing
strategy to be a question in need of empirical studies.
and we hope to be able to carry out such studies in the
near future. This can be done either by impiementing
an active design evaluation module or by Wizard-of-Oz
techniques.

Level Of Evaluation

During the evaluation of our previous user interface
evaluation tool [13], we found that evaluation on the
level of user tasks was highly desirable. This can
also easily be established by examining the knowledge
sources used for KRI/AG: both the generai guidelines
and the Motif Style Guide contain many ruies concern-
ing the user's behaviour and tasks. One example from
Mouif [15. p. 4-21] is the following.

Applications should provide accelerators for
frequently used menu items. In general. accei-
erators should not be assigned for every menu
item in an application.

The crucial word here is “frequently”, since there is
no way of determining by analysis of a Motif design
representation whether a menu item is going to be used
frequently. This means that rules such as the one above
cannot be properiy implemented in an evaluation tool
of the KRI/AG type. What we had to do there (compare
the seventh comment to the map editor exampie above)
was to leave the judgment to the designer.

There are in general two ways of achieving evalua-
tion on the task level. One is to use a rich design rep-
resentation where user tasks and domain semantics are
specified in the design tool. An example of a design en-
vironment based on this idea is UIDE by Foley et al [7]
where the designer specifies the semantics of the user
actions and the domain objects. The other way is to
collect and analyze logs from actual tests of the user
interface under coustruction. Ve believe that the sec-
ond method. which we call runtime evaluation or RTE,
is preferable since it is more compatible with existing
design toois. Joes not introduce additional complexity
for the designer and relies less on a prior: assumptions.
The rest of this section is devoted to a discussion of
liow to combine runtime evaluation with the design-
time evaluation techniques described so far.

Runtime Evaluation. Other researchers have touched
upon the subject of logging interaction and automati-
cally evaluating the resulting data. Siochi and Hix [17]
started from the hypothesis that repetitions indicate
interesting user behaviour. In a small study, they let

subjects use a test interface. collected logs of all the

7 CHI 92

May 3 -7, 1992

real-life s e
User
“simulated
simuiated: real-life

Figure 4: The space of RTE. The solid line shows the ap-
proximate time order of different evaluation forms in a tradi-
tionai waterfall approach to software development. whereas
the dashed line illustrates an extremeiv user-oriented proto-
tvping approach.

interactions and also determined two major usability
problems by observation. When their system analyzed
the logs with respect to maximal repeating patterns.
the same problems were indicated. Olsen and Halversen
{14] had earlier shown how logging couid be integrated
in a UIMS architecture to give metrics concerning the use
of different commands. Before we discuss the technicai
feasibility in our setting, let us introduce a conceptual
framework which is intended to relate the idea of RTE
to different philosophies of software development.

We propose a two-by-two matrix of RTE where the di-
mensions are the {ask and the user involved in the test
situation. The task can be either simulated or real-life.
Simulated tasks can be defined based on the require-
ment specification or the activity analysis. depending
on whether they have been formulated. or they can con-
sist of general handling of the user interface without
consideration of the particular tasks in the target envi-
ronment. Simufated tasks can be tested in the develop-
ment environment. Real-life tasks. on the other hand.
liave to be the real tasks that the system is intended to
support. Moreover, the tests have to take place in the
‘{elivery environment.

On the user dimension. we have simulaled and real-
life users. The simulated user can be the original devel-
Oper. a cusiormer representative. a subDject person chno-
sen at random or anvone else who is wiiling to pretend
being the intended user of the system. If a user analy-
sis has been produced earlier in the project. it may be
used to aid the “impersonator.” A real-life user. as the
ferm implies. is one of the users for whom the system
is lutended.

This matrix can be used to relate the different forms
of RTE to different software development philosophies.

186

as shown in figure 4. Two examples of different phiioso~
phies are illustrated. with the traditional waterfall ap-
oroach (denoted by a solid line) progressing from simu-
lated tasks through real-life tasks with simulated users
and then. in the test phase of the project, to real-life
tasks and users. The other example (the dashed line) is
an extremeiy situated design approach where prototyp-
ing and deveiopment with real-life users are paramount
isee. for exampie, Bodker [2]).

A general property of the matrix is that the cost asso-
ciated with different forms of evaiuation increases with
the degree of realism. For example. it is more expensive
(in terms of money, time or effort) to carry out a test
with real-life tasks than with simulated. It also seems to
be the case that the degree of realism is transitive, i.e.,
a user interface property which can be tested with sim-
ulated users or with simulated tasks can also be tested
with real-life users or tasks. The reverse relation does
not obviously hold.

Properties To Evaluate. The TeleUSE architecture is
based on the Seeheim model [8] and uses its own event
mechanism and language, called D, for synchronizing
the user interface with the functionality of the applica-
tion. We can expect to be able to collect logs consisting
of D events as well as the X events which give low-level
information such as keyboard input and mouse position.
The idea is then to evaluate these logs using a combi-
nation of knowledge-based and algorithmic techniques
and to generate comments on the user interface design
in analogy with KRr1/AG.

While we performed knowledge acquisition for
KRI/AG, we formuiated many user interface properties
of the kind that could not be assessed in design-time
evaluation. We will now present some of those proper-
ties and indicate how they could be measured using the
logs collected during user interface testing.

l. Long sequences for common operations. In the
way demonstrated by Siochi and Hix. the system
can detect repeating sequences and comment upon
them if they occur often enough. A case which re-
quires particular attention is when the user has to
traverse submenus to reach the desired (frequent)
operation.

(B~]

. Switcnring of interaction technigues during the
same lesk. [f the user is found to be switcning
from. say. keyboard to mouse and then back again
for the same input focus and within a small amount
of time. it is worth commenting.

3. Syntactical inconsistency. In a graphical user in-
terface. 1t is desirable that the manipulation syn-
Lax is the same througnout the system. This means
to consistently use either Object-Command syntax
(first select an object or severai objects and then

W (Hi 92

May 3 -7, 1992

real-life (4) 45
User
simulated 23 1
simulated real-life

Task

Figure 5: Our sample properties inserted in the evaiuation
space. An entry in parentheses means that the property can
be evaluated to some extent.

apply an operation on it or them) or Command-
Object (operation first. then objects). To analyze
this. the system can assume that the operations
are invoked via the static part of the user inter-
face (buttons. menus. etc.) which is constructed at
design-time. whereas the objects of the operations
are application-driven.

. Detecting errors and help requests. If the design ad-
heres to Motif standards, errors and help requests
can be detected by looking for WarningDialogs and
use of the Help menus. respectively. Otherwise.
the D events corresponding to help request and
application errors would have to be tagged in a
special way. In both cases. comments showing the
dialogue states where more than an average of er-
rors or help requests occurred would be valuable
for the designer.

wr

. Accelerators for the most frequent operations. It
would be easy to count the number of times dif-
ferent menu items are used and then check for ac-
celerators for the most frequent ones. pointing out
possible deficiencies to the designer. Similarly, the
system could suggest that a {requently used button
in a form containing text input components should
be made the defauit. This would in etfect assign
the carriage return Key as an acceierator lor the
frequently used button.

To put these properties into the context of user inter-
face development. let us insert them in their cheapest
possible places in the RTE matrix, as shown in figure 5.
A number in parentheses means that the property can
be addressed to some extent. For exampie. the detec-
tion of errors and help requests (property 4) can be done
with respect to syntactical errors for a simulated task.

187

but in order to detect domain errors. a reai-life task
is needed. If we would now draw a time order arrow
reflecting the sortware development abproach used. the
resulting picture would show us when we can expect to
evaluate the different properuies.

SUMMARY

“We have shown by means of the KR1/AG prototype how
some design knowiedge, generai guidelines as weil as
roolkit-specific styie guides. can be applied to evaluate
a user interface design produced in a UiMs. We believe
this to be a valuable step towards bringing human fac-
tors knowledge cioser to the design process. thus making
it more accessible and operative. Qur analvses. how-
ever. indicate that much of the design knowledge can
be appiied only by taking into account the actual use
situation. We have outlined how data coilected during
tests of the produced prototype can be used to bring
also this use-related design knowledge to bear and pre-
sented a framework for relating these tests to the soft-
ware development approach in use.

ACKNOWLEDGMENTS

The authors want to thank Peter Ericsson from FOA
331 and Lennart Olsson from Enator for implementing
the current KRI/AG prototype, and Staffan Lof from
FOA 3531 for many excellent design ideas and creative
discussions. Prof. Sture Higglund read an earlier ver-
sion of this paper and gave many useful comments, for
which we are grateful. We wouid also like to thank Nils-
Erik Gustafsson from Ellemtel. our expert. for giving us
the time we needed with him.

This work has been funded by the National Defense
Research Establishment (FOA) and the Swedish Board
for Industrial Development of Information Technology
(IT4).

Motif is a trademark of The Open Software Foun-
dation. Inc. X Window System is o iredemark of the
Massachusetts Institute of Technoiogy.

REFERENCES

(1] T. Bleser and J. Foley. Towards speciiving and
evaluating the human factors of user-computer in-
terfaces. In CHI’82 Proceedings. pages 309-314.
1982.

S. Bedker. Through the interface—a human activ-
ity approacn to user interface design. Lic. thesis
DAIMI PB-224. Aarhus University, LO87.

C. Brown. [fuman-Compuier [nterface Design
Guidelines. Ablex Publishing Corp., NJ. 1988.

| F. de Souza and N. Bevan. The use of guidelines
in menu interface design: Cvaluation of a draft
standard. In D. Diaper. D. Gilmore. G. Cockton.

Y C(H1'92

May 3 -7, 1992

(3]

(1]

(13]

(14]

and B. Shackel, editors, Human-Computer [nterac-
tion — [nteract’90, pages 435—440. North-Holland,
1990. Participants Edition.

Digital Equipment Corp. Guide to the XUI User
Interface Language Compiler. 2.0 edition, 1988.

G. Fischer, A. Lemke. T. Mastagiio. and A. Mcrch.
Using critics to empower users. In CHI’90 Proceed-
ings, pages 337-347, 1990.

J. Foley, W. Kim. S. Kovacevi¢, and K. Murray.
Defining interfaces at a high level of abstraction.
[EEE Software, pages 25-32, January 1989.

M. Green. Report on dialogue specification tools.
[n G. Pfaff, editor, User Interface Management
Systems. pages 9-20. Springer Verlag, Berlin, 1985.

N. Hammond, M. Gardiner, B. Christie, and
C. Marshall. The role of cognitive psychology
in user-interface design. In M. Gardiner and
B. Churistie, editors, Applying Cognitive Psychology
to User-interface Design, chapter 2, pages 13-53.
John Wiley & Sons, Chichester, 1987.

S. Howard and M. D. Murray. A taxonomy of eval-
uation techniques for HCI. In H.-J. Bullinger and
B. Shackel, editors, Human-Computer Interaction
— Interact’87, pages 453—-459, 1987.

A. Lemke and G. Fischer. A cooperative prob-
lem solving system for user interface design. In
Proceedings Eight National Conference on Artifi-
cial Intelligence (AAAI-90), pages 479-484, 1990.

| Jonas Lowgren. Knowledge-Based Design Sup-

port and Discourse Management in User [nter-
face Management Systems. Ph. D. dissertation,
Linkoping University. March 1991, Linkdping
Studies in Science and Technology # 239.

Jonas Lowgren and Tommy Nordqvist. A
knowledge-based tool for user interface evaluation
and its integration in a UIMS. In D. Diaper,
D. Gilmore, G. Cockton, and B. Shackel. edi-
tors, Human-Computer [nteraction — [nteract’90,
pages 395-400. North-Holland, August 1990. Also
as research report LiTH-IDA-R-90-15.

D. Olsen and B. Halversen. Interface usage mea-
surements in a user interface management sys-
tem. In Proc. ACM SIGGRAPH Symposium on
User Interface Software (UIST’88), pages 102-108.
ACM Press, 1988.

| Open Software Foundation, Cambridge, MA.

OSF/Motsf Style Guide, 1988. Revision [.1.

188

{16]

(18]

(19]

P. Reisner. Formal grammar and human factors
design of an interactive graphics system. [EEE
Trans. on Software Engineering, SE-7(2):229-240,
March 1981.

A. Siochi and D. Hix. A study of computer-
supported user interface evaluation using maximal
repeating pattern analysis. In CHI’91 Proceedings,
pages 301-305, 1991.

S. L. Smith and J. N. Mosier. Guidelines for de-
signing user interface software. Report ESD-TR-
86-278, Mitre Corp., Bedford, MA, 1986.

L. Tetzlaff and D. Schwartz. The use of guidelines
in interface design. In CHI’91 Proceedings, pages
329-333, 1991.

Study 3

TUNE: A Tool for User Interface Evaluation

Tommy Nordgvist, Defence Material Administration and Lule& University of Technology, Sweden

Abstract

The present paper describes and discusses a
prototype tool (TUNE) for computer-supported evaluation
of guideline and styleguide compliance in user interfaces.
The aim of the tool is to facilitate the use of human factors
knowledge. in the form of guidelines and style guides,
GLSG, when developing user interfaces.

After discussing the increased interest in GLSG
compliance and reasons for computer-support in this area,
TUNE is presented shortly, together with experiences from
practical use. With these experiences as a basis the
possible benefits in using the tool to evaluate GLSG
compliance is discussed. The paper finally presents future
development of TUNE, for example implementing more
GLSG.

1. Introduction

When developing interactive information systems,
great efforts are focused on development of the user
interface. A study by Myers and Rosson [7] for instance.
points to the fact that about 50% of the software code relate
to the user interface.

This has resulted in much work focused on the
development of user interfaces within the research
community as well as within large vendor companies. For
example documents containing general or platform-specific
GLSG’s [3:;9:13] have been developed to support
development of user interfaces.

Unfortunately, such documents have proven to be
difficult to use for designers [1;6;14]. One reason is that
many of the GLSG documents are very comprehensive,
which makes it difficult for designers to find specific
GLSG’s. Another reason is that GLSG’s are, in many
cases, difficult to interpret in the practical design situation.
Accordingly. very few designers use existing GLSG’s
collections in practice {12;15].

Researchers have tried to solve these problems in
many ways. One example is formulating a smaller amount
of usability heuristics to be used in heuristic evaluation.

0-8186-7525-X/96 $05.00 © 1996 IEEE

Another example is a knowledge-based system,
integrated with a user interface management system
(UIMS), enabling automatic evaluation of a user interface
compliance with GLSG’s [3;4]. A third example is
hypertext checklists for evaluation of a user interface
compliance with GLSG’s [11].

In our business. we have experienced an increased
interest in user interface compliance with GLSG. This
interest is often expressed in a formal requirement to
conform to a specific GLSG, particularly ‘The Windows
Interface: An Application Design Guide’ [5]. A
requirement of this kind makes it difficult to use only
heuristic evaluztion, because we can not guarantee that the
user interface comply with specific GLSG’s by using this
method. Nor can we use knowledge-based design support
integrated with an UIMS, since UIMS tools are rarely used
in our system deve'opment projects. Hypertext checklists
are also inconvenient because of the time needed for
evaluation of a user interface compliance with all GLSG in
above mentioned documents, even if the work is supported
by a hypertext tool.

At the same time we need computer-support to
evaluate user interface GLSG compliance. The primary
reason for this is that manual evaluation of user interface
GLSG compliance is a time-consuming activity. Another
reason is our experience that it is a very difficult, if not
impossible, task to evaluate that all user interface elements
comply with defined GLSG’s when evaluating manually. A
third reason is that we are often developing tactical support
systems, which makes consistency especially important
(see also, [8], p. 7 and p. 132). The computer-support
should also support iterative design, otherwise it will not be
used.

From above reasons, a number of goals for a tool for
evaluation of GLSG compliance have been defined:

1. Reduce the time needed for evaluation of GLSG

compliance, i

2. support the task of evaluating all user interface
elements,
enhance consistency in user interfaces,

4. support iterative design of user interfaces.

w

129

In an attempt to fulfill these goals we have developed
a prototype tool for evaluation of GLSG compliance,
TUNE (Tool for User Interface Evaluation).

2. The Evaluation Tool: TUNE
2.1. User Interface Elements Evaluated

The TUNE prototype support evaluation of GLSG
compliance of user interface elements frequently present in
the computer systems we arz developing. Toe user
interface (ui) elements selected were pull-down menus,
menu items, mnemonics, shortcuts, dialog boxes and
buttons (OK and Cancel buttons in dialog boxes). (About
70% of the GLSG’s in [5] concerning above mentioned
user interface elements are implemented in TUNE for
now).

The aspects to be evaluated were:

e existence of ui elements,

o uniqueness of menu titles,

shortcuts,

e correspondence between the title of a dialog box

and the name of the selected menu item,

o order of ui elements (menus, menu items),

e proper action when selecting ui elements.

mnemonics and

Dynamic tests are used to evaluate that user interface
elements behave as specified in the GLSG. Examples of
dynamic tests are:

e function of menu items, mnemonics, short cuts and

buttons,

o presentation of dialog boxes when selecting menu

items followed by three dots.

The rules for performing the tests are either located in
the GLSG database or in the test programs. In the GLSG
database are rules that could be selected depending on the
application evaluated. In the test programs are rules that
are seen as generic for all applications. Examples of rules
located in the GLSG database are; mandatory menus in the
menu bar, mandatory menu items. Examples of rules
located in the test programs are; no space in a menu name,
unique menu items and mnemonics within a menu.

With the rules as a basis TUNE evaluates the user
interface elements in the application by reading the
information concerning ui elements using windows
standard functions and check that the static properties of
the user interface elements are as specified in the GLSG's.
For GLSG’s concerning dynamic behavior TUNE activate
the user interface elements and check that they behave as
specified in the GLSG. Deviations from the GLSG's are
then noted in the result file.

Static tests

Application
tested

Test

GLSG database

resuit

Figure 1: Overall architecture of TUNE

2.2. Architecture

The overall architecture of TUNE is presented in
Figure 1 above. TUNE consists mainly of test programs
(implemented in C++) for static and dynamic tests, and a
GLSG database. Static tests are used to evaluate that user
interface elements exist and their appearance . Examples of
static tests are:

o existence of menus and menu items,

o appearance of mnemonics and short cuts for menu

items.

2.3. The procedure for using TUNE

The procedure for evaluation of GLSG compliance
using TUNE is illustrated below:
1. Start of application to be evaluated.
2. Start of TUNE.
3. Selection of test programs and GLSG’s from the
darabase.
4. Start of test.

. Evaluation of user interface elements. (Here it is
possible to choose between interactive or batch-
mode evaluation.)

6. Opening test report.

wn

130

3. Evaluation of GLSG Compliance: An
example

3.1. Description of the evaluated application

The evaluated computer system was a military
application consisting of a main window and a great
number of menus. In the main window, different types of
forms are presented for receiving, writing and sending
data messages from/to different combat net radios out in
the field. The menus are partly used to present the different
forms to be used in the main window, partly to define
properties of the system to support work with the
application. Figure 2 below, illustrates the appearance of
the application. Our task was to evaluate the user interface
compliance according to the GLSG’s implemented in
TUNE. The result from the evaluation was going to be
used as input for the final implementation of the
application.

cases adjusted to the GLSG’s in the original volume. The
result report is structured in the following way: First, the
evaluated interface elements are presented as they appear
in the evaluated application. Then the comments generated
in the evaluation of the user interface elements are
presented.

The result from the evaluation was presented to the
designers of the evaluated application. The reactions from
them were that almost all of the comments were actually
design flaws when developing the prototype. They also
commented the fact that many of the design flaws were
repeated. For example, when designing the user interface,
they had forgotten the GLSG regarding shortcuts and hence
all the shortcuts deviated from the GLSG. The only
objection to the evaluation result was that in their opinion
Save form was a better name than Save. After discussing
with the designers their conclusion still was that the
designer-selected name of the menu item in a better way
reflected the functionality. However, the designers realized
the importance of consistency with other applications ina

Fdrhandsgranska inst... Ctri+F

Skriv ut instaliningar Ctri+G
Skrivarinstilining... Ctri+H
Skriv ut... Ctri+i
Exportera... Ctri+J
Avsiuta Alt+F4 |

- PC-Dart 1.0 [+7-1
Arkiv Redigera DART-format Instiliningar Meddelanden Filter Visa Fanster |
Oppna... Crlvd [y sw| rer| wwi | exu] as| mot] aus| isk] reo| et f
v Cuted T T wo] wof 0] o) a] ror]]] wo] 1]

Kopiera... Ctri+C - OPM T~ F‘
Spara mall... Ctri+D Tidene QPM FMT Motab Seen Niftnamn Utgdng Tid
ﬁppna mall... Ctri+E 181034 Sanger 13 AB VJ Nat1 COM1

Sant

1
181CT7 Bancer 1C4 AB VU Natt COM1
Sant _J

181C3B DATAMEDD DD W AR Natt CoM1

i [

|[MOD: SKYDD St FTR REL:SDX RAP:NEDK

TIKINEDK

EXv:ig B: S |

Figure 2: The appearance of the application evaluated.

3.2. The evaluation

The evaluation of the application’s user interface
GLSG compliance was performed as described in section
23

3.3. Results.

The evaluation resulted in 85 deviations from the
GLSG's defined. An excerpt from the result report.
generated from the evaluation. is presented in Figure 3
below. The results are translated into English and in some

131

military situation and chose the name Save. The result from
the evaluation was then introduced into the design
specifications for the implementation of the final system
(Further aspects of evaluating the application were handled
by human evaluators using the GLSG's not yet
implemented.)

4. Further applications evaluated

TUNE has also been used to evaluate two other
applications. One was an application for presenting and

File menu

Menu item: Shortcur: Mnemonic:
Open... Cul+A 0

Move... Cul+B M

Copy... Cul+C C

Save form... Cul+D E

Open form... Cal+E P

Control preview... Cl+F

Presentation of the user interface elements in the
application evaluated.

Menu item in Swedish:

Oppna...

Flyta...

Kopiera...

Spara mall...

Oppna mall...
Forhandsgranska inst...

Comments:

Menu item New is not found.
Shortcut for Open... is not as defined in GLSG.

/

Use of the mnemonic for Open... does not result in any action.
The dialog box presented when Open form... is selected has no OK burton.
When selecting Control preview... no dialog box is presented.

Figure 3: An excerpt from the result report.

handling geographical information. Another was an
application for presenting attacking enemy aircraft in an
anti-aircraft setting. The results from these evaluations
were mainly the same as for the evaluation presented here.

5. Discussion

The work presented above illustrates how 10
automatically evaluate GLSG compliance in user interface
design. Even though TUNE only focused on above
mentioned user interface elements, the work points to the
potential of automatic evaluation of user interface elements
and thus facilitating the use of human factors knowledge in
user interface cevelopmert.

5.1 TUNE and the defined goals

To evaluate TUNE against the goals listed earlier
following study were conducted. In parallel with the TUNE
testing of the three applications, manual evaluation was
also accomplished by three usability experts. (The number
of usability experts was determined with [15] as a basis.)
The data collected in manual evaluation and TUNE
evaluation were:

132

Comments generated in the evaluation of the user interface
elements.

time used for performing the evaluation,

number of evaluated user interface elements,
number of identified deviations from GLSG's,
interviews with developers who had used TUNE
when developing user interfaces.

Time used (minutes) was registered by the usability
experts and by the TUNE operator. (Time for preparation
of the manual evaluation and TUNE evaluation was not
included in the registration.) Number of evaluated user
interface elements was registered through analysis of the
reports from the usability experts and from TUNE. Number
of identified deviations was registered by letting the
usability experts note every deficiency on paper, which was
then anelyzed. ané by studving the result report Som
TUNE. The interviews were performed individually for the
three developers. It is important to notice here that when
we are talking about time and number below, we only
discuss in terms of the user interface elements mentioned
earlier. Also the status of development for the different
applications are very different, so the numbers given in the
figures should not be compared over applications. .

Goal 1): Reduce the time needed for evaluation of
GLSG compliance. In Figure 4 below the time used for
manual evaluation and TUNE evaluation of the three
applications is presented. Time used for manual evaluation
is here presented as mean values for the three evaluators.

A B C
Manual 115 21 135
TUNE 20 4 27

Figure 4: Time used, in minutes, for manual
evaluation and TUNE evaluation for the three
applications.

As can be noticed in Figure 4, time used for TUNE
evaluation is about 20% of the time used for manual
evaluation. It is therefore possible to conclude that TUNE
reduces the time needed to evaluate GLSG compliance.

Goal 2): Support the task of evaluating all ui elements
in the application. In Figure 5 below, number of evaluated
user interface elements is presented together with the total
number of user interface elements for each application. It
should be noticed here that when we refer to the total
number of user interface elements we mean those elements
mentioned in secdon 2.1. Number of evaluated user
interface elements is here presented as mean values for the
three usability experts.

A B &
Manual 231 38 290
TUNE 252 36 305
Total number L’ZSS 39 308

Figure 5: Number of evaluated ui elements together
with total number of elements.

As can be noticed in Figure 5, TUNE evaluation
results in that more user interface elements are evaluated
and also that almost all user interface elements are
evaluated. The reason for the difference between TUNE
and the total number is that we are not evaluating the menu
item Exit (together with mnemonic and shortcut). Figure 5
also indicate that the difference in evaluated user interface
elements between manual evaluation and TUNE evaluation
is greater when the application is more complex. A
precondition for TUNE evaluating all user interface
elements is of course that GLSG are implemented for every
element.

Goal 3): Enhance consistency in user interfaces. In
Figure 6 below, the number of recognized deviations from
GLSG in manual evaluation and TUNE evaluation is
reported for the three applications. The reason why we
present those numbers is our hypothesis that the more

133

deviations recognized (and corrected) the more consistent
user interface. For the manual evaluation only the
deviations that are unique are presented, in other words, if
two evaluators has recognized the same deviation it is only
regarded as one deviation.

A B &
Manual 69 (222)| 33 (73) | 58 (97)
TUNE 85 I 83

Figure 6: Number of recognized deviations in manual
and TUNE evaluation for the three applications.

As can be noticed in Figure 6, the number of
recognized deviations is higher for TUNE evaluation then
in manual evaluation. This is true only as you have the
implemented GLSG’s as a basis. Manual evaluators
recognize more deviations (the figures within brackets in
Figure 6) if you have all GLSG and the usability experts
‘design expertise” as a basis.

Goal 4): Support iterative design of user interfaces.
Because of the possibility to use TUNE to evaluate a user
interface design in progress it is possible to receive
comments on different design suggestions. It is also
possible to use TUNE as a personal support tool in the
design and implementation. For instance, to use TUNE in a
design situation where the designer can evaluate a design
prototype. In this case it is possible to have comments
presented for the designer together with the specific user
interface element evaluated. Also, interviews with
designers indicate that they consider TUNE as a support
for iterative design.

5.2. Related work

Of course it is not possible to replace usability
experts with a tool for user interface evaluation.
Nevertheless, a tool like TUNE could unburden usability
experts from the task of evaluating user interface
compliance with respect to existence, layout and
functionality GLSG’s. Thus, making it possible for them to
concentrate on more important design issues.

It is imporant to remember that TUNE only handle a
minor part of the usability issue. Compliance with GLSG
does not in any way guarantee that an interactive
information system will be usable. Therefore, it is
important to regard TUNE as a supplement to other
usability activities, for example heuristic evaluation,
cognitive walkthrough and user testing that are useful for
other aspects of the usability issue [2;8].

6. Future work

In the future development of TUNE we will focus our
efforts on extending the tool in three ways. First, to
evaluate additional user interface elements. for instance,
other types of menus. different kinds of buttons, list boxes
and text boxes.

We estimate that it is possible to implement about
70% of the GLSG's in Microsoft [5]. Conceming the
remaining 30%. we think it is necessary to investigate the
possibility to make GLSG’s more accurate in order to
implement them in TUNE. Some of theses remaining
GLSG's can possibly be defined more accurately. For
example, consider following GLSG:

‘If an object is so small or thin that pointing or
clicking to select it would require extremely precise mouse
positioning, provide a hot zone around the object to
increase the area where clicking will select the object’ ([5],
p- 10).

If we supplement this GLSG with:

*The selectable area (of an object) should be at least
0.6 square’, [10], it would be possible to implement it in
TUNE.

Other GLSG’s are more difficult to formulate in the
precise way needed. The following GLSG need further
information to be possible to implement:

‘Each menu item should be represented by a
descriptive name or graphic’ ([5], p. 83).

To implement this GLSG you need to know the
function of the item and to have knowledge about the
semantic meaning of the name of the menu item.

Second, we intend to develop tests with OSF/Motif
GLSG’s as a basis, making it possible to use TUNE when
evaluating GLSG compliance in both MS Windows and
Mortif user interfaces.

It is also important to develop TUNE further so that
the evaluator know which GLSG’s are (or are not)
implemented in TUNE and which user interface elements
are (or are not) evaluated in a specific application.

Acknowledgments

The author wants to thank Per Asplund, Peter
Ericsson and Johan Strand. all at Enator Telub AB, for
their work at implementing TUNE. Leonard Adelman.
Jonas Lowgren and Kjell Ohlsson read an earlier version of
this paper and had many insightful comments for which I
am very grateful.

This study was founded by the Swedish National
Board for industrial and Technical Development. Enator

134

Telub AB and the Defence Material Administration.
Sweden.

OSF/Motif is a trademark of the Open Software
Foundation. Inc. Windows is a trademark of Microsoft
Corporation. Enator Telub AB is a consultant company
within information technology.

References

[1] F.De Souza. and N. Bevan. The Use of Guidelines in
Menu Interface Design: Evaluation of a Draft Standard. In
D. Diaper, D. Gilmore, G. Cockton and B. Schakel Eds.,
Human -Computer Interaction - Interact '90, pp. 435-440.
North-Holland, 1990

R. Jeffries.J.R. Miller, C. Wharton and K. M. Uydea, User
interface evaluation in the real world: A comparison of four
techniques. CHI'9] Conference Proceedings, pp. 119-124,
1991.

J. Léwgren and T. Nordgvist, A Knowledge-Based Tool for
User Interface Evaluation and its integration in a UIMS. In
D. Diaper, D. Gilmore, G. Cockton. and B. Shackel Eds..
Human Computer Interaction - Interact '90. (pp. 393-
400). North-Holland, 1990.

J. Léwgren and T. Nordqvist, Knowledge-Based Evaluation
as Design Support for Graphical User Interfaces. [n CHI
'92 Proceedings. pp. 181-188. 1992

Microsoft. (1992). The Windows Interface: An Application
Design Guide, Microsoft Press. Redmond, Washington:
Author.

J. N.. Mosier. and S. L. Smith. Application of Guidelines
for Designing User Interface Software, Behaviour and
Informarion Technology. 3, pp. 39-46, 1986.

B. A. Myers and M. B. Rosson. A Survey on User
Interface programming. In Proceedings of CHI '92._ pp.
195-202, 1992.

J. Nielsen, Usability Engineering.
London. 1993.

Open Software Foundation, OSF/Mortif Style Guide
Prentice Hall. 1992.

R. N. Parrish, Development of Design Guidelines and
Criteria for User/Operator Transactions with Battlefield
Automated Systems. Fairfax, Virginia: Synetics (August),
1980.

G. Perlman, System Design and Evaluation with Hypertext
Checklists. JEEE. pp. 1187-1193, 1989.

S. L. Smith and J. N. Mosier. The User Interface to
Computer-Based Information Systems: a Survey of Current
Software Design Practice. Behaviour and Information
Technology, 3, pp. 195-203. 1984.

[13]S. L. Smith and J. N. Mosier, Guidelines for Designing User
Interface Software. (Technical Report MTR-10090). The
MITRE Corporation, Bedford. MA 01730. USA. 1986.

L. Terzlaff and D. R. Schwartz. The Use of Guidelines in
User Interface Design. In CHI ' 91 Proceedings. pp. 325-
33, 1991.

H. Thovtrup and J. Nielsen, Assessing the Usability of a
User Interface Standard. In CHI '91 Proceedings, pp. 335-
341, 1991.

(2]

B3]

[4]

[5]

(6]

7

(8]
(9]

Academic Press.

(10]

(11
[12]

[14]

[13]

Study 4

RESEARCH REPORT TULEA 1995:37

AVDELNINGEN FOR TEKNISK PSYKOLOGI ISSN 0347 - 0881
ISRN HLU -TH - FR - - 1995/37 - TULEA- - S

Computer Support for User
Requirement Evaluation
1In System Development

TOMMY NORDQVIST

[TEKNisKA o
LS HOGSKOLAN | LULEA

LULEA UNIVERSITY OF TECHNOLOGY

CONTENT

ABSTRACT .cccciaiieniincercnnacans R asEveReERe R ERRES B R R S SRR -
1. INTRODUCTION....cccicineteicneaccccnnrenncnannss AR A AT R R AR R S A |

2. COMPUTER SUPPORT FOR EVALUATION OF USER REQUIREMENT
COMPLIANCE ...ccccieveicecnnacnonncans eowesmensyen R T SR S P e TR R 5

2.1 USEOF TURE IN THEORY:ouvverreennreenrunnnes
2.2 PRACTICAL USE OF TURE, A CASE STUDY
2.2.1 Creating the 1est-SCTipt:........ccorvureeeennnns
2.2.2 Evaluation of the COMPUIET SYSIEM:ccceuveernrenenrnniorarsnnnaanns
2.2.3 Analysis of the evaluation resulf.................oeeeerrieeiiinnennenacasianacan

3. DISCUSSION AND CONCLUSIONS........ DREme — cosensee veswsans EvaaS R — a1

3.1 CREATION OF TEST-SCRIPTS:ccucrmtruaerennisremsiarsossnnssasensersnnssssenssnsssraessasssssnsssassssassssireisersnnsstsssases 11
3.2 EVALUATION OF AN APPLICATION

3.3 COMPARISON BETWEEN AUTOMATIC AND MANUAL EVALUATION:.
B4 USKBILITY ASPECTS :c. cssuesasisrossssssassss sivss 0 555 ssas a4 4s5e 554013 8sSmasvenss sess dss<aassdsussansrsssiossiassvsosgmsnisy

4. FUTURE WORK.............. veenes RN sovesmevanes coovane PO 18
REFERENCES.....cc.cccocerececcncnans S Es SN SRS A SRS T TS S SRR A e S e sy SR—

ACKNOWLEDGMENTS n—— TR seveasEEs ST T

ABSTRACT

The present paper describes and discusses a computer-supported tool for
evaluation of a computer system’s compliance with user requirements.
The aim of the tool is to support the difficult but important work of
validating that defined user requirements are implemented in the

computer system developed.

After discussing development of computer systems according to some
commercial standards, the need for evaluation of computer systems and
reasons for computer-support in this area, the tool TURE (Tool for User
Requirement Evaluation) is described. Also, experiences from practical use
of TURE are reported. With these practical experiences as a basis, TURE is
discussed in relation to the creation of test-scripts, evaluation of a compu-
ter system, comparison between automatic and manual evaluation, and
usability.

Finally, possible future development of TURE is presented, focused on the
need of implementing predefined test-functions, a function for attaching
these test-functions to relevant user interface elements, and a function for

registrating user interaction.

1. INTRODUCTION

When developing large computer systems the following activities are

usually accomplished (Dix et. al., 1993):

e Requirements specification.

Architectural design.

Detailed design.

Coding and unit testing.

Integration and testing.

Operation and maintenance.

Requirements specification or requirements analysis, probably the most
important activity when developing computer systems, can be divided in
two activities (Palmer, 1990). The first activity is identification and defi-
nition of the users’ requirements on the future system. Another term for
this activity is development of system requirements (IEEE P1233, 1993;
MIL-STD-498, 1994). The result from this activity is a system requirement
specification (SyRS). The second activity is specification of the require-
ments on the software, in other words a requirement analysis from a
software perspective. Another term for this activity is definition of the
software requirements (IEEE std 830-1993; 1994; MIL-STD-498, 1994). The
result from this activity is a software requirement specification (SRS). See
also Andriole (1990) and Rombach (1990) for a discussion of user

requirements and software requirements.

The system requirement specification, which represents the users’ basic
requirements on the future computer system, is often formulated in
natural language. When developing the software requirement specifi-
cation, these requirements are reformulated in a more formal language,

for example object models or flowcharts. The software requirement

specification is then the basis for subsequent activities in the development
of the system. When these activities are completed, the resulting computer
system is validated against the user requirements specified in the system

requirement specification.

Within the system development projects we are working with at Telub
AB, our role is primarily to help and support the user/customer when
developing computer systems. During requirement specification we are
helping the users to identify and define their requirements on the system,
in other words helping them to develop the system requirement specifi-
cation. This system requirement specification is then delivered to the
supplier of the future computer system. The supplier develops a software
requirement specification, and carries out the subsequent activities in
order to develop the computer system. When the system is delivered to
the user/customer, validation of the computer system’s compliance with
the requirements specified in the system requirement specification is
usually carried out (ISO 9000-1991, 1991). In this activity we are supporting

the user/customer in the validation process.

The system requirement specification has two main objectives. First, it is
the basis for the contract negotiations where the user/customer and the
supplier will come to an agreement about what to be produced. Second, it
is the basis when specifying software requirements. Therefore a system
requirement specification should have the following characteristics
according to IEEE P1233 (1993):

e “The requirements shall be formulated and organized to define the
system’s external behavior completely, consistently and unambiguously
once the problem is thoroughly understood,” (p. 4).

e “Each requirement shall be implementation independent.

» Each requirement shall be stated in such a way so that it can be

interpreted in only one way.

e Each requirement shall have the ability to be traced to specific customer
statements and to specific statements in the definition of the system

given in the SyRS as evidence of the source of a requirement.

e Each requirement shall have the means to prove that the system

satisfies the requirements,” (p. 13).

The definition of requirements according to these characteristics and with
above-mentioned objectives, usually implies that the system requirement

specification is characterized by

e A focusing on the complete specification of the external behavior, or the

services the computer system should fulfill from the users perspective.

¢ Requirements often specified in detail and handling the external design
of the user interface. Layouts, interaction techniques, menus, dialog
boxes, forms and so on, are often specified explicitly in the requirement

specification. The reason for this is the need for validation.

e Large number of requirements’ in the requirement specification even

for small systems.

As a result, comprehensive procedures and specifications regarding the
validation of the computer system under development have been
developed. These procedures and specifications are for instance called
acceptance tests, test specifications or system test specifications. In this
paper these procedures and specifications will be called validation speci-
fications. A validation specification for a specific computer system is a
detailed check list for every requirement defined in the system require-

ment specification. If we for instance study following requirement:

“The user should be able to use the computer system to copy earlier created

or received messages,”

the validation specification for this requirement could be formulated in

the following way:

Do the following:

Select the command “Copy.”

Select the type of message to be copied
by selecting message type. Do this for

for every type.

Select message/messages to be copied by
clicking on them in the window for
messages. Do this for every message

and combination of messages.

Type an appropriate name for the message

which is copied

Select the catalogue where the copied
message shall be saved by clicking on the

catalogue name in the directory.

Press the OK button.

Check that:

A “"Copy” form is

presented.

Messages of selected type is
presented in the window

messages.

Messages can be selected

and that selected messages
are indicated or presented
in the window for selected

messages.

Any name is possible to
type and both characters

and numbers are accepted.

Appropriate catalogue
couls be selected as

indicated.

Copied message is saved
under the chosen name
and under the selected
catalogue. The “Copy”
form is closed and the
application returns to the

earlier state.

Press the Interrupt button. - The “Copy” form is closed
and the application returns
to earlier state without any

copy saved.

This implies that the possibility to validate the developed computer
system’s compliance with user requirements in the system requirement
specification increase, but also that the validation is both comprehensive
and laborious to accomplish. This is particularly the case when performing
the validation manually, as in the projects we are working in. If this vali-
dation has to be done several times, as in iterative system development or

development of several versions of the system, the risk increases that:

e The computer system is not validated against all the user requirements

defined in the system requirement specification.
o The validation is very hard to replicate in exactly the same way.

e The validation is being so costly (in time and money) it is not
performed for every iteration or version.
e The computer system is not evaluated against the user requirements in

the system requirement specification but against the software

requirements.

2. COMPUTER SUPPORT FOR EVALUATION OF USER
REQUIREMENT COMPLIANCE

In an attempt to handle some of the problems in validating a computer
systems compliance with user requirements, we have developed a tool
called TURE (Tool for User Requirement Evaluation). With TURE it is
possible to evaluate a computer system’s compliance with user require-

ments related to the user interface.

The overall architecture for TURE is depicted in Figure 1 below. As a
platform for the development of TURE we used WinRunner. WinRunner
is developed by Mercury Interactive Corporation and is a tool for
developing automatic software tests for Windows, Windows NT, and
OS/2 applications. For a detailed description of WinRunner see Mercury
Interactive Corporation (1993a, b, c). (A similar tool is for example
WinTest developed by Microsoft).

Learn Test-
L GUI script
Application to objects Comments
be evaluated.
WinRunner

Figure 1: Overall architecture of TURE

TURE consists of the following main parts: The Learn GUI objects function
in WinRunner and the test-scripts developed for the applications to be

evaluated.

The Learn GUI objects function is used to create a representation of the
user interface of the application to be evaluated. This representation
includes the logical names of the user interface elements and their
physical description. The logical name is for example a button label, a
window label or a name defined by the developer of the application.The
physical description is a list of attributes that identify the element. This list
includes, for instance, type of user interface element (window, dialog box,
push-button, menu, menu item), the label of the element, co-ordinates for
the element on the screen, and text attached to the element. This list is
created with the Learn GUI objects function and can also be supplemented

manually.

The test-script consists of functions in a C-like programming language for
validating that the implemented application complies with defined
requirements. With these functions the application is evaluated to check
that defined user requirements are implemented and that the application
functions as specified.

2.1 Use of TURE in theory:

When specifying the requirements and especially when developing the
system requirement specification the user requirements are transformed to
a test-script. The level of detail in the system requirement specification
influences the development of the test-script. Sometimes it may be
necessary to ask the users to articulate their requirements more precisely. If
this is not possible at the moment, it may be necessary to wait with the
details in the test-script until the development of the software

specification.

When a prototype or a version of the computer system has been
implemented, the Learn GUI objects function is used to generate a
representation of the user interface of the computer system. If the system
requirement specification was very detailed and all user interface elements
were defined, the test-script created is sufficient for the validation to be
carried out. If not, there is a need to develop the test-script further with the

generated representation as a basis.

The test-script is then used to evaluate the computer system’s compliance
with user requirements. The possibility to do this evaluation on-line also
makes it possible to continously monitor the evaluation performed by
TURE.

2.2 Practical use of TURE, a case study

To investigate the practical use of TURE we decided to set up a study
comparing manual evaluation to evaluation with TURE. The study was
designed to investigate the time needed for creating test-scripts/validation
specifications and time needed for conducting the evaluation.

The study was accomplished by having different people conducting the
manual evaluation (including creating the validation specification) and
the evaluation with TURE (including creating the test-script). In this
section we are focussing on the issues of creating test-script, evaluation of
a computer system, and analysis of the result from the evaluation with
TURE. The comparison between manual evaluation and evaluation with

TURE is presented in the discussion and conclusions section.

2.2.1 Creating the test-script:

Simultaneous with the development of the system requirement specifi-
cation for a computer system for writing, sending, receiving and admini-
strating different kinds of messages, we developed a test-script to be used
when validating the computer system’s compliance with user require-
ments. The requirement specification included user requirements in the
form of detailed requirements on operations the user/operator should be
able to do with the computer system. Examples of the requirements in the
requirement specification are presented in Figure 2 below. (The require-

ments are translated to english).

e Selection of the command ”List of adress” shall result in presentation of
a dialog box “List of adress” in the working area.
e Selection of the command “Reset” shall result in presentation of a dia-

log box “Reset” in the working area. The button “All” shall be active.

e Selection of the command "Priority” shall result in presentation of a
window “Priority” in the working area.
e Selection of the command “Erase” shall result in presentation of a

dialog box “Erase” in the working area. The button “Yes” shall be active.
Figure 2: Examples on user requirements.
The requirements were then transformed to a test-script as described

above. An example of the transformed requirements is depicted in Figure

3 below.

1) if (menu_select_item("Options; List of adress...”)!=E_OK)
(2) report_msg("2.4.7.6.4.4 There is no command for List of
adress”);

(3) else if(dialog_title(List of adress”) !=E_OK)

4) report_msg(“2.4.7.6.4.4 When selecting the command for
List of adress no dialog box is presented”)

(5) else win_close(”List of adress”);

Figure 3: An example from the test-script.

Line 1: Tests if there is a command for “List of adress”.
Line 2: Prints the defined text in the test report.
Line 3: Tests if there is a dialog box for “List of adress”.
Line 4: Prints the defined text in the test report.

Line 5: Closes the window or dialog box.

2.2.2 Evaluation of the computer system:

After the implementation of the first version of the computer system the

validation was carried out with TURE. A representation of the user

10

interface of the computer system was generated. The application was then

evaluated according to the test-script and comments were generated.

The evaluation of the application’s compliance with the defined user

requirements resulted for instance in the comments presented in Figure 4

below.

Requirement according Evaluation Comments:

to req. ification: carried out:

247644 Evaluation of the presence There is no
and function of command command”List
"List of adress”. of adress.”

24.7.645 Evaluation of the presence OK
and function of command
"Messages”.

247648 Evaluation of the presence There is no
and function of command command
”Reset”. "Reset”.

24.7.6.52 Evaluation of the presence There is no
and function of command command
"Priority”. "Priority”.

24.7.65.6 Evaluation of the presence When selecting
and function of command the Command
"Erase”. “Erase”no dia-

log box is pre-

sented.

Figure 4: An excerpt from the evaluation report.

In addition to these requirements it was also a requirement that the user

interface shall comply with the MS Windows styleguide. Evaluation of

11

this requirement was carried out with a tool called TUNE (Nordqvist,
1995).

2.2.3 Analysis of the evaluation result:

When studying the result from the validation of the computer system it is
possible to conclude the following. First, it was possible to identify a num-
ber of deviations from the requirements defined in the requirement
specification by means of TURE. Second, some deviations identified by
TURE were due to some defects in the test-scipt. Third, the traceability to
the original requirements was simplified by the identification of the ori-
ginal requirements in the evaluation report. Fourth, the dialogue with the
developers was facilitated by the possibility to replay the evaluation

session.

When discussing the result from the evaluation with the developers, they
agreed that they had sometimes deviated from the requirement specifi-
cation. This discussion was to a great deal facilitated by the possibility to
replay the evaluation and in the user interface point to discovered devia-
tions and at the same time refer to the original requirement. Sometimes
the developers pointed out that the result from the evaluation was erro-
neous. This was due to the fact that the developers had implemented
some requirements with the help of other user interface elements. TURE
was then not able to find the elements defined in the requirement speci-
fication, which resulted in TURE generating comments that the require-

ments related to these user interface elements were not fulfilled.

3. DISCUSSION AND CONCLUSIONS

The discussion and conclusions are divided in following sections: creation
of test-scripts, the evaluation of the application, comparison between auto-

matic and manual evaluation and usability aspects.

12
3.1 Creating the test-scripts:

To create test-scripts for evaluation of an application’s compliance with
defined user requirements, the requirements have to be precise enough to
implement in the C-like language supported by WinRunner. This means
that considerable efforts have to be made to have the users define explicitly
what they will be able to do with the computer system. A positive side-
effect of this is that this procedure also ensures that one condition in IEEE
P1233 (1993) is fulfilled, that all requirements on the system should be
possible to validate.

The process of creating test-scripts is at the moment as time-consuming as
creating the necessary validation specifications for manual validation, at
least if the validation is performed only once. This depends mainly on the

following;:

¢ The requirements are often too generally formulated in the
requirement specification. (This is of course a problem even in manual

evaluation).

¢ Requirements without external behavior to the user can for the

moment not be validated with TURE.

¢ Presently, every test-script is created from scratch.

If the requirements are too generally formulated, we must return to the
users to have them elucidate what they want the application to do.
Integration of the work of identifying and defining the user requirements
on the application to be developed, with the work of creating test-scripts
would probably facilitate the creation of test-scripts. This integration might
also contribute to the solution of the problem that many large software
development projects exceed their cost and time limits because of
deficiencies concerning the development of the requirements on the
computer system (see for example Lederer and Prasad, 1992) because of the
necessity to be explicit in the requirements definition to be able to

implement them in TURE.

13

Since TURE is based on the evaluation of compliance with user require-
ments through the user interface we have for the moment no possibility
to validate requirements that relate to the application's inner functiona-
lity. This is a problem in many system development projects of today
where requirement specifications are formulated in terms of technical
functionality and not in terms of user requirements on the system (see for
example Andriole, 1990, for a discussion of the importance of focusing on
user requirements). This means that the functionality for the user risks to
be hidden by technical requirements. If one instead chooses to let the user
perspective dominate when identifying and defining requirements the
creation of test-scripts would be much easier. The effect of this approach on
the development of software requirement specifications is unknown.
Possibly it could contribute to the solution of the problem that many large
computer systems are so afflicted with serious deficiencies when delivered
that they are not used (Ince, 1988). It has been shown that these deficiencies
usually depend on problems in identifying and defining the requirements
on the future computer system (Lederer and Prasad, 1992, Palmer, 1990).

Function for ;
relating test- D‘r_'ﬁ;"ﬁrzegf
functions and pre :
iserinterfics Itest—functxons
elements
Application ljfe &r:?:e?mn Test-
to be ; script
e et Jm
WinRunner

Figure 5: Possible future architecture of TURE

14

Since every test-script is created from scratch, it requires the same amount
of effort for every application to be evaluated. A possible approach to this
problem is to supplement TURE with a library of predefined test-functions
for different types of user interface elements, and a function for relating
applicable test-functions to the user interface elements in the represen-
tation of the application to be evaluated. An example of this further
development of TURE is depicted in Figure 5.

3.2 Evaluation of an application

The evaluation of an application is rather straightforward since what is
done is: 1) creation of a test-script according to the system requirement
specification for the application to be evaluated, 2) generation of a repre-
sentation of the user interface of the application, 3) evaluation that the
application complies with defined user requirements, 4) analysis of

evaluation results, 5) presentation of evaluation results for the developers.

However, some additional activities are necessary in relation to the
evaluation of an application's compliance with user requirements using
TURE.

First, a validation of the identified and defined requirements have to be
conducted. Experiences from system development points to the impor-
tance of validating requirements to ensure that the requirements are the
proper requirements, properly comprehended, properly formulated,
consistent, complete and possible to test (possible to verify and validate,
Boehm, 1984a). This is an extensive and difficult task that has to be done
irrespectively if the subsequent validation is done manually or with the
help of tools like TURE. In a way TURE could support this process since
we have an opportunity continually to test the requirements as the

application is implemented.

15

Second, to continuously check if the user interface elements in the
application have got other names, or defined user interface elements have
been changed so that for instance menus have been replaced with dialog
boxes. As mentioned before, such changes mean that the user interface
elements generated in the representation do not correspond to elements in

the test-script.
Third, to ensure that changes of specific requirements, addition of new

requirements, and omission of requirements are continuously taken care

of and influence further development of the test-script.

3.3 Comparison between automatic and manual evaluation:

The results from the case study is illustrated in Figure 6.

Manual Automatic

Time elapsed for conducting g8h 1h

the evaluation

Time elapsed for creating 8h 8h

test-scripts/validation specifications

Figure 6: Comparison between automatic and automatic evaluation.

As the figure indicates, it takes equally long time to create a test-script and
a validation specification. This depends mainly on the fact that for manual
as well as automatic evaluation the test-script/validation specification is
created from scratch for every application to be evaluated. With the
further development of TURE illustrated in Figure 5, we estimate that
reducing the time necessary for creating test-scripts with 50% is possible.

16

If we then consider manual and automatic evaluation with respect to the
time elapsed to conduct the evaluation, it obviously takes much shorter

time to conduct the automatic evaluation.

However, considering the magnitude of the time saved as possible to
generalize to other applications is risky. Further use of TURE is necessary
to create the necessary basis for any conclusion about the magnitude of the
time saved when using TURE. Still it is possible to say that the time saved
at least should be about 50% compared with manual evaluation. If we by
this can unburden people from the task of manually evaluating appli-
cations and instead focusing on other usability aspects, the possibility to

developing really usable computer systems in the future increases.

Another aspect worth pointing at when comparing manual and automatic
evaluation is the possibility of considerable time and cost savings when
evaluating a computer system’s compliance with user requirements in
iterative system development. Even if the time used initially when
developing test-scripts or validation specifications is the same, our
preliminary experience is that the cost in time and money for further
development of the test-script is very small, as long as the application is
not dramatically changed. For instance, in TURE replacing user interface
elements or taking into consideration design changes where the user
interface element's interrelations have been changed is very easy. It is
likely that the time saved, indicated in Figure 6, for evaluation of the
application will be the same for every iteration or version of the computer
system also. According to my opinion, this means that when developing
large systems where the number of iterations or versions could be more

than 10, the time and cost savings are large.

17
3.4 Usability aspects

Even if TURE supports evaluation of an application’s compliance with
user requirements, TURE is of course not the answer to every question
concerning development of usable computer systems. If we consider TURE
from the perspective of Lowgrens (1993) definition of usability:

“Usability is a result of Relevance, Efficiency, Attitude and
Learnability (REAL).

o The relevance of a system is how well it serves the users’

needs.

o The efficiency states how efficiently the users can carry out

their tasks using the system.
e Attitude is the users’ subjective feelings towards the system.

o The learnability of a system is how easy it is to learn for
initial use and how well the users remember the skills over

time”.

it is possible to say that TURE handles the relevance aspect of usability in
the sense that it is possible to evaluate to what degree the application
complies with the user requirements. This of course presupposes that

specified requirements really represent the users requirements.

TURE does not handle the efficiency aspect of usability since there is no
function in TURE to support the evaluation of how efficiently the users
can carry out their tasks using the application. Supplementing TURE with
a function for registrating user interaction makes it possible also to handle
the efficiency aspect since then it is possible to registrate the users’ interac-

tion with the computer system when carrying out relevant working tasks.

Nor does TURE adress the attitude aspect of usability since this is mainly a

question of what the user feels about the computer system. A more

18

thorough treatment of usability requires that TURE is supplemented with
different kinds of investigation methods to study this aspect.

With respect to the issue of how easy the computer system is to learn and
how well the users remember the acquired skills, this is not handled by
TURE which focuses on whether the user requirements are implemented
in the computer system. But it is possible to imagine the use of a further
developed TURE in registrating and analyzing the use of the computer

system when it is delivered to the users.

Finally, I would like to return to the relevance aspect and state that TURE’s
evaluation of the relevance aspect also indirectly affects the other aspects
of usability. If the user functionality defined in the requirement specifi-
cation is not implemented in the computer system this is going to
influence the other usability aspects. For instance, if one studies the
learnability aspect it is possible to come to the conclusion that the
computer system is easy to learn, but this could still imply that the
computer system is missing task relevance. My personal experience is also
that it is possible to have a high value with respect to the user attitude of
the computer system but this does not guarantee that the computer system

is relevant for the task to be performed.

4. FUTURE WORK

There is a need to further develop TURE in many ways. First, TURE needs
to be extended according to Figure 5. The focus is then on developing
predefined test-functions to handle the different kinds of user interface
elements in a user interface. Developing a function for integrating these
test-functions and the user interface elements identified with the Learn

GUI objects function is also necessary.

Second, we see it as necessary to further develop TURE to deal with the
user interface elements utilized in geographical applications (GIS). At the

19

moment TURE could not handle symbols presented in a computerized

map display.

Third, in our opinion it is necessary to supplement TURE with a function
for registrating user interaction, specially if we aim at adressing the

efficiency and learnability aspects of usability.

Fourth, developing TURE further is necessary so that we can
improve our dealing with situations where minor changes in the
user interface design have lead to replacement of user interface
elements when implementing the computer system. For the
moment we have to manually check that the representation
generated with TURE really contains the elements specified in the
requirement specification. A possible solution to this problem is to
develop a function to automatically check the correspondence
between the user interface elements in the test-script and the user
interface elements in the generated representation.

20
REFERENCES

Andriole, S.J., (1990). Information System Design Principles for the 90s,
Getting IT Right. AFCEA International Press, Fairfax, Virginia.

Boehm, B. W., (1984a). Verifying and Validating Software Requirements
and Design Specifications. IEEE Software. Vol. 1, Number 1,
January 1984, pp. 75-88.

Dix, A., Finlay, J., Abowd, G. and Beale. R. (1993). Human-Computer
Interaction. Prentice Hall International Press (UK) Limited.

IEEE Std. 830-1993, (1994). IEEE Recommended Practice for Software
Requirements Specifications. Institute of Electrical and Electronics
Engineers, Inc., New York.

IEEE P1233, (1994). Guide for developing System Requirements
Specifications. Institute of Electrical and Electronics Engineers, Inc.,
New York.

1SO 9000:1991, (1991). Quality Management and Quality Assurance
Standard - Part 3, Guidelines for Application of ISO 9001 to the
Development, Supply and Maintenance of Software.

Ince, D. (1988). Software Development: Fashioning the Baroque. Oxford

University Press.

Lederer, A. L. and Prasad, J. (1992). Nine Management Guidelines for
Better Cost Estimating.Communications of the ACM, 35, 2
(February), pp- 51-59.

Lowgren, J. (1993). Human-Computer Interaction, what every system
developer should know. Studentlitteratur, Lund, Sweden.

21

Mercury Interactive Corporation, (1993a). XRunner/WinRunner

Technical Overview. ver 1.0. California: Author.

Mercury Interactive Corporation, (1993b). WinRunner User’s Guide,
California: Author.

Mercury Interactive Corporation, (1993c). Context Sensitive Testing, User’s
Guide, California: Author.

MIL-STD-498, (1994), Military Standard for Software Development and
Documentation. AMSC No. N7069.

Nordqvist, T. (1995). Computer-Supported User Interface Evaluation.
Paper submitted for publication.

Palmer, J. D., (1990), Software Systems Requirements Engineering for
Command and Control, in Andriole S.]. (ed.) Advanced
Technology for Command and Control Systems Engineering.
AFCEA International Press, Fairfax, Virginia, USA.

Rombach, H. D. (1990). Software Specifications: A Framework. Curriculum
Module SEI-CM-11-2.1, Software Engineering Institute, Carnegie
Mellon University, Pittsburg, Pa., January.

22

ACKNOWLEDGMENTS

The author wants to thank Per Asplund at Telub AB, for his work at
implementing the tool and the discussions concerning evaluation of user
interfaces. Jonas Lowgren, Kjell Ohlsson, Kristian Sandahl and Joachim
Karlsson read an earlier version of this paper and had many creative ideas for

which I am very grateful.

This study was funded by the Swedish National Board for Industrial and
Technical Development, Telub AB and the Defence Material Administration.

Winrunner is a trademark of Mercury Interactive Corporation.
OSF/Motif is a trademark of the Open Systems Foundation.

Windows is a trademark of Microsoft Corporation.

Telub AB is a company focused on consultancy services within information

technology and telecommunications.

IE§ HOGSKOLANILULEA

TULEA 1995:37

ISSN 0347 - 0881
LULEA UNIVERSITY, SWEDEN ISRN HLU-TH-FR-- 1995/37 -E--SE
Institution/Department Upplaga/Number of Copies
I Arbetsvetenskap I r 100 ex l
Avdelning/Division Datum/Date
| || 12 tebruari-26 |
Titel/Title

Computer Support for User Requirement Evaluation in System Sevelopment

Forfattare/Author(s)

Tommy Nordqvist

Uppdragsgivare/Commissioned by

Typ/Type

Telub AB and Lulea University

[0 Doktorsavhandling/Doctoral Thesis
O Licentiatuppsats/Licentiate Thesis
X Forskningsrapport/Research Report

NUTEK
[0 Teknisk Rapport/Technical Report
O Examensarbete/Master Thesis
O Ovrig rapport/Other report
Sprak/Language
(] svenska/Swedish X] Engelska/English OJ

Sammanfattning, hogst 150 ord / Abstract, max 150 words

Nyckelord, hogst 8 / Keywords, max 8

Underskrift av granskare/handledare / Signature of examiner/supervisor

S f

Kiell..Qhlsseon..........

Naparifortydligande:

Universitetstryckeriet 1997

