
L U L E Å I

U N I V E R S I T Y

O F T E C H N O L O G Y

1997:18

DOCTORAL THESIS

USABILITY WORK AND INDUSTRIAL

SYSTEM DEVELOPMENT

TOMMY NORDQVIST

"Fly before you buy"
Voss, 1993

Department of Human Work Sciences
Division of Engineering Psychology

1997:18 • ISSN: 1402 - 1544 • I S R N : L T U - D T - 1997/18 - - SE

Doctoral Thesis 1997:18

Usability Work and Industrial System Development

by

Tommy Nordqvist

Division of Engineering Psychology
Department of Human Work Science

Luleå University of Technology

Akademisk avhandling / Dissertation
för avläggande av filosofie doktorsexamen i ämnet teknisk psykologi,
som med vederbörligt tillstånd av tekniska fakultetsnämnden vid Luleå

tekniska universitet kommer att offentligen försvaras,

i sal F341 vid Luleå tekniska universitet
tisdag den 3 juni 1997 kl 13.00.

Handledare / Supervisors
Prof Kjell Ohlsson, Luleå tekniska universitet

Prof Jonas Löfgren.IDA Linköpings universitet

Fakultetsopponent / Faculty opponent
Prof Martin Helander,IKP Linköpings universitet

Betygsnämnd / Examination board
Prof Berndt Brehmer, FHS, Stockholm

Docent Hans Marmolin, UI-design, Linköping
Prof Houshang Shanavaz, Luleå tekniska universitet

Ordförande / Chairman
Prof Kjell Ohlsson

ABSTRACT

This dissertation is about usability work and industrial system development. The

first part of the thesis utilizes present descriptions of the industrial system

development process to illustrate activities performed.

Following this description is a definition of usability work, together wi th a number

of methods and techniques deemed suitable for usability work. The methods and

techniques are analyzed wi th respect to when they should be used, how to utilize

them, outcome f r o m utilization, need for supplementing methods, practical

experiences and my own experiences f r o m usability work and industrial system

development.

Based on these descriptions and analyses a preliminary model for integration of

usability work and industrial system development, together w i th some preliminary

experiences, are presented. Use and outcome f rom the application of usability work

methods are described for each system development activity.

Next is need for further and more comprehensive integration of usability work and

industrial system development discussed. Also traditional computer support in

system development is described followed by a brief discussion of its relevance for

usability work. A number of simple computer-based tools aimed at studying the

possibility to support development of computer systems, primarily user interface

development, are then presented.

Finally, possible future work is discussed, mainly focused on computer supported

usability work.

CONTENTS

P R E F A C E

A C K N O W L E D G M E N T S

1. I N T R O D U C T I O N 1

2 . I N D U S T R I A L S Y S T E M D E V E L O P M E N T : A N O V E R V I E W 4

2.1 A C T I V I T I E S IN INDUSTRIAL S Y S T E M D E V E L O P M E N T 4

2.1.1 Identification of Need 5
2.7.2 Identification of User Requirements (Requirements Definition) 6
2.1.3 Overall Design of the System 12

2.1.4 Identification of Software Requirements (Software Requirements Analysis) 12
2.1.5 Software Design 13
2.1.6 Implementation and Unit Testing 14
2.1.7 Integration and Testing 14
2.1.8 Operation and Maintenance 15

2.2 CONCLUSIONS 16

3 . U S A B I L I T Y W O R K 17

3.1 A DEFINITION 17

3.2 E X A M P L E S O F M E T H O D S / T E C H N I Q U E S FOR U S A B I L I T Y W O R K 18

3.2.1 Business Analysis (RASP) 20
3.2.2 Task Analysis, (KAT) 26
3.2.3 Usability Specification 33
3.2.4 Heuristic Evaluation 35
3.2.5 Cognitive Walkthrough 38
3.2.6 Use of Guidelines and Styleguides 41
3.2.7 Prototyping 44
3.2.8 Contextual Design 49
3.2.9 Use Testing (Usability Testing) 52

3.3 CONCLUSIONS 5 6

3.3.1 Business Analysis (RASP) 5 7
3.3.2 Task Analysis (KAT) 60
3.3.3 Usability Specification 63
3.3.4 Heuristic Evaluation 66
3.3.5 Cognitive Walkthrough 69
3.3.6 Use of Guidelines and Styleguides 71
3.3.7 Prototyping 73
3.3.8 Contextual Design 7 6
3.3.9 Use Testing (Usability Testing): 78

4. U S A B I L I T Y W O R K A N D I N D U S T R I A L S Y S T E M D E V E L O P M E N T 81

4.1 INTRODUCTION 81

4.2 INTEGRATION O F U S A B I L I T Y W O R K A N D INDUSTRIAL S Y S T E M D E V E L O P M E N T : A P R E L I M I N A R Y

M O D E L 83

4.3 A N E X A M P L E O F INTEGRATION O F U S A B I L I T Y W O R K AND INDUSTRIAL S Y S T E M D E V E L O P M E N T . 84

4.3.1 Identification of Need 84
4.3.2 Identification of User Requirements (Requirements Definition) 86
4.3.3 Overall Design of the System 88
4.3.4 Identification of Software Requirements (Software Requirements Analysis) 89
4.3.5 Software Design 90
4.3.6 Implementation and Unit Testing 91
4.3.7 Integration and Testing 93
4.3.8 Operation and Maintenance 94

4.4 CONCLUSIONS 9 4

4.4.1 The Model 94
4.4.2 Experiences 95

5. T H E N E E D F O R E X T E N D E D I N T E G R A T I O N O F U S A B I L I T Y W O R K A N D I N D U S T R I A L

S Y S T E M D E V E L O P M E N T 1 0 0

5.1 INTRODUCTION 100

5.2 F U R T H E R INTEGRATION O F U S A B I L I T Y W O R K 101

5.2.1 Role of Business Analysis 103
5.2.2 Role of Task Analysis 104
5.2.3 Role of Usability Specification 105
5.2.4 Roles of Heuristic Evaluation, Cognitive Walkthrough (Jogthrough), Use of Guidelines

and Styleguides 106
5.2.5 Role of Prototyping 106
5.2.6 Role of Contextual Design 107
5.2.7 Role of Use Testing 107

5.3 ADDITIONAL M E T H O D S N E E D E D 107

5.4 F U R T H E R D E V E L O P M E N T O F M E T H O D S FOR U S A B I L I T Y W O R K 108

5.5 P R A C T I C A L E V A L U A T I O N 110

5.6 T H E N E E D FOR C O M P U T E R SUPPORT IN U S A B I L I T Y W O R K 111

6. T R A D I T I O N A L C O M P U T E R S U P P O R T I N S Y S T E M D E V E L O P M E N T 1 1 4

6.1 INTRODUCTION 114

6.2 C A S E S Y S T E M S 114

6.2.1 Analysis and Design Workbenches 118
6.2.2 Programming Workbenches 119
6.2.3 Testing Workbenches 120
6.2.4 Conclusions 121

6.3 U S E R I N T E R F A C E T O O L S 121

6.3.1 Toolkits 123
6.3.2 Interface Builders 123
6.3.3 User Interface Management Systems 123
6.3.4 Application Frameworks 126
6.3.5 Conclusions 126

6.4 TRADITIONAL C O M P U T E R SUPPORT IN S Y S T E M D E V E L O P M E N T AND ITS R E L E V A N C E FOR

U S A B I L I T Y W O R K 129

7. S U M M A R Y O F T H E S T U D I E S 1 3 2

7.1 INTRODUCTION 132

7.2 S T U D Y 1: A K N O W L E D G E - B A S E D T O O L FOR U S E R I N T E R F A C E E V A L U A T I O N AND ITS INTEGRATION

I N A U T M S 1 3 2

7.2.1 A Knowledge-Based Tool for Evaluation of User Interfaces, the KRI System 132
7.2.2 Integration with a UIMS 134
7.2.3 Conclusions 136

7.3 S T U D Y 2: K N O W L E D G E - B A S E D E V A L U A T I O N AS D E S I G N SUPPORT FOR G R A P H I C A L U S E R

I N T E R F A C E S 1 3 6

7.3.1 The KRI/AG System 137
7.3.2 Conclusions 141

7.4 S T U D Y 3 : T U N E : A T O O L F O R U S E R I N T E R F A C E E V A L U A T I O N 142

7.4.1 TUNE 143
7.4.2 Conclusions 147

7.5 S T U D Y 4: C O M P U T E R SUPPORT FOR U S E R R E Q U I R E M E N T E V A L U A T I O N IN S Y S T E M D E V E L O P M E N T 148

7 5 . 7 TURE 148
7.5.2 Conclusions 757

7.6 C O N C L U D I N G R E M A R K S 152

8. F U T U R E W O R K 1 5 5

8.1 E X E C U T I V E SUMMARY O F W O R K P E R F O R M E D 156

8.2 C S U W IN INDUSTRIAL S Y S T E M D E V E L O P M E N T 157

8.2.1 Introduction 157
8.2.2 Identification of Need 158
8.2.3 Identification of User Requirements (Requirements Definition) 160
8.2.4 Overall Design of the System 163
8.2.5 Identification of Software Requirements (Software Requirements Analysis) 165

8.2.6 Software Design 166
8.2.7 Implementation and Unit Testing 169
8.2.8 Integration and Testing 170
8.2.9 Operation and Maintenance 170

8.3 SUMMARY 171

R E F E R E N C E S 1 7 3

PREFACE

One of my advisors wrote in his thesis the fol lowing "Why do we go through

graduate school and write dissertations?" He also gave an answer, " i t is

simply a pleasure." Although I can agree wi th him, at least most of the time,

my motive were more practical.

In my work as a usability consultant, customers are often focused on issues

concerning user interface design. Most of the time they want advice on

specific design proposals. They seldom ask for advice concerning the use of

the system f r o m a user, task or business perspective. Also, the interest in

testing the usability of a developed or proposed system is minimal. This fact

confused me, and I spent a lot of time wondering why the profession I

represent is considered to be able to support industrial system development

in such a restricted way. Therefore, I started investigate the literature and

discuss w i t h colleagues, to get an understanding of the process of industrial

system development and to deepen my knowledge concerning possible

contributions f r o m the human-computer interaction discipline (HCl). The

human-computer interaction discipline is defined as 'the discipline concerned

wi th the design, evaluation, and implementation of interactive computing

systems for human use and w i t h the study of major phenomena surrounding

them' (ACM Special Interest Group on Computer-Human Interaction

Curriculum Development Group, cited in Hix, Finlay, Abowd, Beale, 1993, p.

xi).

From this work, I realized that other professionals thought that much of the

knowledge concerning user, task and business issues was to be found in other

disciplines, not f rom usability experts and the H C l discipline. As I am

convinced that H C l can contribute to industrial development of computer

systems also w i t h respect to these issues, especially if the computer systems

are going to support the work tasks performed by computer system users, I

started to study how H C l could contribute.

One of the first objectives was to understand the industrial system

development process. One reason for this was that I thought i t was necessary

to understand what to contribute to. Another reason was the necessity to

understand when and how to contribute. Another goal was to investigate

how H C l could contribute in a practical way. If not possible to show (and

ideally proof) that H C l methods and knowledge can be of value, it is hard to

convince managers and developers that it should be used. A third goal (from

the beginning the main goal) was to develop some simple tools to illustrate

the possibility to support industrial system development wi th H C l

knowledge.

After I had started my work, I realized that my first and second goal was

much more diff icult to f u l f i l l than I imagined f rom the beginning. The major

reason for this was that industrial system development was more complex

than just design, development and evaluation, as i t is possible to conclude

when reading some of the human-computer interaction literature. Another

reason was that much of the HCl literature did not discuss the matter of how

and when to contribute to the industrial system development process in

enough detail.

These reasons resulted in that my work focused on the two first goals, and not

as predicted on illustration of simple tools for bringing H C l knowledge into

industrial system development. Another result easily noticed is that the thesis

is not a monograph and not a collection of papers, it is something between.

Finally, the thesis is also written f r o m a practitioners point of view. M y

interest is mainly in investigating how HCl methods and knowledge can

contribute to industrial system development. Hopefully, this thesis also can

remind us of the ideas of Dreyfus (1955, cited in Carroll & Rosson, 1985, p. 12-

13).

ACKNOWLEDGMENTS

Of course, there are many people and organizations who have contributed to

this work. I w i l l try to mention them all. Should I forgot someone, I give my

apologies.

First of all, my advisors Kjell Ohlsson and Jonas Löwgren. Without their

support and encouragement, I would never had finished, or started, this

expedition into the academic world.

Leonard Adelman, my co-advisor, gave me valuable advice concerning both

some of the articles presented, and many of the ideas expressed in the work.

M y fr iend and colleague Per Asplund contributed to the work in many ways,

especially in discussions of many of the ideas, and by implementing some of

the tools mentioned. To be honest, some of the ideas presented here, are also

his.

M y colleagues Peter Ericsson and Johan Strand contributed both practically

and theoretically to the work, for example, in implementing some of the tools

and in discussions concerning ideas presented.

Staffan Löf has shared his ideas concerning development of computer systems

w i t h me, resulting in many interesting discussions.

Also my former colleagues at Enator Telub AB, Björn Bergström, Håkan

Enqvist, Kaj Lethovaara contributed to this work.

A l l the people involved i n some way and not mentioned earlier. Björn Peters,

Sture Hägglund , Hans Marmolin, Göran Forslund, Ingemar Widegren, Ulr ika

Laurén, Karl-Erik Hedin, Lennart Ohlsson, Leif Larsson, Kent Lundberg,

Kristian Sandahl, Joakim Karlsson, Nils-Erik Gustavsson, Stefan Cronholm.

Steve Andriole inspired much of my thinking by the ideas and experiences

expressed in many of his books.

Jonathan Stubbs had the patience (and necessary knowledge) to read the

thesis and to give me advice on how to improve my English.

The Swedish National Board for Industrial and Technical Development

(NUTEK), Enator Telub AB, the Defence Material Administration (FMV), and

my family provided necessary funding. Karl-Einar Sjödin, NUTEK, Per-Göran

Nilsson, Enator Telub AB, Anders Mattson, FMV, and honorable wife, thank

you. Also, National Defense Research Establishment (FOA) contributed

funding to some of the studies, thank you Ingemar Widegren.

A special thanks to my family. My wife Marianne and our children Jenny and

Johan supported me in many ways. Without this support, and their patience

w i t h my odd working hours, the work had never been done.

Finally, I want to thank my mother and father. Evidently, without them, this

had never been possible.

Värna, April 1997

Tommy Nordqvist

1

1. INTRODUCTION

To develop computer systems is i n many situations both difficult and time

consuming, requiring expertise in many disciplines. The reason for this is the

need to understand, for example, the work to be supported by a computer

system, the technology or technologies to be utilized, and the process

necessary to develop the computer system. These demands have resulted in a

number of efforts directed to development of system development methods

and supplementing activities. Different disciplines have also contributed, for

example, system engineering, system analysis, software engineering and H C l .

However, much work seem to have been performed purely wi th in a

discipline, w i t h only minor interest i n possible contributions f r o m other

disciplines. This is especially true if the work is studied f rom an industrial

system development perspective. For example, work wi th in H C l has mainly

focused on user interface issues, different methods for identifying and

analyzing user and task aspects w i t h respect to human-computer interaction,

different methods for making users more active participants in development,

and alternative proposals concerning user centered system design. Also, a

number of the efforts have related their work to oversimplified descriptions of

the system development process. Resulting in that HCl expertise and methods

are not utilized to its potential in industrial system development. This fact has

resulted i n that computer systems developed often do not f u l f i l l user

requirements, (see, for example, Christel & Kang, 1992; Lederer & Prasad,

1992; Raghavan, Zelesnik & Ford, 1994).

As a preliminary attempt to describe how methods and tools developed

wi th in H C l and other related disciplines can contribute, the present thesis

exemplifies how different methods and tools can be integrated in industrial

system development. Aiming at increased likelihood that the system

developed being usable. Reason for this attempt is the issues mentioned

2

above, and also my experience that questions concerning the user and use of

computer systems are not given priority, or are indeed forgotten in

connection wi th development of computer systems, (see also Andriole, 1990;

Näslund, 1994; Palmer, 1990).

Chapter 2 presents a superficial description of activities traditionally

perceived as components i n the industrial system development process. The

basis for this description is different standards for system development,

describing activities supposed, or required, to be performed in industrial

system development. The chapter also presents some preliminary conclusions

concerning handling of user requirements i n connection w i t h the system

development process.

In Chapter 3, a definition of usability work is presented. From this definition,

a small number of usability work methods are briefly described and analyzed.

The methods presented are analyzed wi th respect to authors views on when

they are supposed to be used, if any other methods has to be carried out as a

supplement, practical experiences, and my own experiences f r o m industrial

system development and usability work.

In Chapter 4, my interpretation of when different methods for usability work

shall be used is presented. Also, a preliminary model for integrating usability

work and industrial system development is delineated. This model is

followed by a brief example on how to integrate methods for usability work

wi th different activities in the system development process, and how the

results of the methods can be used in subsequent usability work and system

development activities. The model is also elaborated further to illustrate how

different methods for usability work can be integrated in the system

development process. Finally, preliminary experiences f r o m practical

usability work in industrial system development are presented.

3

From these experiences, a simple analysis concerning the need for further

integration of usability work in the system development process, is presented

in Chapter 5. Here, need for additional methods, further development of

methods presented, practical evaluation of methods, and need for computer

support are discussed.

Chapter 6 gives a brief review of traditional computer support available in

industrial system development, together wi th a simple analysis of its

relevance for usability work. Mentioned in this chapter are CASE systems and

User Interface tools.

Chapter 7 presents a summary of the four studies in the thesis, supplemented

w i t h a few concluding remarks. The studies focus on computer support for

evaluation of user interfaces and user requirements fulfi l lment.

The thesis concludes wi th a discussion of possible need for computer

supported usability work (CSUW), and presents some preliminary ideas

concerning possible computer support in Chapter 8.

4

2. INDUSTRIAL SYSTEM DEVELOPMENT: AN OVERVIEW

2.1 Activities in Industrial System Development

This section contains an overview of activities performed in industrial system

development. From the system development standards IEEE P1233-1993

(1994), IEEE std 830-1993 (1994) and MILSTD 498 (1994), the fol lowing

activities have been identified as parts of the system development process:

• identification of need,

• identification of user requirements (requirements definition),

• overall design of the system,

• identification of software requirements (software requirements

analysis),

• software design,

• implementation and unit testing,

• integration and testing,

• operation and maintenance.

These activities can, to a greater or lesser extent, also be found in other system

development literature (see, for example, Andersen, Kensing, Lundin,

Mathiassen, Munk-Madsen, Rasbech & Sörgard, 1990; Andriole, 1990; Davis,

1990; 1993; Sage, 1992; Sage & Palmer, 1990; Sommerville, 1992; 1996; U.S.

Department of Defense, 1985). System development standards are point of

departure in describing industrial system development, as they are guidelines

commonly used to describe necessary activities during system development.

The present description does not suppose any specific method of system

development; i t only identifies and briefly describes different activities

performed in industrial system development. The role of project management

5

in successful system development is not considered in this description. In

Figure 1 below, the system development process and system development

activities are illustrated. I t is important to note that i n this model there is no

rigid separation between different activities, often there are iterations wi th in

and between them (IEEE std 830-1993,1994).

6 »

,nts

a n d unit testin

A O « and maintenanc

Figure 1: Activities in industrial system development

2.1.1 Identification of Need

The system development process begins wi th a need or idea presented by a

"user" ("user" is here used as a general term for all people contributing, for

example, end-user, customer, business people) to a "developer" ("developer"

or "system developer" is used here as a general term for all the people

involved i n development of a system. For a discussion of the different

qualifications needed see, for example, Andriole, 1990). This can be an

identified need for specific computer support or an idea for improvement of a

business process. This idea or need is often expressed in general terms (see,

for example, Sommerville, 1992). Usually it is necessary to help the user

identify and specify actual needs or ideas f rom general ideas or needs.

6

2.1.2 Identification of User Requirements (Requirements Definition)

Identification of need is followed by identification of user requirements (or

requirements definition). The system developer, together wi th the user,

identifies and defines the requirements for the future computer system. A

detailed analysis is performed to establish exact needs. The goal of this

activity is to identify all user requirements for the future computer system

and to describe these requirements in a language understandable by both

developers and users (IEEE P1233-1993,1994).

According to IEEE P1233-1993 (1994), the identification of user requirements

activity is iterative and consists of the following four sub-activities:

• "identify requirements f rom the customer, the environment, and the

experience of the technical community,

• build well-formed requirements,

• organize the requirements into a SyRS (System Requirements

Specification),

• present the SyRS in various representations for different audiences, "

(p. 17).

These sub-activities should not be seen as sequential. In most cases, there are

iterations between them. Below, is a short description of the above mentioned

sub-activities.

Identification of requirements.

With the needs or ideas identified in the identification of need activity as a

basis, the requirements of the system to be developed are identified and

defined. The purpose of this sub-activity is to identify every requirement,

7

check that each requirement is defined only once, and that no requirements

are omitted.

According to IEEE P1233-1993 (1994), i t is important that the process of

identifying and defining requirements is managed to ensure the following:

• "the process is goal directed and aimed at the production of a set of

requirements,

• the system boundaries are defined,

• all requirements are solicited, fairly evaluated, and documented,

• requirements are specified as capabilities and that qualifying

conditions and bounding constraints are identified distinctly f r o m

capabilities,

• requirements are validated, or purged if invalid, f r o m the requirements

set,

• consideration is given to consistency when many individuals

('authors') may be contributing to the development of the requirements

set,

• the developing requirements set is understood, at an appropriate level

of detail, by all individuals participating in the process," (p. 19).

There are a number of techniques for identification of requirements.

Mentioned i n IEEE P1233-1993 (1994) are:

• "structured workshops,

• brainstorming or problem-solving sessions,

• interviews,

• surveys/questionnaires,

• observation of work patterns (e.g., time and motion studies),

• observation of the system's organizational and political environment

(e.g., sociogram),

8

• technical documentation review,

• market analysis,

• competitive product assessment,

• reverse engineering,

• simulations,

• prototyping,

• benchmarking processes and products," (p. 19).

Build well-formed requirements.

According to IEEE P1233-1993 (1994), this sub-activity is carried out by:

• "ensuring that each requirement is a necessary, short, definitive

statement of need (capability, constraints),

• defining the appropriate conditions (quantitative or qualitative

measures) for each requirement. Avoid adjectives like resistant or

industry wide,

• avoiding the requirements pitfalls,

• ensuring the readability of requirements. This entails:

1. simple words/ phrases/concepts,

2. uni form arrangement and relationship,

3. definition of unique words, symbols and notations,

4. the use of language and symbology shall be grammatically correct,"

(p. 20).

9

Organization of requirements into a System Requirements Specification

(SyRS).

I n this sub-activity, the set of requirements is structured by relating the

requirements to each other according to some method. According to IEEE

P1233-1993 (1994), this activity is characterized by the following:

• "searching for patterns around which to group requirements,

• utilizing experience and judgment to account for appropriate technical

approaches,

• utilizing creativity and intuition to generate alternative approaches and

to prioritize requirements,

• defining the requirements properties,

• defining the requirements attributes," (p. 21).

There are many strategies used to organize requirements into an orderly set.

Most often utilized is gathering requirements into a service (capability)

hierarchy, where general services are divided in subordinate requirements.

Another method is to use network links (for example, hypertext), which show

relations between requirements. According to IEEE P1233-1993 (1994), the

fol lowing relations can be maintained in a system requirements specification:

• "hierarchical dependencies,

• events,

• information/ data,

• physical or abstract objects,

• functions," (p. 21).

10

Presentation of requirements i n the system requirement specification in

different ways for different audiences.

In this sub-activity, the optimal way (alternatively, optimal ways) to

communicate requirements to all individuals who need to understand,

review, accept, or use the system requirement specification is identified.

According to IEEE F1233-1993 (1994), one description is not enough in most

instances, (see also Sommerville, 1992), because:

• "the customer and technical community usually have different cultures

and languages; thus the same system requirements may have to be

presented differently to the technical or customer communities,

• retrieval of specific information is difficult in some representations,

• representation of interactions can be difficult to do in some

representations,

• relating information in one place to information in another place can be

diff icult in some representations," (p. 21).

Therefore, i t is important to present the system requirement specification i n

different ways, taking into consideration audience needs and background

knowledge. For example, a general document including descriptive text and a

selected set of high-level requirements, can be presented to customer staff

responsible for project realization. For customer staff responsible for

acceptance of the requirements, a more detailed document can be presented.

For the design team, a document including low-level requirements can be

presented.

11

Methods for describing requirements can, according to IEEE P1233-1993

(1994), be one or a combination of the following:

• "textual

- paper,

- electronic,

• model

- physical,

- symbolic,

- graphical,

- prototype," (p. 22).

Definition of requirements usually continues after the system requirement

specification is approved. In large and complex system development projects,

it is likely that the first approved version of the system requirement

specification has overlooked requirements, and/or misinterpreted needs or

ideas. Knowledge concerning requirements also evolves in the process of

developing the system. Therefore, i t is necessary to iterate the process of

requirements definition throughout the system development process. The aim

being to correct deficiencies and/or supplement the system requirement

specification wi th new requirements, and to enhance future computer system

qualities (see, for example, Andriole, 1996; Sage, 1992; Workshop Proceedings,

1991, for a discussion of requirement definition and the development of

requirements).

12

2.1.3 Overall Design of the System

When the user requirements are defined and approved, system design

follows. In overall system design, the focus is on issues relative to allocation

of services (capabilities) to different parts of a system. Besides these general

system design decisions, the system architecture is delineated (MILSTD 498,

1994; Sommerville, 1992). In other words, system parts, interfaces, and

communication between parts, are identified and defined on a high level.

Allocation of services to the computer system and to the user, may also be

carried out (IEEE P1233-1993,1994).

2.1.4 Identification oj Software Requirements (Software Requirements Analysis)

After system design, identification of software requirements (software

requirements analysis) follows. User requirements are translated into a

representation suitable for software development. This representation may be

f low diagrams, object models, etc., (Andriole, 1990; Sommerville, 1992).

Main issues handled in identification of software requirements are, according

to IEEE std 830-1993 (1994):

• "functionality. What is the software supposed to do?,

• external interfaces. How does the software interact w i th people, the

system's hardware, other hardware, and other software?,

• performance. What is the speed, availability, response time, recovery

time of various software functions, etc.?,

• attributes. What are the portability, correctness, maintainability,

security, etc., considerations?,

13

• design constraints imposed on an implementation. Are there any

required standards in effect, implementation language, policies for

database integrity, resource limits, operating environment(s), etc.?,"

(P-4).

The outcome of this activity is a written Software Requirements Specification

(SRS) used as the main reference when designing software.

2.1.5 Software Design

In this activity, different functions are allocated to different software modules

and software is structured in a convenient way (object-oriented design,

functional design). According to MILSTD-498 (1994), focus is on definition

and documentation of:

• general design decisions concerning modules,

• architectural design for each module (identification of software units in

modules/components, interfaces and communication between units),

• detailed module/component design.

According to IEEE std 830-1993 (1994), the fol lowing is specified (see also

Sommerville, 1992):

• partition of the software into modules,

• allocation of functions to modules,

• description of information or control f low between modules,

• design of data structures,

• design of algorithms.

14

2.2.6 Implementation and Unit Testing

Software design is followed by implementation and unit testing. This activity

consist mainly of implementation of different software units (modules),

according to the software design, and testing of these units (MILSTD-498,

1994).

According to MILSTD-498 (1994), the fol lowing activities are performed

during implementation and unit testing:

• software implementation (development and documentation of

software in accordance wi th module design),

• preparation for unit testing, including development of test cases (input,

expected results and evaluation criteria), test procedures and test data

necessary to test the software in each software unit. Test cases shall

encompass all aspects in module design,

• performance of unit tests (testing of each software module),

• revision and, if necessary, repeated testing (including necessary

software revisions, retesting of the software and update of relevant

software documentation),

• analysis and documentation of the results f rom unit testing (analysis of

test results, documentation of tests and analysis results).

2.1.7 Integration and Testing

Integration and testing (also called integration and system testing; see, for

example, Sommerville, 1992), according to MILSTD-498 (1994), consist of

software integration and testing of integrated software to check that

integrated software works as specified. This process is iterated until all

software is integrated and tested.

15

According to MILSTD-498 (1994), the following activities are performed in

integration and testing:

• preparation for unit integration and testing (development of test cases,

in terms of inputs, expected results and evaluation criteria, and

development of test procedures and test data necessary for the

integration and testing),

• performance of unit integration based on software design, and testing

in accordance wi th test cases and test procedures,

• revision and, if necessary, repeated testing (including necessary

software revisions, retesting the software, and updating relevant

software documentation),

• analysis and documentation of unit integration and test results

(analysis of unit integration, test results, documentation of tests and

analysis results).

2.1.8 Operation and Maintenance

When the computer system is installed and acceptance tests are completed,

the system is set in operation. Deficiencies recognized when using the

computer system are resolved, and the computer system is further developed

to meet business requirements. According to Sommerville (1992), this is often

the most time-consuming activity. He divides maintenance into three types:

perfective, adaptive and corrective maintenance. Perfective maintenance is

maintenance necessary to develop the computer system further, without

changing its functionality. Adaptive maintenance is maintenance necessary to

adjust the computer system to changes in the environment. Corrective

maintenance is maintenance necessary to correct deficiencies i n the computer

system that were not found during unit and system testing.

16

2.2 Conclusions

In the brief description of the process of system development presented

above, user requirements are mentioned in the beginning of the process, i n

connection wi th identification of need, and identification of user

requirements. They are not mentioned explicitly i n subsequent activities.

Accordingly, i t is difficult to see how to guarantee that original user

requirements are addressed throughout the system development process. As

can be noticed in the description above, translations of user requirements are,

for example, performed in conjunction w i t h identification of software

requirements and software design. This results in user requirements being

expressed in a totally different (and more restricted) language when

programmers are going to implement them. If original user requirements are

not considered and presented in this situation, there is a risk that

programmer interpretations of requirements are more influenced by their

own experiences than by user requirements.

As can be noticed in this Chapter, the identification of need activity is

described very superficially in the literature and little guidance is provided

for the people that are to perform that activity. This activity seems to be

superficially described also in the Software Engineering and Human

Computer Interaction literature (see, for example, Dix, Finlay, Abowd &

Beale, 1993; Nielsen 1993; Näs lund 1994; Sommerville, 1992).

Also found in the literature surveyed, is that the original user requirements

are divided in functionality and user interface (see sub-section 2.1.4). This

separation is still present in software design, implementation and unit testing,

and integration and testing. In the developed system then, functionality and

the user interface is hopefully unified, rather than being iteratively integrated

throughout all system development activities.

17

3. USABILITY WORK

3.1 A definition

Usability work, as described here, comprises those activities that support

development of usable computer systems. From the definition presented in

Löwgren (1993), (other definitions can be found in Adler & Winograd, 1992;

Card, Moran & Newell, 1983; Nielsen, 1993; Whiteside & Wixon, 1987; Woods

& Roth, 1988):

"usability is a result of Relevance, Efficiency, Attitude and Learnability

(REAL).

• the relevance of a system is how well i t serves the users' needs,

• the efficiency states how efficiently the users can carry out their tasks

using the system,

• attitude is the users' subjective feelings towards the system,

• the learnability of a system is how easy it is to learn for initial use and

how well the users remember the skills over time," (p. 52),

usability work is defined as those activities that increase the likelihood that

requirements related to relevance, efficiency, attitude and learnability are

fu l f i l led in the computer system. Hence, usability work are those activities

that contribute to:

• definition of the user requirements, in terms of services the system

should deliver,

• definition of how, and to what extent, these services should support the

user performance of work tasks,

• users perceiving the system to be good,

• easy learning and that knowledge is there for later access.

18

In this definition, development of the user interface and system services are

not separated. Even if these activities can be separated (as is often the case in

current system development practices), i t is in my opinion necessary to treat

them as supplementary perspectives both influencing computer system

usability.

3.2 Examples of Methods/Techniques for Usability Work

From this definition of usability work, there are many methods and

techmques that may be referred to as parts of usability work (for the sake of

simplicity, the term method is used to mean both methods and techniques). In

the sub-sections of 3.2, examples of these methods are presented (The

interested reader can f ind more methods and techniques in Dumas & Redish,

1994; Nielsen, 1993; Nielsen & Mack, 1994; Preece, Rogers, Sharp, Benyon,

Holland & Carey, 1994, part 6). The basis for choosing the methods described,

f r o m the larger number of possible choices is that each fulf i l l s one or more of

fol lowing requirements:

• i t should focus on some or more of the activities i n the system

development process described in Chapter 2,

• i t should have been used in commercial system development,

• i t should be possible to integrate (at least theoretically) wi th other

methods,

• separate parts of the method should be possible to use individually

and/or together w i t h other methods,

• the methods should make continuous and iterative usability work

practical throughout the system development process.

The reason for the first requirement is that the method should be possible to

utilize i n some of the system development activities. The motive for the

19

second requirement is the value of practical experience f rom utilizing the

method. The third requirement origins f rom my experience that a single

method alone is not enough to address all usability issues. I t is necessary to

see methods for usability work as tools in a tool box, to be used together in

suitable combinations. For this to be possible, i t is often necessary to integrate

them in some way, to support each other. Requirement four has the same

basis as requirement three. The reason i t is presented as a separate

requirement, is that for usability work to be efficiently accomplished, i t is

sometimes necessary to adapt methods to practical system development

demands. This could mean performing less complex forms of usability work

to be able to deliver timely results. The f i f t h requirement is perhaps the most

important. If usability work is not performed continuously during the system

development process, there is a risk that user and use perspectives "are lost"

in one or more system development activities. From my experience (see also

Andriole, 1990; Nielsen, 1993), i t is evident that for successful system

development to occur, these perspectives have to influence the entire system

development process.

W i t h these requirements as a basis for selection, one method for business

analysis and one method for task analysis, together w i t h the methods

usability specification, heuristic evaluation, cognitive walkthrough, use of

guidelines and styleguides, contextual design, prototyping and use testing

(usability testing) are chosen. The reason why one method for business

analysis (RASP), and one method for task analysis (KAT) have been chosen, is

mainly that the purpose of this section is to illustrate how different usability

work methods are performed and their outcome. It is enough to choose two

out of all available methods to show applicability. However, this should not

be seen as favoring these two methods over other methods for business and

task analysis. The last statement is of course true also for other methods

selected. Note, the methods selected here shall not be interpreted as

discarding the methods mentioned in conjunction w i t h description of

20

industrial system development (Chapter 2). Usability work methods can be

considered as supplementary.

3.2.1 Business Analysis (RASP)

RASP (Requirements Analysis and Specification methodology) is a method

used for business analysis. (Other terms used for this kind of activity is

Business Process Modeling, Hughes 1996; Business Process Reengineering,

Hammer & Champy, 1993; Davenport, 1993). In RASP, people f rom business

systematically map and describe present business, analyze possible needs for

changes, and define future business (Telub AB & System Development

Associates, 1990; Telub AB, 1995). (Other methods for business analysis that

may alternatively be used in place of RASP can, for example, be found i n

Goldkuhl & Röstlinger, 1988; Willars, 1993a, b). Business analysis can result i n

and serve as information for:

• development of a computer system,

• development of organization,

• development of the staff i n the organization.

The focus of RASP is mainly a functional perspective, where business is

structured in a way that reflects the task oriented structure in the business

studied. However, according to RASP, this perspective alone is not enough to

describe and analyze a business. Therefore, RASP incorporates a human

perspective (the business people) in parallel w i th the task oriented

perspective. The functional perspective is considered at the model level and

the human perspective is considered at the background level.

21

I n RASP, modeling of business is important, therefore a generic business

model has been developed. With the generic model as a framework, business

is investigated, described, analyzed and developed.

The main components wi th in the generic business model are:

• purpose,

• product/ products,

• market/markets,

• resource/resources,

• supplier/suppliers,

• administrative instruments and reports,

• goal/goals,

• responsible people,

• business regulations.

Most important i n the generic business model is the purpose of the business

(the function). From this, concrete and abstract products are realized, which

are aimed at one or more markets. The products can be a main product (the

product realizing the purpose), by-products (one or more products not

realizing the purpose, but useful for the business in some way), or other

products (one or more products that must be handled by the business, but not

useful for the business). To deliver the product or products, the business

needs different resources. These resources are delivered by one or more

suppliers. The resources can be resources attached to the product (resources

that are part of the product), or resources attached to the process (resources

used to develop the product), for example, resources in the fo rm of

knowledge, personnel, money or information. For management of business,

different kinds of administrative instruments and reports are used. These

22

instruments and reports can be plans, policies, orders, messages, result

reports etc. For the purpose of the business to be fulf i l led, there must be

business goals. Also people responsible for the business are important to

identify. Business is also influenced by external business regulations, for

example, instructions, guidelines and conventions, that the business has to

follow.

A business analysis, according to RASP, consists mainly of the fol lowing

activities:

• definition of the business analysis project,

• description of present business,

• need analysis,

• business development.

In the definition of project activity, the business analysis project is defined.

Here, for example, project constraints, activities to focus on (description of

present business, need analysis, business development), necessary members

in the project, expected results, resources needed, and responsible for the

project are defined.

In the description of present business activity, RASP experts use the RASP

method to assist business staff in developing a description of the present

business. First, the purpose of the business is identified and described. Then

other aspects essential for the business, according to the RASP generic

business model, are identified and described. If the business is complex,

partitioning into sub-businesses, or sub-functions, is carried out. These

different sub-businesses are then described according to the generic business

model.

23

To describe present business, two supplementing modeling techniques are

used. In RASP they are called functional modeling (or process modeling) and

concept modeling (or object modeling). Using the functional modeling

technique, present business, delivered products, resources needed, and the

other components in the generic model are described. Using the concept

modeling technique, different concepts used in the business are described.

In functional modeling, two supplementary ways to describe the business are

used. The first is a written notation, supported by forms for description of

functions. The second is a graphical notation, supported by function graphs.

The wri t ten description is a complete description of the business studied. The

graphical description is a summary description, focusing on the business

relation to suppliers and markets. The graphical description is also used to

identify sub-functions (sub-businesses) in the business. Sub-functions are

described in wri t ing and by function graphs. Sub-functions can be divided

further, unt i l an appropriate level of description has been reached. In concept

modeling, a graphical object-oriented technique is used, where concepts are

described through definition of their type instances and inherited parts. In

Figure 2 and 3 below, is an example of a written and function graph business

description.

24

Function: Company staff

Responsible: Chief of company

Purpose: Managing the company

Main product: Orders to platoons

By-products: Information to other companies,

information to commander

Markets: The different platoons in the
company, other companies,

commander.

Resources: Orders, information, staff,
reports, communications.

Suppliers: Commander, platoons in the
company, other units.

Figure 2: A simple example of a written description of a function (business)

Suppliers Business function

Figure 3: A simple example of a function graph

In need analysis, needs and wishes for business change are identified and

described. Needs identified in conjunction wi th description of the present

business are supplemented wi th a systematic analysis of possible change

needs, carried out by business people and RASP experts. Basis for this

analysis are models and documents generated during description of the

25

present business, plus ideas and suggestions voiced by business staff. The

final task i n need analysis is to prioritize change needs and to develop

proposals on how to realize changes.

In business development, the future business is designed and described,

(design alternatives may be included). Business development may take place

on up to three levels; structuring of business, design of functions (business

parts) and design of activities in business. Structuring of business is

performed in order to change the structure of the present business to more

efficiently f u l f i l l the purpose of the business. For example, modification of the

main function or identification of new resources or products. Design of

functions is carried out when there is need to change the content in different

sub-functions. Change of relations between sub-functions, deletion of sub-

functions or creation of new sub-functions may be necessary. Design of

activities is performed when it is necessary to define and describe how sub-

functions are carried out in detail, and to describe the dynamics of this

accomplishment. Design of activities can also include description of resources

to be utilized, when they are to be utilized, who is to do what, and how

different sub-functions w i l l relate to each other.

To support the process of analyzing and describing present business, identify

change needs, and develop proposals of future business, a computerized

support system, MacRASP, may be used. This tool supports documentation,

presentation, and consistency verification of function models and concept

models.

The outcome f r o m RASP is characterized by a detailed description of present

business, a prioritization of change needs, and proposals for future business.

This information can then be used in connection wi th development of a

computer system and/or the organization and/or staff.

26

RASP is, according to the authors, especially suited for identification of

possible needs for development of a computer system and in defining which

part of a business w i l l benefit f r o m support. In this respect, RASP is of

greatest benefit during the initial stage of system development, before

decision about what to develop is made. The RASP analysis provides a basis

upon which to base system development decisions.

3.2.2 Task Analysis, (KAT)

Task analysis is a method for analyzing tasks (for example work tasks). The

original purpose of task analysis was to support selection, training and

education for different work tasks. Task analysis has been extended to include

support of computer systems development, particularly user interface. The

principal components of task analysis are the following three activities

(Bodart, Hennebert, Leheureux, Provot & Vanderdonckt 1994; Diaper, 1989;

Johnson, 1992; Johnson & Johnson, 1991):

• collection of information about task or tasks,

• analysis of the information,

• task modeling.

Johnson and Johnson (1990a, b; 1991) have developed a method for

performing task analysis, KAT (Knowledge Analysis of Tasks). KAT is based

on the TKS theory (Task Knowledge Structures, see, for example, Johnson,

Johnson, Waddington & Shouls, 1988; Waddington & Johnson, 1989a, b for a

description of TKS and its usage in task modeling) and focuses on

identification and analysis of knowledge people possess about specific tasks.

This knowledge is primarily utilized to support development of human-

computer interaction.

27

According to KAT, task analysis consists of the following activities.

Identification of the knowledge people possess about the task or tasks,

analysis of this information, and task modeling.

Before task analysis can be carried out i t is necessary to:

• define the purpose of the analysis,

• identify areas to be considered in the task analysis,

• identify tasks wi th in each area,

• choose task or tasks to be analyzed,

• define information needed,

• identify where information can be gathered,

• decide how information shall be gathered,

• select which individuals to study.

According to KAT, task analysis is performed in the fol lowing way. First is

identification of the knowledge people possess about the task or tasks. To

identify this knowledge, goals and sub-goals necessary for task

accomplishment are identified. Also, task procedures, objects used and

actions taken during task performance are identified.

Suitable techniques for identifying this knowledge are, according to Johnson

(1992):

• structured interviews and questionnaires,

• direct or indirect observation,

• concurrent or retrospective protocols,

• different experimental techniques, for example card sorting, rating

scales, frequency counts.

28

In Figure 4, below, a simple example of the results f rom above mentioned

activities are depicted.

Figure 4: A simple example of results from the identification of knowledge

activity

The information is next analyzed to identify representative, central and

generic task components. The term "representative" meaning that some task

parts are more representative or typical for the task or tasks. The term

"central" meaning components necessary for task performance, wi thout these

components task completion is impossible. "Generic" task components are

components common for a set of tasks within the task domain. Generic

components are identified to minimize variation between tasks that are

similar.

Goal: Overcome the enemy unit(s).
Command own unit(s).
Control own and enemy unit(s).
Give order to own units.

Get information about enemy unit(s) position and action(s).
Get information about own unit(s) position and action(s).
Look at map.

Discuss with intelligence unit.
Write order.

Send order.

Subgoals:

Procedures

Actions:

When task knowledge has been identified and analyzed, task modeling in

TKS terms is performed. In Figure 5 below, a simplified example of a task

model containing goals, sub-goals, procedures and actions is portrayed.

29

Goal: Overcome the enemy unit(s)

Subgoals: Command own unit(s). Control own and enemy unit(s).

Procedures: Get information about own
unit{s) position and action(s):
Give order to own unit(s).

L
Get information about enemy
unit(s) position and action(s).

Actions: Look at map.
Discuss with intelligence unit.

Look at map.
Discuss with intelligence unit.

Write order.

Send order.

Figure 5: A simplified example of a task model

When modeling according to TKS, the model generated contains the

fol lowing parts:

• a goal structure,

• a procedural sub-structure,

• a taxonomic sub-structure.

The goal structure is used to describe relationships between goal states. These

relationships can be hierarchical relations or control relations. Hierarchical

relationships describe how goals are divided in sub-goals. Control

relationships describe how goals and sub-goals are related to each other i n

conjunction wi th task performance.

The procedure sub-structure is used to describe in detail, how a task is carried

out. This sub-structure is directly related to the lowest level in the goal

structure, and describes actions and objects, and the relations between them.

Each procedure is defined by a pre-condition that defines the context that

must exist before the procedure can be accomplished. The performance of a

procedure results in an explicit outcome, a post-condition. These pre- and

post-conditions are defined in the procedural sub-structure, and is a way to

30

describe the relationship between goal structure and procedural sub­

structure.

The taxonomic sub-structure is used to describe hierarchical relations between

objects i n terms of their categorical affiliation. In addition, features and

attributes of each object are described. Examples of features and attributes are

object relationship to superordinate and subordinate categories,

representativeness and centrality to task context.

According to TKS theory, it is possible to model existing tasks, as well as new

or changed tasks in conjunction wi th their design.

According to Johnson and Johnson (1991, see also Johnson & Johnson, 1989),

task analysis can support development of computer systems during the

fol lowing activities:

" A t the feasibility/initial planning stage:

• identifying and documenting any new functions/new tasks the

computer may support,

• identify potential functionality of the system f rom user perspective,

• identify user population and characteristics of that population,

• identify characteristics of interface to be developed,

• allocation of function between user and system,

• assess scope/ degree of larger-scale T A to be undertaken later i n

development lifecycle.

31

A t the requirement/analysis stage:

• identify and document user /UI requirements comprising details about;

• hierarchical structure of tasks (goals and sub goals),

• how users achieve goals and sub goals,

• listing and ordering of undertaking task procedures,

• frequency wi th which particular procedures were carried out by users,

• reasons why and circumstances under which one procedure was used

in preference to another,

• inputs and outputs f r o m each procedure,

• events, data used, actions, objects,

• standard set of properties relating to objects and actions, e.g.,

frequency, time taken, etc.,

• expectations the user entertains about the system after user has carried

out an operation,

• division between user and system.

At the Design stage/User Interface Development/ Dialogue design:

• provide initial input to guide dialogue and screen design, comprising;

• details of what users expect to have available to them at any one time,

• the structure and sequence of their usage of system facilities,

• the names and form of representation to be given to screen-presented

objects and events,

• information that should be available in given contexts, (i.e. design of

screens),

• structure between contexts, (i.e., mapping between screens),

32

• how much to put on the screen at once wi th reference to number of

commands,

• what information should go on screens and the grouping of that

information,

• what commands are needed to support user operations and what those

commands w i l l be,

• user testing.

At the prototyping stage:

• guide initial format and presentation of prototype by indicating how

the screens should look,

• identify data that has to be displayed,

• identify operations and sequencing of procedures,

• ensure dialogue specification is represented in a format that can be

understood and verified wi th end users and to carry this out.

A t the validation stage:

• user testing.

At the update and maintenance stage:

• identifying, documenting and cataloguing user problems," (pp. 14-15).

33

3.2.3 Usability Specification

Usability specifications are precise and testable performance measures of a

user's planned performance of specific tasks using a computer system (Carroll

& Rosson, 1985, see also Chapanis & Budurka, 1990). This method satisfies the

need to specify usability goals that the system to be developed can be

evaluated against. A usability specification has, according to Whiteside,

Bennett, and Holtzblatt (1988), two purposes:

• clearly express how the usability of a system should be defined,

• function as a measure of how well, and to what extent, a computer

system has fulf i l led usability requirements.

The starting point in developing a usability specification for a computer

system, is identification of functional goals and usability goals. Through an

analysis of these goals, specific usability requirements are outlined that

describe the user task to be supported by the computer system, in what

respect the computer system shall support the task, and to what extent the

computer system shall support the task.

According to Carroll and Rosson (1985), usability requirements can be

partitioned into subskills, individual skills needed for successful performance

of a certain task. For example, a subskill needed in creation of a document

could be to understand commands. Wi th these subskills as a basis, i t is

possible to evaluate components of the system under development for

usability. For example, menus, dialog boxes and help texts. I n Figure 6 below,

a simple example of a usability specification is illustrated (based on Whiteside

et al., 1988).

34

System
attribute

Task
measured

Measuring
method

Minimal
value

Planned
value

Optimal
value

Actual
value

Comments

Map
display

Find specific
unit

Time (sec.) 3 sec. 2 sec. 1,5 sec. 5 sec.

Map
display

Look at info,
about unit.

Time (sec.) 3 sec. 2 sec. 1 sec. 20 sec.-
3 min.

Map
display

Understand
unit info.

Interviews 90% under­
stood.

100% 85%

Text
area

Write order Time (sec.) 3 min. 2 min. 1 min. 4 min.

Figure 6: Illustration of a simple usability specification example

In the system attribute column, the system property in focus for the testing is

listed. Task measured, is the specific task to be performed to evaluate the

usability of the system attribute. Measuring method, is the method used to

evaluate that the attribute fulf i l ls the usability goal. Minimal value, is the

minimal acceptable value for this specific attribute. This value indicates the

usability baseline for the attribute. Important to note is that, according to

Whiteside et al., (1988), the values of all attributes should reach at least this

level for the total system to be regarded as usable. Planned value, is the level

defined as desirable, and the level planned to be reached. Optimal value, is

the level defined possible to reach for this attribute. This value can serve as a

goal for future versions of the system. Actual value, is the value measured in

connection wi th actual system use or manual work. The comments column

can, for example, be used to reference other usability specifications, where

attributes may be described in greater detail.

Usability specification is, according to the authors, used both as a way to

create a common understanding among developers about usability

requirements, and to define testable requirements against which a computer

system may be evaluated. According to Carroll and Rosson (1985), the

35

usability specification should be developed in parallel, and integrated, w i t h

the functional specification (Software Requirements Specification).

Carroll and Rosson (1985) point to the importance of representative users and

tasks when developing usability specifications. They also advocate the use of

representative users and tasks when testing usability according to the

usability specification.

A common way to evaluate if a computer system fulf i l ls defined usability

requirements is, according to Whiteside et al., (1988), to arrange an

experimental situation, where users are requested to solve standardized tasks

in a standardized situation. This approach makes aggregation of test data

possible, for example, time used to solve a specific task for all users

participating in the "experiment." Data can then be compared for different

versions of the system. Carroll and Rosson (1985) advocate an informal and

qualitative test situation, where focus is to elicit as much information as

possible f r o m each person involved wi th the computer system under

development.

3.2.4 Heuristic Evaluation

Heuristic evaluation is a systematic inspection method, developed by Nielsen

and Molich (1990), to identify usability problems in a user interface.

Development of this method is based on their and other's experiences that

collections of guidelines for design of user interfaces (see, for example, Brown,

1988; Smith & Mosier, 1986) are difficult for developers to use (De Souza &

Bevan, 1990; Tetzlaff & Schwarts, 1991; Thovtrup & Nielsen, 1991). Wi th this

k ind of documents as a basis, they identified a number of general rules of

thumb (usability principles) and a method for inspecting user interfaces using

the rules.

36

The goal of heuristic evaluation is, according to Nielsen (1993), to discover

usability problems early in the development process, making adjustment of

the user interface in succeeding iterations possible. Heuristic evaluation shall

be used during development of a user interface, and not as a method to

review the usability of a already developed user interface.

Heuristic evaluation can, according to the authors, be used on early

prototypes as well as implemented user interfaces. This causes the method to

be suitable throughout the (software) development process, f rom early

sketches to "completed" user interfaces.

According to Nielsen (1993; 1994), heuristic evaluation is carried out as

follows. W i t h the usability principles (see below) as a basis, the user interface

is inspected by three to five experienced usability experts for possible

usability problems. The usability experts perform inspection individually.

When all inspections are accomplished, the evaluators analyze and compile

generated comments collectively. In performing a heuristic evaluation an

evaluator inspects a user interface several times. User interface elements are

evaluated against usability principles and comments are recorded. I f an

evaluator discovers other possible usability problems, these are also

documented, irrespective if there is a usability principle defined.

The evaluator decides how to perform the inspection, but the

recommendation is to inspect the user interface at least twice. The first time to

get an understanding of the user interface and the purpose wi th the system.

The second time, focusing on every user interface element wi th the usability

principles i n mind.

37

Below is a brief description of the usability principles as defined by Nielsen

and Molich (1990). A more thorough description of these principles is

contained in the original document and also Nielsen (1993; 1994).

• Design the dialogue to be easy and natural. The dialogue should

present only the information necessary for the user. A l l information

should be presented in a way that is in accordance wi th the task to be

performed by the user.

• Speak the users' language. The dialogue should be consistent w i th user

knowledge and experience and should not be expressed in system

oriented terms.

• Minimize user memory load. The user should not be required to

remember information f rom one dialogue to another.

• Be consistent. Users should not be uncertain about meanings of terms,

situations and actions.

• Give feedback. The computer system should always inform the user

about what is occurring.

• Provide explicit exits. Give the user opportunity to exit states that are

unwanted.

• Provide shortcuts. Give experienced users access to accelerators, to

work more efficiently w i t h the computer system.

• Design informative error messages. Error messages should be

expressed in a way natural to the user. Give information about what is

wrong and how the problem can be solved.

• Prevent error situations. Design the computer system so that potential

error situations are avoided as much as possible.

38

• Help and documentation. Design help and documentation so that

information is easy to f ind and understand. Information should also be

presented in a way that reflects the task to be performed by the user.

The outcome f rom a heuristic evaluation is a list of potential user interface

usability problems. Usability problems identified are closely related to

usability principles utilized (Lewis & Rieman, 1993). This means there is a risk

that some usability problems are missed. This risk can partly be taken care of

by supplementing heuristic evaluation wi th some other evaluation method.

(See, for example, Jeffries, Miller, Wharton, and Uydea, 1991, for a discussion

of the advantages and disadvantages of different evaluation methods, w i t h

respect to usability problems identified).

3.2.5 Cognitive Walkthrough

Cognitive walkthrough (Poison, Lewis, Rieman, and Wharton, 1992; Lewis &

Rieman, 1993; Wharton, Rieman, Lewis & Poison, 1994) is a method used to

identify potential usability problems by imagining user intentions and actions

the first time they use a computer system.

Cognitive walkthrough is carried out in the following manner. Use a

prototype or a detailed design description of a user interface, plus knowledge

of the user characteristics, as the basis of an evaluation. Choose one or more

work tasks the future computer system w i l l support. Wi th these work tasks as

a basis, attempt to tell a believable story about every action a user has to take

to carry out a task. The story is believable if every user action is motivated by

their knowledge, or prompts/feedback f rom the computer system. If i t is not

possible to tell a believable story about a user action, a probable usability

problem has been recognized.

39

Deficiencies in user interface specifications can also be detected wi th cognitive

walkthrough. Util izing cognitive walkthrough, specifications can be inspected

and potential deficiencies such as forgotten specification, be identified. A

concrete example of what potential deficiencies can be identified is when

relevant feedback is missing as when, "There is nothing specified, that

informs a user the computer system is processing an input."

To perform cognitive walkthrough the following information is needed,

according to Lewis and Rieman (1993):

• a user interface specification, a prototype or a completed user interface,

• a task description,

• a comprehensive description of actions required to perform a task

when using the computer system,

• description of future users and of their knowledge regarding the task

to be performed.

The main concept used in cognitive walkthrough is to attempt to tell a

believable story about why a user chooses to execute each action. Then to

critically review the story to ensure that it is believable. According to Lewis

and Rieman (1993), the following four questions are important in story

analysis:

• " w i l l users be trying to produce whatever effect the action has?,

• w i l l users see the control (burton, menu, switch, etc.,) for the action?,

• once users f ind the control, w i l l they recognize that i t produces the

effect they want?,

• after the action is taken, w i l l users understand the feedback they get, so

they can go to the next action wi th confidence?," (Chapter 4.1.3).

40

The first question relates to user intentions. Often, users have no intention to

do what the developer thinks. The second question is related to the likelihood

that users see controls at all. I t is not unusual for controls to be hidden, so as

to not damage a "beautiful" design. The third question is related to users'

possibility to identify the correct control. Even if users want to perform an

action, and a control is possible to identify, there is no guarantee that they w i l l

understand it is the correct control. Note that identification and

understanding are dependent upon each other. Users may not understand

which action is correct, but a control that is easy to detect and understand

helps them to determine what has to be done. The fourth question relates to

feedback after an action is performed. Often, even the simplest action needs

some fo rm of feedback to inform users that the computer system has

"understood" the action and that it has resulted in some form of processing.

According to Lewis and Rieman (1993), an evaluator can identify many

different kinds of usability problems wi th the help of cognitive walkthrough:

• erroneous or defective assumptions about users' intentions w i t h the

computer system,

• identification of controls (commands, switches etc.,) that are obvious to the

designer, but "hidden" for users,

• identification of possible difficulties to understand labels and prompts,

• identification of defective feedback, resulting in, for example, further user

actions despite performance of a correct action the first time.

The potential problems found through a cognitive walkthrough are often

simply resolved, since problems identified point to actions such as:

• change the user interface to be in accordance w i t h user intentions,

• change the presentation of controls so they are easy to locate,

41

• change control design so that users understand their purpose,

• change label design so that users understand their meaning.

According to the authors, cognitive walkthrough can be used in the detailed

design of a user interface, to evaluate a prototype, or an already developed

user interface.

3.2.6 Use of Guidelines and Styleguides

Guidelines and styleguides are recommendations and rules that are built on

practical experience and research wi th in the H C l (Human Computer

Interaction) area. Guidelines are general recommendations and advice

concerning design of user interfaces. Styleguides are specific rules (usually

proprietary) for the appearance and, in some cases, also the behavior of a user

interface for a specific implementation platform.

Examples of documents containing guidelines are:

• Guidelines for Designing User Interface Software (Smith & Mosier, 1986).

• Principles and Guidelines in Software User Interface Design (Mayhew, 1992).

The first document contains 944 guidelines, which deal wi th

recommendations and advice concerning different ways of interaction, for

example, menus, command language, forms, but also the design of help and

feedback. The second document contains 288 guidelines concerning ways of

interaction, such as menus, forms and direct manipulation.

42

Examples of styleguide documents are:

• The Windows Interface: An Application Design Guide (Microsoft, 1993).

• OSF/Motif Styleguide (Open Software Foundation, 1993).

• Human Interface Guidelines: The Apple Desktop Interface (Apple

Computer, 1992).

There is also company and project specific guideline and styleguide

collections. These often contain both guidelines and styleguides adapted to a

specific company or project. Examples of this k ind of collections can be found

in Flygvapnet (1993), Defense Information Systems Agency (1994), Fernandez

(1992) and Goddard Space Flight Center (1992).

To exemplify what guidelines are, two guidelines f rom Guidelines for

Designing User Interface Software (Smith & Mosier, 1986) are presented:

• "Provide maps to display geographic data, i.e., direction and distance

relations among physical locations," (p. 163).

• "Al low users to select transactions; computer processing constraints

should not dictate sequence control," (p. 271).

To exemplify what styleguides are, a styleguide f rom The Windows Interface:

An Application Design Guide (Microsoft, 1993) is presented:

• "The Help menu should contain components that provide user help

facilities. The components in the Help menu usually bring up a

DialogBox w i t h the help information. Every application should have a

Help menu. The Help menu should have a mnemonic of H," (p. 9-70).

43

Guidelines and styleguides can, according to Smith and Mosier (1986), be

utilized in connection w i t h both design and evaluation of a user interface.

Here, both situations are briefly described. When designing a user interface,

guidelines and styleguides may be used in the following way:

1. prior to first design of a user interface, study those guidelines and

styleguides that describe advantages and disadvantages of different

styles of interaction,

2. when overall design of the user interface is decided, study relevant

guideline and styleguide documents to identify guidelines and

styleguides valid for the specific design,

3. use the guidelines and styleguides to review the design.

Many guidelines need to be concretized, if they are to be used in a specific

design and implementation situation (Smith, 1988). A n example of

concretizing a guideline is:

guideline: Give feedback.

concretized guideline: Every user action that leads to a processing time

longer than 5 seconds shall result in that feedback is presented. The

feedback should indicate length of time necessary for processing and time

elapsed.

Guidelines and styleguides are also useful in conjunction w i t h identification

of software requirements. Guidelines and styleguides may here be used in

much the same way as in design. A n advantage is incorporation of guidelines

and styleguides into the requirement specification document (SRS).

44

In relation to evaluation, guidelines and styleguides can be used in fol lowing

manner:

1. inspect user interface to be evaluated and identify user interface

elements (menus, dialog boxes, and so on),

2. review relevant guideline and styleguide documents to identify valid

guidelines and styleguides,

3. w i t h identified guidelines and styleguides as a basis, evaluate the user

interface.

The outcome f r o m use of guidelines and styleguides is often a list of

guidelines and styleguides w i t h which the application does not conform. This

list can then be used to inform further development of the user interface.

3.2.7 Prototyping

Prototyping (sometimes also called modeling, see, for example, Andriole,

1989; ASTM, 1991; IEEE P1233-1993, 1994) is a method based on

understanding the difficulty to define user requirements for the computer

system to be developed. Prototypes concretize requirements, and users have

the opportunity to validate requirements using the prototype, (Andriole,

1989; 1990; Andriole & Adelman, 1995; ASTM, 1991; Wood & Kang, 1992).

Prototyping is also used in user interface design (see, for example, Nielsen,

1993).

Prototyping has many purposes. Here are mentioned some f rom the above

references. The purpose of prototyping is to:

• facilitate communication between developers and users and between

multiple developers,

45

• make it possible to concretize, in many cases, abstract user

requirements,

• facilitate validation that requirements on the system to be developed

are correct,

• facilitate identification of new requirements.

According to Sommerville (1992), there are the fol lowing activities i n

prototyping:

1. establishment of prototyping objectives,

2. selection of functions (requirements/services) to be included in a

prototype,

3. development of a prototype,

4. evaluation of the prototype.

These four steps are supplemented wi th a f i f t h step (Andriole, 1990; Boar,

1984; Miller-Jacobs, 1991; Nielsen, 1993):

5. iteration of above steps until the prototyping work is considered

finished.

Below, these activities are described in more detail.

Establishment of prototyping objectives. It is important to define the

objectives of the prototype so that users and/or customers do not

misunderstand the purpose of the prototyping work. This can result in

erroneous expectations and frustration.

Selection of functions (requirements/services') to be included in the prototype.

I t is also important to define which functions (services) to implement i n the

prototype, and which not to implement. The reason for this is the necessity to

46

define what to include in the prototype, prior to prototyping. This is

particularly important for the subsequent evaluation.

Development of the prototype. The prototype is developed using one of the

techniques mentioned below.

Evaluation of the prototype. According to a number of authors, this is the

most important activity in prototyping (see, for example, Andriole, 1990;

Andriole & Adelman, 1995; Nielsen, 1993). In this activity, the prototype

being developed is evaluated against defined goals (purposes) and services

(functions). Misunderstandings, deficiencies, oversights and new

requirements are taken care of in conjunction wi th next iteration.

Iteration of above steps unti l the prototyping work is considered as finished.

It is crucial to recognize that prototyping is an iterative process, where a

prototype is further developed until the requirements and/or the evaluation

are judged to be reasonably comprehensive. Another aspect that influences

the conclusion of prototyping, is of course that the purpose of prototype

development is fulf i l led.

There are a number of ways to create prototypes. Many authors differentiate

between vertical and horizontal prototyping (see, for example, Nielsen, 1993),

and between throw-away and evolutionary prototyping (see, for example, Dix

et al., 1993). Vertical prototyping, is development of a prototype that is

restricted to a specific application area, wi th in this area the prototype is fu l ly

developed. Horizontal prototyping is development of a prototype to illustrate

the complete system (user interface), where the prototype has restricted

functionality (Nielsen, 1993). Throw-away prototyping (also called

exploratory programming, Sommerville, 1992), is characterized by utilizing

47

prototyping only for definition of requirements upon the future computer

system. When requirements are defined, the prototype is ' thrown away'. The

knowledge acquired is, for example, used as input to a requirement

specification. Evolutionary prototyping means that a system is gradually

developed w i t h the first prototype as a basis (Dix, et al., 1993).

There are many techniques for developing prototypes, depending on the

demands for realism. Examples of techniques are:

• use cases (narratives, scenarios),

• paper copies of screen displays,

• storyboards,

• dynamic paper prototypes,

• limited functionality simulations,

• high-fidelity prototypes (high functionality simulations),

• selective fidelity prototypes.

Below, the different techniques are described briefly.

Use cases, (Andriole, 1989; also called Scenarios, Carroll, 1995; Nielsen, 1993)

is a technique to simply describe what a system (or some part of it) should do,

information needed, and result to be generated. A use case (scenario) is,

according to Nielsen (1993), (see also Carroll, 1995), a writ ten description of:

• "an individual user,

• using a specific set of computer capabilities,

• to achieve a specific outcome,

• under specified circumstances,

• over a certain time interval," (p. 100).

48

Use cases can be used in working wi th the user, to inspect and discuss

different proposals relative to situations of use.

Paper copies of screen displays, (Andriole, 1989) are simple sketches

concerning proposals for user interfaces, developed using some drawing

program or drawn by hand. The sketches are used to illustrate for the user

how the computer system (user interface) can be designed. The user can

inspect proposals and make comments.

Storyboards, are, according to Dix et al., (1993), (see also Andriole, 1991), a

graphical (and often animated) description of a proposal for a computer

system user interface. A storyboard presents snapshots of the user interface in

different interaction situations. Wi th different kinds of computer programs, it

is possible to give storyboards some dynamic features, letting the program

'play' a sequence of snapshots.

Dynamic paper prototypes, (Rettig, 1994) is a technique to illustrate and

evaluate a user interface proposal w i th the help of paper and pencil. The

technique is to prepare pictures describing different kinds of possible dialog

states. In evaluating the prototype, someone is acting as a 'window manager'

and presents the picture that is the result f rom a user 'button press,' 'menu

choice,' and so on.

Limited functionality simulations, (Dix et al., 1993) are simple computer based

prototypes, developed using a simple prototyping tool (for example,

HyperCard, or Visual Basic). The purpose wi th these prototypes is to

illustrate and evaluate interactive aspects of a future computer system.

Another example of a technique for illustrating and evaluating interactive

aspects is 'Wizard of Oz', where someone in the development team is acting

49

as an intermediate between the user and the prototype (Gould, Conti &

Hovanyecz, 1983; Maulsby, Greenberg & Mander, 1993).

High-fidelity prototypes, (Löwgren, 1993, also called high functionality

simulations, Dix, et al., 1993) are prototypes developed using techniques very

similar to the technique to be used wi th the real computer system. This means

that the prototype is going to be very realistic, giving opportunity for

evaluations very similar to future use of the computer system.

Selective fidelity prototypes, (Voss, 1993, also called selective functional

prototyping, Allusi, 1991) are prototypes based on identification of critical

functions necessary to a user when accomplishing a task. The critical

functions are developed in the prototype. Not so critical functions are

developed using more simple prototyping techniques, for example, limited

functionality simulations, or are omitted.

3.2.8 Contextual Design

Contextual design is a method focused on customer driven development of

computer systems (see, for example, Whiteside et al., 1988; Wixon, Holtzblatt

& Knox, 1990; Beyer & Holtzblatt, 1993; Holtzblatt & Beyer, 1993; Holtzblatt &

Jones, 1993). The authors state that this method moves the focus of system

development to the customer and/or user and their work situation. Hence,

giving the customer and/or user greater influence over system development.

Wi th this approach focus is on customers, continuous iterations, a common

understanding of the user's work in the development team and continuous

testing/evaluation of prototypes in the customer environment w i th real work

tasks.

50

According to Holtzblatt and Beyer (1993), contextual design consists of the

following five main activities:

• contextual inquiry,

• modeling of work,

• re-design of work,

• design of system (user environment),

• design of user interface.

Contextual inquiry, is an interview-based technique to study the

customer/ user during performance of work in the actual work environment.

Wi th contextual inquiry, the developer observes the work and continuously

asks supplementing questions, to understand the work (see also Whiteside et

al., 1988). During this study, investigation of issues concerning what is done;

why i t is done; and how it is done, is made. Observations made and answers

to questions are writ ten down. Usually, a number of studies are conducted

wi th different customers/users within an organization, to obtain as complete

description of work as possible.

When the majority of studies have been completed, the design team meets to

compile the data and to discuss interpretations. To support this process,

affinity diagrams are utilized. The diagrams are created by organizing the

data in different groups on walls. Each grouping is given a descriptive label.

After the grouping, each group is discussed and design ideas are created. The

design ideas are written down in connection wi th the group discussed. (A

more complete description of this process can be found in Holtzblatt & Jones,

1993).

51

Modeling of the work, is performed after diagrams are ' fu l ly developed'. The

models advocated by Holtzblatt and Jones (1993) are:

• context models,

• physical models,

• f low models,

• sequence models.

Context models illustrate, for example, how organizational, cultural and

procedural factors constrain and create expectations on how people perform

work, and what they produce. Physical models illustrate how the physical

environment and the physical system influence work. Physical models also

illustrate if work is distributed to different physical locations. Flow models

illustrate different roles people take in their work. Each role represents a kind

of customer for, or user of, a computer system. Flow models also illustrate

what is needed and what is supplied to carry out a role. Sequence models

illustrate the time aspect for accomplishment of activities in work. These

models also illustrate specific tasks performed and specify in detail work to be

supported by a computer system.

Re-design of work, is performed after modeling of work has been carried out.

The purpose of re-design is to modify work to be performed, to cause

maximum efficiency of use within the system to be developed. In this re­

design, the same kind of models are used as in earlier modeling. The

difference is that here, abstract models are developed. To develop these

models, every existing model, of a specific k ind and for a certain work task,

are collected. From these models, a new model is developed. Specific details

concerning individual workers are eliminated and the basic structure wi thin

the work is emphasized. Each model is validated against already obtained

data about the work and further contextual inquiries in concert w i th new

52

customers/users. Already developed design ideas are also tested against the

abstract model to evaluate how close the correspondence is w i t h new models

of work of the envisioned processes.

Design of system, (user environment) is performed wi th these new models as

a basis. To avoid discussions concerning detailed user interface design,

Holtzblatt and Beyer (1993) have developed what they call 'User Environment

Design'. This technique is used to design the structure and function wi th in a

system. This is carried out by identifying focus areas, explicitly defined places

wi th in a system for performing a particular activity. For each focus area,

functions and work objects necessary to carry out work are defined.

In design of user interface, an appropriate user interface is designed for each

focus area. The design is then tested by evaluating paper prototypes in the

work place. The customer/user is requested to carry out their work wi th the

prototype, observations are made, and supplementing questions are asked.

This process is iterated wi th more and more fu l ly developed prototypes, to

the point where a computer based prototype has been developed and tested.

The f inal computer system is developed f rom this prototype.

3.2.9 Use Testing (Usability Testing)

Usability testing, or use testing as named here, is a systematic way of

studying when users try to use a computer system (or a prototype) to carry

out their work. Information about problems they encounter or experience is

collected (Dumas & Redish, 1994; Lewis & Rieman, 1993). Use testing is also

called empirical testing (Adelman, 1992) or empirical evaluation (Adelman &

Donnell, 1986).

53

According to Dumas and Redish (1994), use testing is characterized by

fol lowing qualities:

• the main goal wi th use testing is to improve usability of the computer

system,

• the participants in use testing are real users,

• the participants i n use testing try to carry out real work tasks w i t h the

help of the system,

• what participants are doing, and what they say, are registered,

• participant behavior and statements are analyzed to diagnose real

usability problems, and to suggest proper actions.

Below, these characteristics are described in more detail.

Improvement of usability, is the purpose of use testing. The primary goal is to

identify possible problems a user has when utilizing a computer system (or

prototype). According to the authors mentioned above, use testing can be

used to evaluate prototypes, early versions of a computer system, and already

developed computer systems. (The above description is supplemented w i t h

the following; 'the main goal of use testing is to improve usability of the

future computer system,' and 'the participants in use testing try to carry out

real work tasks wi th the help of the system, or prototype,"). According to

Lewis and Rieman (1993), i t is important to remember i t is the computer

system, and its possible deficits, that is evaluated, not the user.

Real users, are of great importance in use testing. If participants in use testing

do not represent users of a planned system, faulty conclusions concerning

usability may easily be drawn. If not possible to f ind representative users, at

least users that as much as possible are a representative sample of future

users should participate.

54

Realistic work tasks, are necessary to make valid conclusions concerning

usability of a computer system f r o m use testing. If the computer system under

development is complex, i t may be necessary to select some out of all possible

work tasks for actual use testing. Here, i t is important to choose work tasks on

the basis of use testing goals. According to Lewis and Rieman (1993), i t is

important that tasks selected are not too fragmented. If work tasks consist of

several sub-tasks, i t is important to incorporate all these sub-tasks into use

testing.

Registration of user behavior and statements, is carried out to make

subsequent aggregations and analysis of data possible. According to Lewis

and Rieman (1993), there are two basic approaches for collecting data

concerning user interaction wi th a computer system:

• collection of data regarding what users are doing and how they carry

out tasks,

• collection of data concerning how efficiently users carry out a task or

tasks.

To obtain data about what users are doing, and how they are carrying out

their tasks, i t is, for example, possible to observe users during their work w i t h

the computer system (or prototype). Every problem recognized in conjunction

w i t h task performance is noted, and then discussed w i t h users. These

observations can be supplemented wi th video recordings of user utilization of

the computer system being studied.

It is also possible to utilize a technique called 'think aloud' (Lewis, 1982) in

order to understand what a user is thinking of during use of a computer

55

system. T h i n k aloud' is carried out by asking users to report verbally what

they are thinking of when performing a task, for example:

• what they are trying to do,

• questions emerging in connection w i t h task performance,

• what they are looking for on the screen,

• what different messages mean.

To make ' think aloud' more efficient, it is usually necessary for an evaluator

to give users some help by asking questions about what they are thinking.

This is especially important if a user is quiet for a long time. This can mean

preoccupation w i t h thinking of a solution to some issue, and thus forgetting

to ' think aloud.' I t is very important that an evaluator is neutral in asking, and

avoids giving hints to users about what to answer or do.

To get data about user performance in conjunction wi th accomplishment of a

task or tasks it is also possible to register, for example:

• time used by a user in carrying out a task or tasks,

• number of erroneous actions in connection wi th task performance,

• number of times the help function is utilized (if any),

• if the task was possible to carry out at all.

If usability requirements have been specified in advance (see sub-section

3.2.3), there are natural measures against which to evaluate actual user

performance.

Analysis, diagnosis and change, is perhaps the most important aspect of use

testing. Collected data must be analyzed and used to diagnose what real

56

usability problems exist. This diagnosis must then be used to further develop

a computer system, otherwise use testing is of minimal value.

Use testing can be performed on prototypes, early versions of a computer

system and already developed computer systems. Often, valuable

information regarding development of a new computer system can be

obtained by use testing the old computer system. It is also possible to use test

different parts of a computer system, for example, evaluation of installation

and/or maintenance of hardware and software.

3.3 Conclusions

If we consider usability work in industrial system development as different

kinds of activities that can be performed in conjunction wi th system

development, i t is possible to illustrate this in Figure 7, below.

Figure 7: Usability work in industrial system development

In industrial system development, usability work can be carried out at a

number of places in the overall process. Below, this issue is reviewed and

57

discussed. Wi th the industrial system development process (as described in

Chapter 2) as a reference, methods described earlier i n this Chapter are

analyzed f r o m the following perspective:

• authors of the various methods views about when in system development

their methods shall be used,

• how method authors intend the methods to be used,

• why, according to various authors, the methods should be used (outcome,

benefits),

• authors' views concerning need for carrying out supplementary methods,

• experiences f r o m practical use of the method,

• my own experiences in system development and usability work.

3.3.2 Business Analysis (RASP)

When shall business analysis (RASP) be used:

RASP, as w i t h other methods for business analysis (see, for example, the SIM

method, Goldkuhl & Röstlinger, 1988), is especially suited to identify possible

need for computer system development, and which business part(s) w i l l

benefit f r o m computer support. Business analysis provides greatest benefit

initially in the system development process before any decision about what to

develop.

58

Uti l izing business analysis (RASP):

Activities performed in business analysis are, according to RASP, primarily

the following:

• description of business,

• need analysis,

• business development.

In description of business, present business is analyzed and described using

functional modeling and concept modeling. This activity considers a business

as hierarchical functions consisting of sub-functions. Main functions are

broken down into sub-functions, to a level where business people, method

experts, and customer of business analysis agree that descriptions accurately

portray present business.

Wi th these descriptions as a basis, possible change needs are identified and

prioritized. When change needs have been identified and prioritized, one or

more possible future business are designed, using functional modeling and

concept modeling. When business design is carried out at the activity level,

techniques for f low modeling are used (flow charts, Petri-diagrams, Gant-

diagrams).

Result of business analysis (RASP):

The result generated by RASP is a detailed description of present business, a

prioritization of change needs, and one or more proposals concerning design

of new business. The design of new business can include overall changes on

the business level, as well as detailed changes of specific activities. According

to the authors (Telub AB & System Development Associates, 1990; Telub AB,

1995), these results can be used as a basis for development of a computer

59

system, and/or development of organization and/or development of

business staff.

Need for other methods:

In descriptions of RASP, no other methods are mentioned as a necessary pre­

condition or as a natural continuation. In the case where business analysis

(RASP) is followed by development of a computer system, authors seem to

conclude that activity models resulting f r o m f low charts etc., are sufficient.

Practical experiences:

Practical experiences f rom RASP indicate that the strength of this type of

method is mainly in creating a basis for decisions about any of the fol lowing

actions; development of organization, development of computer system,

personnel development, or a combination of these actions (Enqvist &

Lethovaara, 1996).

M y own conclusions:

RASP (as most of the other methods for business analysis) has been primarily

used to analyze and model businesses that are administrative in character.

This suggests that possible benefits and disadvantages in connection w i t h

development of more complex computer systems, for example, command and

control systems and process control systems, is not clear. Business analysis is

also rather abstract, since most of the analysis is performed in meetings,

where business is discussed in a rather theoretical way.

I t is also uncertain if the activity models mentioned above are sufficient for

development of computer systems, since these models provide abstract

descriptions on how activities shall be accomplished. In addition,

60

performance of business analysis is rather resource demanding. Active

engagement and commitment is needed from a number of business people.

Despite these conclusions, i t is often important to perform business analysis in

connection w i t h possible computer system development. The reasons for this

are:

• business analysis offers a better basis for decisions concerning possible

need for development of a computer system. Many times computer

system development is accomplished without any analysis of possible

need,

• i t is difficult, and sometimes impossible, to develop a computer system

that supports a business (at least if the computer system is to support

complex businesses) without detailed knowledge of the business (see

also Andriole, 1990; 1996).

3.3.2 Task Analysis (KAT)

When shall task analysis (KAT) be used:

According to the authors, the KAT method is particularly effective for

generation of ideas about services needed in a future computer system, and in

evaluation of a developed computer system. The authors describe task

analysis as supporting the following system development activities (with

focus on user interface):

• feasibility study / initial planning,

• requirement definition/analysis,

• design,

• prototyping,

61

• validation,

• update and maintenance.

Util izing Task analysis (KAT):

The activities performed in task analysis, according to the KAT method, are:

• identification of knowledge people possess about a task or tasks,

• analysis of task knowledge,

• modeling of present and/or future task or tasks.

In identification of task knowledge, goal and sub-goals that motivate task

performance are identified. Then, procedures used in task performance are

identified. The procedures are used as a basis to determine objects used and

actions taken during task performance. This information is collected through

interviews, observations and similar techniques.

In the subsequent analysis, goals, sub-goals, procedures, objects and actions

that are; task typical; necessary; and common, are identified. This analysis

meets the need for prioritizing and aggregating different task aspects.

Modeling of present/future tasks is carried out by creating a goal structure, a

procedure sub-structure and a taxonomic sub-structure. In the goal structure,

relationships between goals and sub-goals are described. The procedure sub­

structure describes how tasks are/or shall be performed. In the taxonomic

sub-structure relations between objects and actions, included in tasks, are

described.

62

Result of Task Analysis (KAT):

The result of task analysis, according to KAT, is:

• a description of task knowledge people possess. I n other words, a

description of goals, sub-goals, how tasks are performed, objects used

and actions taken,

• a prioritization of task knowledge gained f rom descriptions,

• a model describing how to achieve a more efficient task design. Here,

detailed information about task goals, sub-goals, how the task/tasks

can be performed, objects needed and actions to be taken are included.

Need for other methods:

The authors do not describe need for any supplementing methods. Neither is

the need for results f r o m any other method mentioned, nor that results f r o m

task analysis shall be used in any other method.

Practical experiences:

Practical experiences f rom the utilization of task analysis i n connection w i t h

system development are not extensive, (see, for example, Johnson, 1992;

Johnson, Johnson & Wilson, 1995). Therefore, it is difficult to make any

definitive conclusions about applicability in industrial system development.

M y own conclusions:

According to my assessment, task analysis in line w i t h KAT is very resource

demanding, as task analysis is quite detailed. This implies that i t is difficult to

motivate accomplishment of task analysis in an industrial system

development setting where, for example, demands on delivery time are high.

A possible solution to this problem can be to accomplish part of task analysis

early in the system development process (identification of user requirements).

63

The main purpose being to create goal and procedure structures. The

development of the taxonomic structure can be accomplished later, for

example, i n conjunction wi th software design. Partitioning of task analysis is

also discussed i n Johnson and Johnson (1991).

Performance of task analysis is especially important when developing

systems characterized by high interactivity and critical task situations. I t is

important to have detailed knowledge about tasks to be accomplished w i t h

the system, if the system shall support users in complex situations w i t h high

demands on user actions. For example, systems for command and control,

and process control.

3.3.3 Usability Specification

When shall usability specification be used:

According to Carroll and Rosson (1985) and Whiteside et al., (1988), usability

specification is used to create an understanding in developers about the

usability goals, and to define measurable requirements against which a

computer system can be evaluated. Usability specification is most beneficial

when used in connection wi th specification of a computer system, and in

testing of a developed computer system. Carroll and Rosson (1985) advocate

that usability specification shall be used in connection wi th development of

the functional specification (SRS). They add that the usability specification

(possibly decomposed into subskills) shall be used continuously throughout

the system development process (development of the user interface) to

support continuous usability (use) testing.

64

Utilizing usability specification:

The activities performed in usability specification are, according to Carroll

and Rosson (1985), the following:

• identification of functional goals and usability goals (if not already

identified),

• definition of usability requirements,

• identification of necessary sub-skills,

• testing system parts (user interface elements) utilizing these sub-skills,

• testing system usability w i t h the usability requirements as the test

criteria.

In identification of functional goals and usability goals, services the computer

system shall provide are defined, along wi th how users want/have to work

wi th the services. In definition of usability requirements, the task or tasks the

system shall support, how this task or tasks shall be supported, and to what

extent the tasks shall be supported, are defined. For identification of sub-skills

the individual proficiencies needed for task completion are identified. Using

sub-skills as a basis, separate parts of a computer system are usability tested.

For example, comprehension of menu items. When the system is more fu l ly

developed, more complete parts are usability tested against previously

defined usability requirements.

Result of usability specification:

The outcome f r o m utilizing this method can, according to Carroll and Rosson

(1985) and Whiteside et al., (1988), be summarized as follows:

• increased knowledge about what is needed to make a computer system

usable, and explicit definition of what is required of the system to be

deemed usable,

65

• possibility to usability test a computer system during its development.

Need for other methods:

No author mentions need for other methods as a prerequisite for usability

specification. The authors indirectly suggest task analysis, as they describe a

need for knowledge about tasks to be performed as data needed for

development of a usability specification. They also suggest use testing (in

some form) as this method is intimately connected to usability specification.

Practical experiences:

The authors reports few explicit experiences f rom use of usability

specification in practical system development. In Carroll and Rosson (1985),

there is a description of an example of usability specification in development

of a word processing system. However, f rom the description, it is diff icul t to

conclude if i t is a theoretical example or an actual system development

project. In Whiteside et al., (1988) there are reports of the authors' experiences

that usability specification is useful. However, a problem is that usability

specification tend to express developers' usability requirements, and not those

of users'. Other authors (see, for example, Carlshamre, 1994; Wiklund, 1994)

report that usability specification is useful.

M y own conclusions:

Although there are reports concerning the effectiveness of usability

specification, i t is difficult to make any definitive claims about applicability to

industrial system development. One reason is that usability specification has

not been used to supplement functional specifications (software requirement

specifications, SRS). A second reason is that although Carlshamre (1994)

report that they use usability specifications in evaluating a prototype, nothing

66

is mentioned about its influence on usability of the final computer system.

However, i t is probable that:

• usability specification can be useful,

• usability specification is very resource demanding.

Usability specification can be beneficial in industrial system development, as

it is rather easy (at least theoretically) to integrate w i th a software

requirement specification (see also Carroll & Rosson, 1985). Particularly

because of ease of integration, usability specification can be a valuable

supplement to the functional perspective. This is especially true if also

considering the possibility of using usability specifications to identify and

present performance measures f rom a use perspective.

Usability specification requires too much time and effort, especially if also the

sub-skills are to be identified, for easy integration into the industrial system

development process. Although testing is advocated in connection w i t h

implementation and integration, usability specification at the level advocated

by Carroll and Rosson (1985) imply to much influence on the process, as much

time and effort is needed for this detailed testing.

3.3.4 Heuristic Evaluation

When shall heuristic evaluation be used:

According to Nielsen (1993; 1994), heuristic evaluation can be utilized on early

prototypes, as wel l as user interfaces under development. He does not

advocate that heuristic evaluation be used in evaluation of already developed

user interfaces.

67

Uti l izing heuristic evaluation:

The activities performed in heuristic evaluation are, according to Nielsen

(1994):

• definition of the rules of thumb (usability principles) to be used in the

evaluation,

• evaluation of the user interface by three to five experienced usability

experts,

• compilation and prioritization of results f r o m the evaluation.

In definition of the rules of thumb to be used, recommendation is to use the

rules of thumbs mentioned in section 3.4 as a basis. These can be

supplemented w i t h domain specific rules (Nielsen, 1994, p. 29). After rule

definition, an evaluation may be performed. Each evaluator performs

evaluation separately and inspects the user interface at least twice. The first

time to be familiar w i th the user interface, second to inspect the user interface

f r o m the perspective of rules of thumb defined. After inspection, evaluators

meet and aggregate their comments. The results are analyzed to determine

degree of importance of usability problems.

Result of heuristic evaluation:

The result of heuristic evaluation is a compiled and prioritized list of possible

usability problems wi th respect to the rules of thumb used. This list can then

be used to decide about changes in the user interface.

Need for other methods:

According to Nielsen (1993; 1994), it is sometimes necessary to perform task

analysis prior to accomplishment of heuristic evaluation. According to

Nielsen (1994), task analysis may be necessary before starting a heuristic

68

evaluation of a computer system intended for specific users. Often, a use

scenario f r o m a task analysis is required for usability experts to conduct

heuristic evaluation in an efficient way.

Practical experiences:

Nielsen (1992; 1993; 1994) has utilized heuristic evaluation in system

development projects, demonstrating the value of the method. Studies by

Jeffries et a l , (1991), Desurvire (1994) and Karat (1994) also underline the

value of heuristic evaluation. However, this is based on the premise that

people performing heuristic evaluation are usability experts (Desurvire,

Kondziela & Atwood, 1992; Karat, Campbell & Fiegel, 1992; Nielsen, 1994).

M y own conclusions:

While, a number of authors have shown through their work that heuristic

evaluation is of value in detecting possible usability problems, there are a few

important issues to review. The first concerns number of usability problems

detected w i t h a heuristic evaluation. According to Desurvire (1994),

proportionally fewer usability problems are detected wi th a heuristic

evaluation (and other inspection methods) when compared to usability

testing. Of the problems detected, very few are related to tasks performed

w i t h the computer system. The second issue relates to the need for

experienced usability experts. There are very few usability experts involved in

industrial system development (at least i n Sweden). This can result i n

diff icul ty to utilize heuristic evaluation in industrial system development.

However, heuristic evaluation by persons that are not usability experts is to

prefer if usability experts are not found (see, Nielsen, 1994, 1995, for a

discussion of discount usability engineering, where he advocates performing

usability engineering even when resources are scarce).

69

3.3.5 Cognitive Walkthrough

When shall cognitive walkthrough be used:

According to Wharton et al., (1994), cognitive walkthrough can be used in

conjunction w i t h detailed design of the user interface. I t can also be used to

evaluate how easy a simple or more advanced (user interface) prototype is to

learn and use.

Util izing cognitive walkthrough:

The activities performed in cognitive walkthrough are:

• definition of necessary data for the cognitive walkthrough,

• performance of the cognitive walkthrough,

• development of suggestions to change actions/changed design.

The process of definition of necessary data, involves identification and

description of tasks to be used, actions required to perform the tasks, possible

users and their knowledge. Wi th this information as a basis, cognitive

walkthrough is performed. Tasks and actions are used in inspection of the

user interface (a writ ten description, a prototype, or a system) to judge i f a

user wants to perform the actions, if a user can perform them, and if a user is

able to determine that necessary actions have been performed. From the result

of the inspection, possible changes to the user interface are recommended.

Result of cognitive walkthrough:

The result of a cognitive walkthrough is a detailed description of possible

usability problems, w i t h respect to user need of the functions (services) in the

user interface, the possibility to perform the task or tasks, and understanding

of actions performed.

70

Need for other methods:

The authors do not mention need for supplementing methods. However, they

point to the need for detailed task knowledge and understanding of user

characteristics as a necessary precondition to a cognitive walkthrough. This

requirement suggests that there is a need for at least some f o r m of task

analysis.

Practical experiences:

Cognitive walkthrough does not seem to have been used extensively in

practical system development. Practical experiences in using the method

appear to be based mainly on the authors' own testing in connection w i t h

further development of the method. This testing suggests that a cognitive

walkthrough w i l l identify possible usability problems at a detailed level, as

every user action is analyzed. The results f rom using cognitive walkthrough

indicate that the method is very time consuming. To avoid this problem,

Rowley and Rhoades (1992) further developed the cognitive walkthrough

method, using video recording equipment along wi th a more informal and

interactive evaluation session. This 'cognitive jogthrough' method requires

less time to perform than the conventional cognitive walkthrough. Although,

this method was used to evaluate an application, there is little information

about its pros and cons in industrial system development.

My own conclusions:

Practical experiences f r o m utilizing cognitive walkthrough (and cognitive

jogthrough) is not comprehensive. Experiences are largely acquired in

connection w i t h further development of the method and comparative studies

of the method (see, for example, Desurvire, 1994; Jeffries, et al., 1991; Rowley

& Rhoades, 1992). In these cases, cognitive walkthrough (and cognitive

jogthrough) was used in conjunction with development of rather simple

71

computer systems. Therefore, i t is difficult to make any definitive conclusions

about its advantages and disadvantages in industrial system development.

Despite this, cognitive walkthrough (and cognitive jogthrough) is potentially

valuable in the development of more complex computer systems. This is

particularly true in the development of computer systems where user

understanding, and management of the computer system is critical. As for

example wi th command and control systems or process control systems.

Cognitive walkthrough (and especially cognitive jogthrough) can be used in

these settings to check that tasks can be performed at all. In other words, a

simplified cognitive walkthrough can possibly be performed to study, on a

general level, the issues mentioned in sub-section 3.2.5.

3.3.6 Use of Guidelines and Styleguides

When shall guidelines and styleguides be used:

Guidelines and styleguides can, according to Smith and Mosier (1986) and

Flygvapnet (1993), be utilized in conjunction wi th specification, design and

evaluation of user interfaces.

Uti l iz ing guidelines and styleguides:

The activities performed through the use of guidelines and styleguides are:

• identification of applicable guidelines and styleguides,

• inspection of design proposal or developed user interface,

• documentation of deviations f rom guidelines and styleguides.

72

In identification of applicable guidelines and styleguides, a design proposal or

developed user interface is usually a starting point. From this, guidelines and

styleguides judged as relevant are chosen. Guidelines and styleguides are

then used when inspecting the design proposal or the developed user

interface. During the inspection, possible deviations are documented.

Result of using guidelines and styleguides:

The result of using guidelines and styleguides is rather concrete, possible

deviations are documented and then used to decide on user interface changes.

Result are at a low level; deviations identified mainly concern deficiencies i n

menus, dialog boxes, etc.

Need for other methods:

No need for other methods is mentioned by the authors.

Practical experiences:

The practical experiences f rom using guidelines and styleguides are rather

comprehensive (see, for example, De Souza & Bevan, 1990; Mosier & Smith,

1986; Tetzlaff & Schwartz, 1991; Thovtrup & Nielsen, 1991). These experiences

indicate that guidelines and styleguides are difficult to use in a practical

system development situation.

M y own conclusions:

From the experiences of this author (see, for example, Löwgren & Nordqvist,

1990; 1992; Nordqvist, 1995), guidelines and styleguides are very difficult to

use in industrial system development for the fol lowing reasons. First,

guidelines and styleguides documents are very comprehensive and diff icul t

to understand by developers. This discourages developer usage. Second, use

73

of guidelines and styleguides is very demanding on system development

resources (time and personnel) when compared to obtained results. Use of

guidelines and styleguides, as a consequence, is not given priority. A majority

of the time they are never used in an evaluation setting. Nevertheless, i t is

important to use guidelines and styleguides for user interfaces to be

consistent.

3.3.7 Prototyping

When shall prototyping be used:

Prototyping can, according to the authors, be used early in the system

development process to identify, concretize and evaluate the user

requirements on the computer system to be developed. Prototyping can also

be used in conjunction wi th user interface design.

Util izing prototyping:

In prototyping the fol lowing activities are performed:

• identification of requirements (services) to be implemented in the

prototype,

• selection of suitable prototyping technique,

• prototype development,

• prototype evaluation,

• possible further development of the prototype.

The point of departure in identification of requirements to be implemented in

the prototype is usually an idea (or need) concerning a computer system, or

the set of requirements identified together w i th customer/user. From this,

74

requirements (services) to be implemented are chosen, and an approach for

implementation is determined (for example, horizontal or vertical

prototyping). Depending on requirements and how extensive implementation

w i l l be, a prototyping technique is selected (for example, use cases, story-

boards, high-fidelity prototypes). The selected technique is used to develop

the prototype, which in turn is evaluated against, for example, user

requirements identified/usability requirements. Using the evaluation as a

basis, possible further development of the prototype is carried out. When

essential user requirements are identified and validated, the prototype can

function as a description of the set of requirements, or requirements can be

documented in a requirement specification. As mentioned earlier, the

prototype can also be evolutionary developed into the final system.

Result of prototyping:

Prototyping results, i n conjunction wi th identification of user requirements, i n

that identified requirements are concretized, validated and further

requirements are identified. In conjunction w i t h user interface design the

outcome is a user interface design proposal.

Need for other methods:

The authors mention need for use testing (see, for example, Andriole &

Adelman, 1995) in evaluation of a prototype. The result f rom prototyping

seem to be regarded as directly usable in subsequent system development

work.

Practical experiences:

The practical experiences of prototyping are numerous. These suggest that

prototyping is a powerful technique for definition of user requirements on the

system to be developed. According to Andriole (1990; 1994), i t is the most

75

successful method for defining user requirements (see also Miller-Jacobs,

1991; Gordon & Bieman, 1994, for discussions about the value of prototyping

in system development). However, in industrial system development,

prototyping has been difficult to fu l ly introduce, as it is hard to plan and

manage prototyping. Therefore, project managers have been reluctant to

advocate prototyping as a tool for identification of user requirements

(Sommerville, 1992). In connection w i t h software design, prototyping has

been used to support user interface design.

M y own conclusions:

Based on my own experiences, fol lowing observations are made:

• prototyping is seldom used in connection wi th definition of user

requirements. Instead, prototyping is most often utilized in connection

w i t h identification of software requirements and/ or i n user interface

design,

• i n cases where prototyping is performed, prototype evaluation is

usually performed randomly. For example, a number of users try to

use the prototype in an unstructured way, or is only requested to

express their opinions.

The above experiences can result i n developers not knowing what to develop

early in the system development process (see also Andriole, 1990). The

probability that a computer system is developed that ful f i l l s user

requirements and is usable is then minimal.

Further observations are:

• prototyping is very powerful as a technique to minimize differences in

interpretation of user requirements. Prototyping avoids problems that

76

occur in the interpretation of complex and/or abstract requirements

using only ordinary text documents (see also Sommerville, 1996).

• if simple prototyping techniques (paper copies of screen displays,

storyboards) are combined wi th the 'Wizard of Oz' technique the

communicative effect of these techniques are augmented.

3.3.8 Contextual Design

When shall contextual design be used:

According to the authors, contextual design may be used throughout the

system development process. It can be regarded as an alternative to more

traditional system development methods (examples of traditional

development methods/models can be found in Boehm, 1988; Royce, 1970).

Utilizing contextual design:

The activities performed in contextual design are:

• contextual inquiry,

• modeling of work,

• (possible) re-design of work,

• design of computer system (user environment),

• design of user interface.

In contextual inquiry, users are observed and interviewed as they are

performing their work, to clarify what is done, why i t is done, and how. The

results f r o m these observations and interviews are then combined into affinity

diagrams. When this grouping is ' fu l ly developed,' organizational aspects,

physical environment, roles performed by users and specific tasks performed,

77

are modeled. When necessary, these models are used to create abstract

models of possible work changes. Wi th these models as a basis, focus areas

are used to design a computer system. Focus areas are also used to define

functions and objects necessary to perform work, and to design a user

interface. The proposed design is realized in a simple prototype and

evaluated by users in the real work environment. The prototype is then

further developed into the final system.

Result of contextual design:

Contextual design includes a description, in the fo rm of notes and models, of

work performed by users, as well as suggestions for work changes, system

design and user interface design. According to the authors, the final result is a

developed computer system.

Need for other methods:

The authors do not express any need for other methods before, or after

contextual design. They advocate contextual design as a replacement for other

approaches to system development. However, note that (evolutionary)

prototyping is part of contextual design.

Practical experiences:

The practical experiences mentioned by the authors seem to emanate f rom

projects whose main purpose is testing and further developing contextual

design.

My own conclusions:

Practical experiences described by the authors are few, and i t is difficult to

make any definitive conclusions about contextual design's possible

78

advantages or disadvantages. From an industrial system development

perspective, the advantages w i t h contextual design is the focus on the user

(customer), and what is done in a work situation. A disadvantage may be that

contextual design appears to be designed for system development where

there are no limitations on work situation study and prototype evaluation in a

work setting. In industrial system development, study of work situations can

be limited, and users are often unavailable (see also Nielsen, 1994). It is also

uncertain i f contextual design can replace more traditional system

development methods, as it seems to neglect the need for more formal

software requirement analysis and software design. In development of more

complex computer systems, it is advisable to use formal analysis and design

techniques that offer necessary structure. Contextual design can possibly

supplement industrial system development. This method can deliver models

concerning, for example, the physical environment, that i n turn can be useful

during system design.

3.3.9 Use Testing (Usability Testing):

When shall use testing be used:

Use testing shall, according to the authors, be used to evaluate prototypes,

early versions of computer systems, as well as ful ly developed computer

systems.

Util izing use testing:

The activities performed in use testing are:

• definition of purpose w i t h the use testing,

• identification of work tasks and users,

• performance of use testing,

79

• analysis of use testing results.

In definition of purpose for the use testing, aspects of prototype or developed

system to be studied, and what registrations to do, are determined. Wi th the

purpose of the use testing as a basis, representative work tasks and users are

identified. Work tasks selected are then used during user evaluation of the

prototype, or the developed computer system. The user tries to accomplish

tasks using a prototype, or a developed computer system. In conjunction wi th

this task performance, for example, what users are doing, what problems they

have, how tasks are performed and how fast, are registered. These

registrations are analyzed to identify possible usability problems and possible

corrective actions.

Result of use testing:

The results of use testing are influenced by what is decided to be registered.

Generally, the results of use testing are explicit indicators of possible usability

problems that w i l l occur when the computer system is operating in a real

work situation.

Need for other methods:

The authors do not express need for other methods. However, they point to

the need for realistic and representative work tasks. They also point to the

need for real users during use testing. This implies need for task analysis and

usability specification before use testing can be carried out. I t is also necessary

to have a 'system' to use test; either a prototype or an already developed

computer system. Therefore prototyping is sometimes necessary.

80

Practical experiences:

Use testing is, according to many authors, the evaluation method that best

identifies possible usability problems (see, for example, Desurvire, 1994;

Karat, 1994). Use testing has also been used in many system development

projects and has proved its value (see, for example, Dumas & Redish; 1994;

Karat, 1992).

M y own conclusions:

While use testing is the evaluation method that identifies most usability

problems, and best corresponds to real use situations, there are some

disadvantages w i t h the method. In an industrial system development

situation, there is usually insufficient time and money to perform use testing

to the extent necessary. Especially if use testing is performed in the

experimental fashion as discussed by Lewis and Rieman (1993). Another

possible disadvantage is that use testing can be too artificial and arranged (to

collect objective data) to realistically reflect real use.

Despite these possible disadvantages, use testing is of value and should be

performed more often than is the case. In case resources for use testing are

scarce, it is possible to perform use testing as described in discount usability

engineering (see, for example, Nielsen, 1995) where a small number of users

informally use test an application. From my experience it is also possible to

use test simple prototypes (use-cases, paper copies of screen layout,

storyboards) as well as other models early in computer system development.

Although the empirical data obtained are not precise enough for definitive

conclusions concerning usability issues, i t is often of value to use test as

practical evaluation often result i n important information. Another reason for

carrying out use testing also on simple prototypes is the necessity to confirm

that the prototype (model) correctly describes the phenomenon under study.

81

4. USABILITY WORK AND INDUSTRIAL SYSTEM DEVELOPMENT

4.1 Introduction

Using the industrial system development process described in Chapter 2 as a

basis, Figure 8 shows this author's interpretation of when methods presented

should be used. In this interpretation, a method is related to one, or at the

most two, system development activities; although some authors quite

reasonably say their method support more activities. This is interpreted to

mean that the result f r o m a method may be used in more subsequent system

development activities. A method is related to a system development activity

as defined here, even when authors associate their method to an activity of a

different name. For example, Nielsen (1993) states that heuristic evaluation

should be used in connection wi th design and development of user interfaces.

System development, as presented here, differentiates between system design

and software design, therefore Nielsen is interpreted to advocate use of the

method in conjunction wi th software design.

Prototyping

Contextual destgß

Figure 8: Methods for usability work and their use in industrial system development

82

As depicted i n Figure 8, authors are interpreted to mean that methods for

business analysis, task analysis, and prototyping are to be used during early

system development activities (Identification of need, Identification of user

requirements). Use of guidelines and styleguides, heuristic evaluation,

cognitive walkthrough (jogthrough), usability specification, prototyping, and

use testing, according to the authors, are used during later system

development activities (Identification of software requirements, Software

design, Implementation and unit testing, Integration and testing, Operation

and maintenance). Contextual design is used in all system development

activities. I t is an alternative to the system development activities presented.

This interpretation of method use indicates that usability work is not carried

out in some system development activities (not even theoretically). It also

indicates that only minor usability work is performed in many system

development activities, and that there is no continuity in usability work in the

continuum of system development work. The consequence of this may be that

user requirements identified in early system development activities are Tost/

and may or may not be found again in later activities when use testing and

other kinds of usability work are performed. Another consideration

illustrated in Figure 8 is that many methods focus on few system

development activities. This means that the potential benefits of usability

work are not fu l ly utilized. As an example, use testing seems to be carried out

only in connection w i t h implementation and unit testing, and integration and

testing, despite the fact that this method could be beneficial in other system

development activities, such as identification of user requirements.

As a preliminary attempt to increase the integration between usability work

and industrial system development, and to increase the utilization of methods

for usability work, a simple model together w i t h examples of such an

integration is outlined in the following sections.

83

4.2 Integration of Usability Work and Industrial System Development: A

Preliminary Model

Figure 9: A model for integration of usability work and industrial system development

In principle, usability work can be seen as encompassing four activities;

definition, analysis, modeling and evaluation. These activities should be seen

as continuous iterations, where the result f rom definition is analyzed,

modeled and then evaluated, to be followed by definition again if necessary.

Definition, analysis, modeling and evaluation should, according to this

model, be carried out as part of all system development activities. Figure 9

above, portrays how definition, analysis, modeling and evaluation overlap.

The continuity in usability work throughout the entire system development

process, is also illustrated in Figure 9. The methods presented i n Chapter 3

can be summarized as a combination of definition, analysis, modeling and

evaluation to a higher or lower degree. For example, i n prototyping the

services (functions) to be implemented are first defined and analyzed, then

prototyped and finally, evaluated.

No individual method is enough to ensure that the computer system under

development fulfi l ls user requirements and becomes usable. Thus, there is

reason to f ind a common denominator i n these methods and to view them as

a tool box rather than as separate methods. Another reason for this approach

84

is the increased likelihood that the methods are considered as able to support

and complement each other. That earlier acquired results facilitate and make

subsequent usability work more efficient.

4.3 An Example of Integration of Usability Work and Industrial System

Development

This section gives an example on how to integrate usability work into

industrial system development. System development activities are discussed

f r o m the perspective of usability work and examples of suitable methods and

techniques are presented.

.3.2 Identification of Need

• .

& Usetestmg

S
Prototyping

Figure 10a: Integration of usability work and industrial system development

In accordance w i t h the authors, (TELUB AB & System Development

Associates, 1990; TELUB AB, 1995), the use of business analysis (RASP) in

connection wi th identification of need is recommended. In the model

advocated, see Figure 10a, business analysis is supplemented w i t h

85

prototyping and use testing. The reason for this is that it is:

• diff icult for users to understand and assimilate models (function

graphs, object models), that are the outcome f rom business analysis

according to RASP. (This is also true for other business analysis

methods),

• diff icul t for users to decide if proposed design of future business, i n the

fo rm of function graphs and object models, w i l l result i n a more

effective business, unless these proposals are supplemented w i t h

prototypes that can be use tested.

It is not necessary that advanced prototypes are developed, and

experimentally use tested. Rather, use of simple prototyping techniques, such

as use cases, paper copies of screen displays ("screen layouts" means here

suggestions on services to be delivered by the computer system, not pure

screen layouts), and storyboards are recommended tools. Simple use testing is

performed to increase understanding in users and developers of proposed

business design and its effects. Use testing can, in this case, be use tests of

simple prototypes where real users perform a small number of work tasks,

and where the goal is to identify use problems and user opinions as to how

proposed design w i l l function during actual task performance. Another

important aspect possible to check wi th use testing is that the prototype (or

other model) is a correct description of the problem at hand. This validation of

prototypes and other models is of course also necessary in subsequent system

development activities.

86

4.3.2 Identification of User Requirements (Requirements Definition)

c
T)

Task analysis

Figure 10b: Integration of usability work and industrial system development

In identification of user requirements, see Figure 10b, task analysis (KAT),

prototyping, and usability specification w i l l provide a significant quantity of

needed descriptors. By supplementing these three methods w i t h use testing, a

more complete picture of user requirements is possible. The reasons for

advocating task analysis, prototyping, usability specification and use testing

are that:

• task analysis i n most cases is a precondition for identifying what to

prototype (and develop),

• users have difficulty deciding if requirements are correct and if their

expressed needs are being correctly interpreted by developers. When

requirements and expressed needs are concretized wi th the help of

prototypes which can be use tested clear communication w i t h users is

more likely,

• prototyping is an aid for defining reasonable usability requirements.

This implies that the first activity in connection wi th identification of user

requirements is a task analysis. While some task analysis is necessary, i t is not

87

always necessary to perform a complete task analysis according to KAT. To

create conditions for identification of user requirements i t is initially enough

to identify the work (business), and then do a preliminary selection of tasks to

be supported by the computer system. Tasks to be supported can then be

analyzed to identify goals, sub-goals, and procedures. Wi th this analysis as a

basis, i t is possible to create simple prototypes (use cases, paper copies of

screen displays or storyboards). The materials developed during

identification of need may be modified and reused. Through this practice user

involvement in development is fostered and iteration occurs. (This is true also

i n subsequent system development activities). Using advanced techniques

and tools to create prototypes in this early stage of system development may

cause users, as well as the people who support the users in identifying

requirements, to inflexibly and too early decide on specific solutions. I t is also

easier (and cheaper) to create alternative solutions when using simple

prototyping techniques.

Prototypes should be use tested to validate that requirements are appropriate

and to identify further requirements. Use testing is best restricted to only

investigating that necessary services are delivered by the prototype and that

work tasks are possible to carry out at all. The reason for advocating use

testing so early in system development is the importance of identifying user

requirements on the system to be developed, before development starts (see

also Andriole, 1990; 1996). If user needs are not known, a computer system

that efficiently supports their needs is unlikely to be developed.

As the user requirements are analyzed, prototyped and evaluated, the

usability specification can be specified. Even if those requirements i n this

early stage of system development risk being described too generally to be of

direct use in later system development activities, they can serve as means for

creating an understanding concerning the usability requirements for those

88

involved in the system development effort (see, for example, Whiteside et a l ,

1988).

4.3.3 Overall Design of the System

Figure 10c: Integration of usability work and industrial system development

According to Johnson and Johnson (1990; 1991), the results f rom task analysis

(KAT) can be used in connection wi th system design. Results f rom business

analysis (RASP), contextual design and prototypes developed are also

important input for system design, see Figure 10c. The result f rom business

analysis is important because it gives an overview of which services the

computer system should deliver, what other functions (services) are, and the

relation between the computer system and other functions (the business). The

result f r o m task analysis serves, for example, as basis for defining general

allocation of tasks between users and the computer system (Johnson &

Johnson, 1991). Models of the physical environment created and focus areas

identified in conjunction wi th contextual design also offer valuable results

useful i n system design. Prototypes can be used together w i th function graphs

and physical environment models to create an overview model of the total

system (user-task-organization-technology), which then can be use tested.

Here, use testing is an informal test to determine if the computer system

89

(prototype) design fulf i l ls defined user requirements and i f defined work

tasks can be performed. Also a simplified cognitive walkthrough (cognitive

jogthrough) can be carried out on this overall model. Further development of

the usability specification, for example refinement of performance measures

are also advocated.

4.3.4 Identification of Software Requirements (Software Requirements Analysis)

Figure 10<± Integration of usability work and industrial system development

As identification of software requirements focuses on translating user

requirements f r o m a non-specialized representation (natural language, graphs

and prototypes) to a representation better suited for software development,

usability work does not have an explicit role. However, i t is important to

ensure that user requirements are correctly "translated". Therefore, i t is

valuable to continue the analysis of user requirements and to further develop

models and prototypes in parallel wi th identification of software

requirements. It is also advisable to use test these models and prototypes and

to further develop the usability specification.

Further prototype development may be development of a completely new

prototype. This is often necessary in conjunction w i t h development of more

90

complex computer systems. In prototyping to identify user requirements,

early ideas and interpretations of requirements, are f requenüy defective or

even erroneous. Prototyping is used to modify and give a better

understanding of user requirements on the system to be developed.

4.3.5 Software Design

Figure lOe Integration of usability work and industrial system development

Part of software design, is user interface design. Usability work is here

focused on user interface prototyping in combination wi th inspection and

testing of proposed design, see Figure lOe. Guidelines and styleguides that

may be useful during design are identified. Here, i t is necessary to identify

two kinds of guidelines and styleguides. First, guidelines and styleguides

concerning appropriate interaction techniques (see, for example Smith &

Mosier, 1986). Second, guidelines and styleguides concerning design of

specific user interface elements. (These guidelines and styleguides are also

used during implementation & unit testing, and integration & testing).

User interface design proposals are implemented in one or more prototypes,

(here, more advanced prototyping techniques such as dynamic prototypes,

91

l imited functionality simulations, high functionality prototypes or selective

fideli ty prototypes w i l l generate the more complex data needed at this stage).

Prototypes should be evaluated using identified guidelines and styleguides,

heuristic evaluation, cognitive walkthrough (cognitive jogthrough) and use

testing in some combination. Cognitive walkthrough (Cognitive jogthrough)

is important for inspection of user interface design, as this method explicitly

has the tasks to be performed wi th the computer system as a basis. Use testing

w i t h the help of real users and real work tasks should be used later on in the

software design, when a user interface has reached its " f ina l" design. Before

use testing, other techniques should be used to recognize simpler deficits in

design, so that users are not used up (see also Nielsen, 1993). The usability

specification should also be further developed, for use in implementation &

unit testing, and integration & testing.

4.3.6 Implementation and Unit Testing

Use of <M and Sg

Figure lOf: Integration of usability work and industrial system development

When software design, particularly user interface design, has the input f rom

usability work, simpler usability evaluations such as cognitive walkthrough

(cognitive jogthrough), heuristic evaluation, etc., are sufficient for the

92

usability work part of implementation and unit testing, see Figure lOf. It is for

example, possible to depend on usabUity specifications for evaluation of user

interface elements as they are being developed, (understanding of menus,

dialog boxes etc.). However, only the most important user interface elements

should be evaluated using this resource demanding method. In parallel w i th

this evaluation, heuristic evaluation and/or use of guidelines and styleguides

to continuously evaluate the user interface during implementation, are also

advisable. Use of both guidelines/ styleguides and heuristic evaluation are

sometimes recommended. I n the requirement specification there may be

explicit requirements to adhere to some specific guideline and/ or styleguide.

In this case, i t is not enough to perform only heuristic evaluation.

Simple usability evaluations are sufficient if identification of need,

identification of user requirements, system design, identification of software

requirements, and software design have been performed wi th the help of

usability work (especially prototyping and use testing). It is not always

necessary to perform prototyping and use testing, which require major

resource investment, when implementing and testing software.

93

4.3.7 Integration and Testing

Figure 10g: Integration of usability work and industrial system development

When integrating and testing software it is valuable to again carry out use

testing, see Figure 10g, because of fol lowing reasons:

• the importance of testing that the user requirements are fulf i l led,

• the importance of testing for system usability,

• here is the first time when it is possible to evaluate the whole system

f r o m a usability perspective,

• use testing w i t h real users and real work tasks create test conditions

that most closely approximate actual use.

In this use testing the scenarios (use cases) and the usability specifications

developed can be valuable input.

94

4.3.8 Operation and Maintenance

Figure 10h: Integration of usability work and industrial system development

In connection wi th operation and maintenance i t is also important to focus on

use testing, see Figure 10h. This use testing is a supplement to delivery and

acceptance testing. The developed system should be evaluated in its real

environment, w i th real users and real work tasks. Scenarios (use cases) and

usability specifications developed can also here be used as input to the use

testing performed.

4.4 Conclusions

4.4.2 The Model

As illustrated in Figures lOa-h above, use of methods for usability work in all

system development activities is recommended. Emphasis on usability work

dur ing all activities (especially early ones) in system development w i l l

hopefully rmnimize the risk of having to make costly and extensive changes

late i n the development process and after begirming actual system use.

95

The potential benefits of including usability work continuously in system

development are:

• the computer system is being more usable as the user and use of the

computer system is emphasized continuously during the system

development process,

• results f r o m earlier usability work can be used in later (and parallel)

usability work, making i t more efficient. For example, the result f r o m

task analysis can be used in and facilitate heuristic evaluation as well as

cognitive walkthrough (jogthrough). Both of these methods require

work task knowledge,

• there is considerable reduction in risk that user requirements are

forgotten, or wrongly interpreted, during identification of software

requirements, software design, implementation & unit testing, and

integration & testing.

One reason for focusing on usability work during early system development

activities is that it emphasizes user requirements and likely results i n the

system under development being more effective in the actual work situation

(see also Andriole, 1990; Andriole & Monsanto, 1995). Another reason is that

deficiencies and errors in requirements detected early in the system

development process, are up to 200 times cheaper to correct than if detected

during operation and maintenance (Davis, 1990; 1993). A third reason is that

time delay and budget overruns in many cases are due to deficiencies i n what

is here called usability work, as omission early on requires larger later effort

(Lederer & Prasad, 1992).

4.4.2 Experiences

The model has not been formally evaluated. What has been done is an

informal evaluation in the way that business analysis, task analysis,

96

prototyping and use testing have been used in connection w i t h identification

of need and identification of user requirements. Also, prototyping, heuristic

evaluation and use of guidelines and styleguides have been utilized in

connection w i t h software design (especially user interface design) and

implementation and unit testing. In both cases the methods were used in real

system development projects and/ or system developers who have used

above mentioned methods in real system development projects were

interviewed. Examples of system development projects included are: a system

for training of air force command and control, a system for military airfield

command and control, a system for presenting and managing geographical

information, and a system for presenting attacking enemy air forces. A n

indication of the magnitude of the projects is that they represent f r o m 1 to 100

man months invested in the activities of identification of need, identification

of user requirements and system design. Preliminary experiences f r o m this

evaluation are as follows.

In identification of need:

• business analysis imply a better understanding in users, as well as

those responsible for development, of which change requirements

could (and should) be ful f i l led by a computer system (see also

Andriole, 1996),

• business analysis requires a major investment in time and staff; as

many people f rom business need to participate in the development

process and business is frequently complex,

• i t is sometimes difficult for users to understand results of business

analysis (graphs, f low charts, object models),

• prototyping results in a better understanding of which computer

system should be developed, which services the computer system

should deliver (see also Andriole, 1996; Sommerville, 1996),

• i t is easier for users to understand the effects of proposed business

design, if models and prototypes are use tested.

97

In identification of user requirements:

• task analysis (in some form) is a necessary supplement to other

methods, to identify work tasks to be supported and to obtain

information about how to support work tasks,

• task analysis requires excessive resources (time and man power) i n

relation to the perceived utility, if carried out in exact accordance w i t h

all steps in the method,

• prototyping results in a better understanding of what computer system

is necessary to develop (what services it should deliver),

• prototyping is often necessary for users to be able to actively contribute

in the process of identifying requirements, concretize requirements and

to help them understand their own requirements,

• prototyping sometimes causes users to "wish for everything,"

• prototyping sometimes results i n users focusing on user interface

issues, instead of issues of relevance to what services the system should

deliver,

• prototyping sometimes results in too early fixation on an idea, or

requirement set, then used as a basis for development of the f inal

computer system. In the case where prototyping is used to identify

requirements for a complex computer system, early ideas or

requirement sets may miss some requirements and be defective. A n

early idea or requirement set used to develop a final system

(evolutionary prototyping), risks developing a system that fails to

efficiently support user work. In many situations i t is necessary to

discard an early prototype, and use the acquired experience for

development of a new prototype,

• use testing helps users to understand the effects of their requirements

and encourages them to identify other requirements than the most

obvious,

• developers (and in some cases users) sometimes think that theoretical

discussions about user requirements can replace use testing,

98

• use testing is sometimes perceived as requiring too much time to

perform,

• when task analysis, prototyping and use testing have not been

performed, user requirements tend to focus on what information is to

be handled in the computer system, and what information is to be sent

to and f r o m the system. User requirements that focus on what the user

should be able to do wi th the system are not given priority.

In software design:

• user interface prototyping is efficient to communicate user interface

design proposals,

• heuristic evaluation is a fast and efficient way to inspect a design

proposal (see also Nielsen, 1993),

• heuristic evaluation is sometimes perceived as inadequate as i t

primarily identifies "low-level" problems,

• use of guidelines and styleguides require too much resources

compared to perceived contribution to usability,

• use of guidelines and styleguides are usually "forgotten" in software

design, even if there is an explicit requirement to fol low some guideline

and/ or styleguide.

In implementation and unit testing:

• same experiences as in software design.

Summary:

Preliminary experiences in carrying out usability work in industrial system

development can be summarized as follows:

• usability work contributes to a better understanding in users, wi th

respect to the system to be developed and the effects of the system,

99

usability work leads to more comprehensive user influence upon what

is being developed,

usability work places greater demand on users because they, more

explicitly, are responsible for what is being developed,

usability work leads to greater demands on developers because they

must understand what to develop in terms of user language,

methods for usability work often "disturb" the system development

process. Much is required of those who are going to use the methods

and much resources in time and participating people are required

(usability experts, users, developers, etc.),

it is easy to get an understanding of the necessity to carry out usability

work, but it is difficult to receive an adequate level of funding,

it is diff icult for outsiders to develop an understanding of the need to

carry out usability work during early system development activities,

usability work result in (require) user participation in system

development.

100

5. THE NEED FOR EXTENDED INTEGRATION OF USABILITY

WORK AND INDUSTRIAL SYSTEM DEVELOPMENT

5.1 Introduction

The preliminary model presented here represents only a first step i n

integration of usability work and industrial system development. Necessary

future work to deepen integration is characterized by following:

• the need for closer study of how different usability work methods can

be integrated to optimize use in an industrial system development

setting,

• further identification and definition of appropriate usability work

methods,

• the need for research and development that supplements and develops

existing methods. For example, to simplify some methods for more

effective application in industrial system development,

• further practical evaluation of the model and the "tool box" of methods

advocated here,

• development of different kinds of computer support. For example,

software that supports use of guidelines and styleguides, task analysis,

business analysis, and use testing,

• more complete integration of usability work and industrial system

development, so that usability work is perceived as a natural part of

system development,

• education of those participating in system development to deepen

understanding of usability work possibilities and deficiencies.

101

Below, a brief discussion of some of the issues above is presented. The focus is

on discussing each issue f rom the perspective of concretizing and

exemplifying what has to be done.

5.2 Further Integration of Usability Work

The model depicted in Chapter 4, describes usability work methods to be

carried out during system development to foster usability of a f inal product.

The model also describes how to apply these usability work methods during

system development activities. However, the model does not consider, in

enough detail, how results f rom usability work in one system development

activity relate to usability work in subsequent system development activities.

It is also beneficial for understanding of usability work advantages and

disadvantages to describe how usability work contributes, i n a concrete way,

to different system development activities. Another issue not handled in the

model, is how usability work may effect the variability (development) of the

requirement set i n system development (see, for example, Andriole, 1996;

Davis, 1993; Sommerville, 1992).

Most important is to elaborate the description of how results f rom one

method for usability work can be used by other methods. The utilization of

results was described in section 4.1, here it is concretized further. Below, a

brief description of results obtainable f rom different usability work methods

are presented, together w i th mention of how results can be used to support

other methods.

102

Method:

Business analysis.

Result:

Description of present business, prioritized

change needs, model of proposed future

business.

Task analysis. Description of present work task knowledge,

model of proposed task design.

Usability specification. Knowledge of requirements for a system to be

deemed usable, basis for use testing.

Heuristic evaluation. Description of possible usability problems i n

user interface based on general usability

principles.

Cognitive walkthrough,

(cognitive jogthrough).

Description of possible usability problems

based on user needs when carrying out one or

more tasks.

Use of guidelines and

styleguides.

A list of deviations f rom defined guidelines and

styleguides.

Prototyping. Concretized and validated user requirements,

identification of additional user requirements.

Identification and definition of user interface

requirements and user interface design.

103

Contextual design. Description of work performed by a user,

suggestions for change of work, design of

physical environment, computer system, and

user interface.

Use testing. Indications of possible usability problems

during user performance of work tasks, using

the computer system (or prototype).

5.2.1 Role of Business Analysis

Results f rom business analysis is important for task analysis, prototyping,

contextual design, and use testing. For task analysis, a model of future

business facilitates identification, analysis, and modeling of tasks. In

prototyping, results f rom business analysis serve as a frame of reference in

discussion of what services a computer system should deliver. Results f r o m

business analysis can also assist when studying the relationship between these

services and those services not to be supported by a planned computer

system. For contextual design, information about present business and

possible design of future business, provide context when discussing how

work should be designed. Wi th use testing, a model of future business

contributes to the evaluation of computer system usability f rom a business

perspective. In summary, the greatest value of business analysis in relation to

other methods is for background information, as related to business

information. The result f rom business analysis serves as a foundation for the

other methods. In Figure 11, below, the use of results f rom business analysis is

illustrated.

104

5.2.2 Role of Task Analysis

Task analysis provides information of value in usability specification,

heuristic evaluation, cognitive walkthrough (cognitive jogthrough),

prototyping, contextual design and use testing. With usability specification,

information about present and/or future work tasks is used to define

usability goals and to choose tasks for inclusion in the usability specification.

Heuristic evaluation incorporates information about tasks in its analysis (see,

for example, Nielsen, 1993; 1994), therefore, task analysis is of value. The same

is true for cognitive walkthrough (cognitive jogthrough), where task

descriptions fo rm the basis of the walkthrough to be carried out. Prototyping,

uses for example information about tasks to evaluate relevance of

"unstructured wishes", that fai l to relate to tasks to be supported by the

computer system being developed. Task analysis also provides information

concerning services to be included in prototyping. Information f rom task

analysis is probably also of value in contextual design for increased

understanding of tasks to be supported by a computer system.

Knowledge f r o m task analysis can also help to ensure that the physical

environment is designed in accordance w i t h tasks allocated between a

105

computer system and user (business people). With use testing, a task

description is of value when selecting tasks to be included in the use test. A

task description can also be useful i n deciding criteria for measurement. (If a

usability specification has been developed, need for results f rom task analysis

in conjunction wi th use testing is not as important, see below). I n Figure 12,

below, use of results f rom task analysis is illustrated.

Figure 12: Illustration of use of results from task analysis

5.2.3 Role of Usability Specification

Results f r o m usability specification are closely related to use testing. Usability

specification contains information about what to measure, how to measure,

and expected results. Results f rom usability specification also contribute

information during heuristic evaluation and cognitive walkthrough. In

carrying out these methods, information f rom a usability specification can be

used to formulate criteria useful for identifying possible usability problems.

106

5.2.4 Roles of Heuristic Evaluation, Cognitive Walkthrough (Jogthrough), Use of
Guidelines and Styleguides

The result f r o m heuristic evaluation, cognitive walkthrough (jogthrough) and

use of guidelines and styleguides, do not directly relate to other methods.

Results f r o m these methods are not incorporated into analysis used by other

methods. However, heuristic evaluation, cognitive walkthrough (jogthrough)

and use of guidelines and styleguides can indirectly assist other methods.

From these methods, it is possible to more clearly identify and understand

critical parts of a computer system (especially the user interface). The methods

are also important for discovery of unanswered questions needing further

study, through, for example, prototyping and use testing. Heuristic

evaluation, cognitive walkthrough (jogthrough) and use of guidelines and

styleguides identify other kinds of usability problems, and can be regarded as

supplementary to use testing (see, for example, Jeffries et al., 1991). However,

experienced usability experts can identify need for prototyping and use

testing, during, for example, heuristic evaluation. Probability of identifying

need for further usability work increases when usability experts understand

business and tasks to be supported. The value, importance and role of the

methods w i l l of course vary according to the level of experience of those

working on development. The results f rom these methods can also unburden

use testing. Less critical usability issues (e.g., low level problems in the user

interface) can be studied before use testing is carried out. These methods can

of course also be used to inspect prototypes. Thus results f r o m these

inspections are of immediate application in prototyping.

5.2.5 Role of Prototyping

Results f rom prototyping have direct implication in a number of other

methods. Wi th business analysis, simple prototypes can deliver valuable

information about advantages and disadvantages of proposed business

107

design. In task analysis, prototyping can help to make effects of different task

designs and task organization explicit. In contextual design, prototyping has

been described as an integral part. Use testing, cognitive walkthrough

(jogthrough), heuristic evaluation and use of guidelines and styleguides

require prototypes if no system exists to be evaluated.

5.2.6 Role of Contextual Design

Results f r o m contextual design can be of value during use testing. When more

than the computer system (or prototype) is studied, information about the

physical environment provides detail needed for design decisions.

5.2.7 Role of Use Testing

Results f rom use testing may be viewed as part of the prototyping process.

Use testing is needed for conclusions concerning prototype performance. Use

testing can also be part of business analysis. Use testing (in some form) of

business models can provide important information on how a proposed

business design influences users and/ or business people possibility to carry

out work. The same is true for task analysis.

5.3 Additional Methods Needed

As is evident i n the descriptions of results derived f r o m usability work

methods, the outcome is focused on business, work tasks, user requirements,

user interface and use of computer system (or prototype). The user is an

important member in, and supplier of information to, many of the methods.

108

However, user input and study is mainly f rom the perspective of business

and task in which they participate. Little is mentioned about the user, and his

or her characteristics as a human being. None of the methods explicitly

mention user physical and psychological needs/abilities (although these

needs and abilities are the foundation for cognitive walkthrough, heuristic

evaluation etc.). Contextual design explicitly focus on user (customer) i n

connection w i t h computer system development. However, the method seems

to assume that user focus alone is enough to identify and consider user

needs/ abilities.

In my opinion, i t is necessary to supplement the usability work "tool box"

presented here wi th methods for identifying and describing the computer

system user needs/abilities. Approaches in this direction is for example, user

profi l ing (Andriole, 1989; 1996), cognitive (systems) engineering, (Andriole &

Adelman, 1991; 1995; Hollnagel, Mancini & Woods, 1988; Woods, 1988;

Woods & Roth, 1988), user modeling (Kelly & Colgan, 1992; Wilson, Johnson,

Kelly, Cunningham & Markopoulos, 1993), and GOMS (Card et al. 1983; John,

1995; John & Kieras, 1996).

5.4 Further Development of Methods for Usability Work

As mentioned earlier, for the methods to be more fu l ly adapted to the

industrial system development situation, it is necessary to simplify and/or

further develop some of them. One reason for this is that many of the

methods (for example, business analysis, task analysis) require excessive

resource investment (see, for example, the experiences mentioned in section

4.4). This may cause methods not to be used when time and funding for

development and delivery of a computer system are limited. Experiences

f rom system development also suggest that little time is dedicated to early

system development activities (see, for example, Andriole, 1990; Davis, 1993).

109

This fact can cause an unwillingness on the part of project management to

dedicate resources to usability work. Particularly if resource demands are

high compared to perceived value for the project.

Work necessary to simplify and/or further develop different methods, is

beyond the scope of the present work. To simplify and/or further develop a

method it is necessary to consider the theory that is the basis for the method

(see, for example, Johnson, Drake & Wilson, 1990, for a discussion of the value

of a theoretical frame of reference when developing a method). If a method is

further developed or simplified without considering theory, outcome f rom

method use may be defective. Another reason is the necessity to practically

evaluate a further developed or simplified method to verify that use w i l l still

result in the right outcome.

Briefly presented here are some actions needed to make methods described

more natural parts of the system development process. The first action

recommended is to simplify business analysis, task analysis and use testing.

To adjust these methods so that they may be carried out in a "mini way", to

support initial and more general attempts. This modification does not

advocate always utilizing a "mini method." It is necessary to remember that

simplified methods have limitations compared to original methods. Although

some literature does indicate that simplified methods have value in system

development (Nielsen, 1995; Rowley & Rhoades, 1992).

Second, i t is important to illustrate the dynamics in business models (graphs,

f l ow charts, etc.,) developed in business analysis. Many businesses are so

complex that a static description is insufficient for users and/or business

people to understand a business process (see, for example, Hughes, 1996).

110

Third, i t is valuable to supplement use testing wi th environmental simulation

(in some way), especially if a computer system is being developed to support

complicated and extensive work situations. Sometimes, it is necessary to

simulate how other business parts, users, and the external environment act

and react, when users evaluate a computer system by carrying out work tasks.

This simulation does not have to be performed by computers; use of 'Wizard

of Oz' techniques (Maulsby et al., 1993) can in many cases be enough.

5.5 Practical Evaluation

The preliminary evaluation of the model and the methods described in section

4.4 is not sufficient. A more thorough and deep practical evaluation, to test

and study advantages and disadvantages of the model and the methods, and

to identify needs for new methods, is required. The most important actions to

perform in such an evaluation are to:

• use the model and the methods throughout the system development

process, f r o m identification of need to operation and maintenance. The

purpose being to study advantages and disadvantages in every system

development activity, and to study how the methods work together. To

study the process of transferring results f r o m usability work in one

system development activity to other system development activities

w i l l also provide useful information,

• study possible effects of usability work on a requirement set that is

being developed. According to Andriole (1994), Brown, Earl and

McDermid (1992), for example, the most serious deficiencies in present

system development concern deficiencies i n the requirement set

(requirement specification). Important issues to study are for example;

Does focus on usability work continuously during the system

development process result i n requirements changes being regarded as

natural?; Can these changes be integrated in a natural way when

I l l

prototypes are developed?; Does a focus on usability work early i n the

system development process result i n a more complete requirement

set, earlier i n the system development process?,

• identify reactions toward usability work by business people, users,

system developers, and customers. If these groups of people do not

consider usability work as important, usability work w i l l probably not

be a natural part of system development,

• study developers during practical work to acquire in-depth knowledge

of their needs and demands,

• study use of usability work methods, to identify further development

possibilities and needs.

5.6 The need for Computer Support in Usability Work

The need for computer support, for example different kinds of CASE

(Computer Aided Software Engineering) systems, in system development has

been recognized for a long time (Brown, et al., 1992; Sommerville, 1996). In

user interface development, adoption of UIMSs (User Interface Management

Systems) or User Interface Tools has been advocated (Löwgren 1991; Myers,

1995). In usability work computer support can also be useful. According to

Andriole (1996), tools (computer support) to implement methods, processes

and principles into the system development process are necessary aids that

reduce resource demands. Without tools, the methods, processes and

principles tend to increase workload excessively. In my view, the same is

applicable to usability work. Another reason for computer support is to

support the difficult work of ensuring that user requirements identified early,

are taken care of later in the system development process (Wilson, et .al.,

1993).

112

It is possible to divide computer support for usability work into two groups:

• computer support for a particular method,

• computer support to support the process of usability work.

The extent to which computer support can aid a particular method and/ or the

process of usability work can vary widely. It is possible to identify a range of

support levels. For example, computer support that assists:

1. i n documentation of the result derived f rom the application of a

particular method,

2. i n utilization of a particular method,

3. i n carrying out usability work in a particular system development

activity,

4. i n transfer of results f r o m usability work in one system development

activity to usability work in subsequent system development activities,

5. integrated usability work during the entire system development

process.

Greatest benefit occurs when there is computer support on the most

comprehensive level (level 5), where usability work is supported in an

integrated way during system development. Almost the same ideas can be

found in I-CASE (Integrated CASE, see, for example, Cronholm, 1994).

Computer support on lower levels is of course also useful. At present, only

computer support on levels 1, and 2, seem to be available to assist usability

work. A number of tools that support documentation of usability work exist,

for example, word processors and drawing programs. There are also different

kinds of tools (programs) appropriate for prototyping, for example,

HyperCard, Visual Basic, Visual C++, etc., (see also the description of CAUSE

tools i n Nielsen, 1993). However, above mentioned computer support only

assists i n documentation and accomplishment in the sense that they are

possible to use in documentation and performance. They do not support

113

documentation and performance through assisting tool users in, what to

document, how to document, or what to prototype, how to prototype and

how to evaluate the prototype.

There are also different kinds of tools developed, that support the system

development process in a more traditional way, w i th no direct reference to

usability work. In Chapter 6, these tools and a discussion of i n what respect

they support usability work are briefly presented.

114

6. TRADITIONAL COMPUTER SUPPORT IN SYSTEM
DEVELOPMENT

6.1 Introduction

This chapter provides short descriptions of different kinds of computer

support, or tools, developed to support the system development process.

Described here are CASE systems and User Interface Tools. The description is

followed by a brief discussion of CASE systems and User Interface Tools,

f rom the perspective of usability work. More detailed descriptions of CASE

systems and User Interface Tools may be found in McClure (1989),

Sommerville (1996) and Myers (1993; 1995), respectively.

6.2 C A S E Systems

Computer Aided Software Engineering (CASE) systems (in accordance w i t h

Sommerville, 1996, "systems" is used as a general term for all kinds of CASE

technology: tool, workbench or environment) is a common term for tools

aimed at supporting and bringing improved efficiency to the system

development process. (Another common term is Computer Aided System

Engineering tools, Eisner, 1987; Goldkuhl, 1991). According to Bubenko

(1989), Cronholm (1994), Goldkuhl (1992) and Sommerville (1996), CASE

systems often consist of the following building blocks:

• a textual and/or graphical editor to create models (for example, f l ow

charts and/or object models),

• a repository, to store results f rom modeling,

• a function for verification and consistency checking of models,

• a function for transformation of descriptions f rom one level to another,

• a function for report generation,

115

• a function for import and export of data.

CASE systems can, according to Sommerville (1996), be divided in three

different levels:

• CASE systems that support the production process,

• CASE systems that support project management,

• CASE systems that support development of CASE systems, META-

CASE systems.

Only the two first levels are discussed here. Within these levels, i t is possible

to divide CASE systems into the main groups; Tools, Workbenches and

Software Engineering Environments (Brown, et al., 1992; Sommerville, 1996).

Software Engineering Environments are also called Integrated Project-

Support Environments, IPSEs (Sharon & Bell, 1995), or I-CASE (Andriole,

1996; Cronholm, 1994).

Tools support individual sub-activities wi th in the system development

process. Example of tools are, data dictionary tools, diagram drawing tools,

prototyping tools, interactive debugging tools, documentation tools and tools

for analyzing software code.

Workbenches can either support activities wi thin the system development

process (for example, software design, implementation and testing), or actions

necessary during the entire system development process (for example,

configuration management). Examples of workbenches are programming

workbenches, analysis and design workbenches, testing workbenches, cross-

development workbenches, configuration management workbenches,

documentation workbenches and project management workbenches.

Workbenches consist of a set of tools that are integrated at some level. (For a

116

detailed discussion of different types of integration, see, for example, Sharon

& Bell, 1995; Sommerville, 1996; Wasserman, 1990).

The purpose of software engineering environments is to support the entire, or

main part of, a system development process. Software engineering

environments usually consist of a number of tools and workbenches, that are

integrated to support the system development process. A typical combination

of tools and workbenches might support software requirements analysis,

software design and implementation & unit testing (in Sommerville, 1996,

these activities are named analysis and design, and programming).

A simple description of the division of CASE systems, is presented in Figure

13, below.

Software engineering environments

Figure 13: Different types of C A S E systems and their relation

CASE systems can also be divided in Upper-CASE and Lower-CASE. Upper-

CASE systems are systems that support early system development activities,

such as requirements definition (Cronholm, 1994), or software requirements

117

analysis (Sommerville, 1996). Lower-CASE systems support such later

activities as software design and implementation & unit testing (Cronholm,

1994; Sommerville, 1996). Most Upper-CASE are tools, while Lower-CASE can

be tools, workbenches or software engineering environments.

There are CASE systems for almost every system development activity.

However, the support delivered are at different levels. For the system

development activities software design, and implementation & unit testing,

there is a range of available support systems. These systems deliver a high

degree of support i n areas such as data modeling, software design and

implementation. For workbenches, the support delivered may also include

transformation of design descriptions to code. For system development

activities early and late i n the process, for example, identification of need and

operation & maintenance, there is not so much support i n CASE systems.

Support is mainly in documentation management and text editing systems.

Exceptions are Upper-CASE systems mentioned in relation to description of

business analysis (sub-section 3.2.1, also discussed in Goldkuhl, 1991). Upper-

CASE systems support, for example, documentation of business analysis

results and consistency checking of developed models.

According to Fisher (1988), the advantages wi th CASE systems are mainly

that they contribute to:

• development of complete requirements specifications,

• development of complete design specifications,

• development of timely design specifications,

• decreased time needed for implementation,

• more effective development and maintenance of code.

Following are short descriptions of some of the workbenches mentioned
above.

118

6.2.1 Analysis and Design Workbenches

According to Sommerville (1996), analysis and design workbenches are

collections of tools that support analysis and design activities i n a system

development process. These workbenches are normally used to support

development and analysis of models, such as data f low models, ER-models, or

object models. Workbenches for analysis and design usually support a specific

analysis and design method, like structured analysis and design, or object-

oriented analysis and design. However, there are also workbenches that

support a number of methods.

Analysis and design workbenches can, according to Sommerville (1996),

consist of following components:

• a diagram editor to develop data f low diagrams, structured diagrams,

ER-graphs, object models and other illustrations of software structure,

• tools for analyzing a developed design to identify errors, deficiencies

and inconsistencies,

• a repository to store results f r o m modeling,

• a query language a developer can use to search for already developed

designs, and connected information, in the repository,

o a data dictionary containing information about entities used in a

design,

• a tool for development and generation of design documentation,

• a tool for import and export of design information to, and f rom, other

development tools,

• code generators that automatically generate code and code skeletons

f r o m the design.

Analysis and design workbenches are developed for a number of analysis and

design methods, for example, HOOD (Robinson, 1992), Objectory (Jacobson,

119

Christenson, Jonsson & Overgaard 1992), Structured Systems Analysis and

Design Methodology, SSADM (Ashworth & Goodland, 1990), Jackson System

Development, JSD (Jackson, 1983).

6.2.2 Programming Workbenches

A programming workbench is, according to Sommerville (1996), a collection

of tools aimed to support the software development process. This type of

workbench was the first type of application for CASE systems. Support

consisted of software development tools, such as compilators, editors and

debuggers.

A programming workbench can, according to Sommerville (1996), for

example, include the fol lowing tools:

• a compiler to transform a source program to object code, to create an

abstract syntax tree (AST) and a symbol table,

• a structure editor to edit syntactic representations of the program

(AST),

• a linker to link object code program and already compiled components,

• a loader to load executable programs into memory before execution,

• a cross-reference function to produce a cross-reference list that lists

where all program names are declared and used,

• a printer function to print source program,

• a static analyzer to be used in analyzing source code to identify

deficiencies,

• a dynamic analyzer that, for example, gathers information concerning

execution of different parts of source code, and statistics of processor

usage,

• an interactive debugger for developers to check order of execution and

to supervise the condition of a program during execution.

120

One example of a programming workbench is, according to Brown et al.

(1992), UNIX PWB (Programmer's WorkBench). According to Sommerville

(1996), many language compilers (C++, Pascal, Lisp, Smalltalk) including

additional tool support, are also examples of programming workbenches.

6.2.3 Testing Workbenches

Sommerville (1996), defines testing workbenches as a collection of tools to test

and detect errors i n software. Most testing workbenches are built by

purchasing a testing workbench and adapting i t to organizational demands.

Because of this internal development (usually not performed when analysis

and design, or prograrrvming workbenches are purchased), i t is difficult to

formulate a common description of testing workbenches. According to

Sommerville (1996), a testing workbench may consist of fol lowing tools:

• a test manager to manage and supervise performance of tests,

• a test data generator to develop test data,

• an oracle to develop predictions of expected test results. (Results can be

results f rom earlier software versions, or theoretically generated

results),

• a function that compares obtained and expected test results, and

reports differences,

• a report generator to define and develop test reports,

• a dynamic analyzer similar to that described in programming

workbenches,

• simulators to simulate, for example, target system where software is to

be executed on, the user interface, input and output to software.

Examples of testing workbenches are WinRunner and XRunner (Mercury

Interactive Corporation, 1993a, b, c).

121

6.2.4 Conclusions

Use of CASE systems has not resulted in the productivity improvement in

system development predicted. According to Sommerville (1996), this is

because CASE systems:

• do not take care of the main problems i n system development,

complexities in the product and i n the development process,

• are not integrated at the level required; there are no CASE systems that

support an entire system development process. It is also impossible to

integrate present CASE systems to support an entire process,

• are complicated and difficult to learn. It is also diff icul t to adjust CASE

systems to another system development method than the one for which

the system was originally developed.

Another factor possibly influencing the absence of productivity improvement

is that few CASE systems support early system development activities.

Exceptions are the kind of computer support mentioned in conjunction w i t h

business analysis. When Upper-CASE systems are defined to also include this

k i n d of tools (see, for example, Cronholm, 1994; Goldkuhl 1991), the situation

is somewhat more positive. However, problems wi th integration are still

present, as these tools are not integrated w i t h CASE systems for analysis and

design (Sommerville, 1996).

6.3 User Interface Tools

User Interface Tools is a collective term for tools developed to support one or

more of the design, implementation and evaluation of user interface activities

(Myers, 1995). Within this term are User Interface Management Systems

(UIMSs), Toolkits, User Interface Development Environments, Interface

Builders, Interface Development Tools and Application Frameworks. User

122

Interface Tools can also be seen as a sub-entity of CASE systems (see, for

example, Fisher, 1988; Sommerville, 1996).

According to Löwgren (1991), Myers (1989; 1995) and Shneiderman (1992),

possible advantages in using User Interface Tools during user interface

development are, for example, the following:

• the user interface is being more usable, because:

1. user interface prototypes can be developed and evaluated prior to

the development of an underlying application,

2. user interface is more consistent because tools used decrease

possible design solutions,

3. i t is easier to adjust user interface to different user groups, since user

interface can be changed without influencing the underlying

application,

4. other professionals than programmers can actively participate in

development. For example, human factors specialists and graphic

designers,

• the user interface is easier to develop and maintain, because:

1. the user interface code is separated f r o m the application code,

2. i t is easier to reuse user interface elements,

3. less user interface code has to be developed, since much of the

basic code for the user interface elements is delivered by the tools.

Below, is a brief description of some of the User Interface Tools mentioned

above. For a more detailed description, see, for example, Myers (1993; 1995).

123

6.3.2 Toolkits

A toolkit is a tool box, or a library of widgets, containing for example menus,

buttons, scroll-lists and dialog boxes. To implement a user interface using a

toolkit, usually prograrnming expertise is required. A n advantage in using a

toolkit is that the user interface developed w i l l have a similar look and feel, as

other user interfaces developed using the same toolkit. Disadvantages w i t h

toolkits are the restricted support for the design situation. Wi th in the

constraints provided by a toolkit's pre-defined widget set, i t is possible to

develop any user interface. Examples of toolkits are Mot i f toolkit, Microsoft

Windows toolkit, and Macintosh toolkit.

6.3.2 Interface Builders

Interface builders are tools that support a user interface developer i n creating

for example, menus, dialog boxes and buttons. User interface elements are

selected f r o m a library or a tool box containing widgets, and then placed at

appropriate places in the user interface under development. The behavior of

user interface elements is defined in attribute forms (Myers, 1995). Interface

builders make development of traditional user interfaces easier and faster.

However, design possibilities are limited to toolkit options in the interface

builder. Interface builders do not guide the design of user interface, as

developers can freely decide where to place user interface elements i n the user

interface to be developed. Examples of interface builders are, according to

Myers (1995), Windowsmaker for Microsoft, and UIMX for X Windows and

Motif .

124

6.3.3 User Interface Management Systems

User Interface Management Systems (UIMSs) are tools that support

development (design and implementation) and execution (dialog

management) of user interfaces (Löwgren, 1991; Myers, 1995). UIMSs usually

consists of a development module and a run-time module. The development

module normally contains a graphical editor, and/or a specially developed

language, that can be used by a developer to create user interface elements,

define their behavior, and to define dialog between user and application. The

run-time module usually contains a toolkit utilized to present user interface

elements, and a dialog manager. The dialog manager administer user input

and also ensures that right actions are performed by an application. Very few

UIMSs have an evaluation module to support evaluation of user interfaces.

In my opinion, UIMSs can be divided into a number of groups, depending on

the approach selected to support development and management of user

interface (alternative groupings can be found in Bergsten, Bern, Kool &

Wingstedt, 1993; Myers, 1995). The groups identified are; Traditional UIMSs;

Direct Manipulation UIMSs; Automatic generation UIMSs; and Application

Frameworks (the last group is described in a separate sub-section, below).

These groupings need not be seen as absolute; some UIMSs can be assigned to

more than one group. The primary reason for this grouping is to discuss i n

what ways different approaches influence user interface development.

Traditional UIMSs, are those supporting development and management of

user interfaces, by providing developers access to a high-level language.

Developers specify user interface elements using the high-level language.

Example of languages are: state transition networks; event languages; and

declarative languages. The program created is interpreted by a management

module in the UIMS that define the result of actions f rom user and operations

125

f r o m application software. Examples of UIMSs of this k ind are, according to

Myers (1995), VAPS f rom Virtual Prototypes Inc., and Open Dialogue f r o m

Hewlett Packard.

Direct manipulation UIMSs, are UIMSs that support development and

management of user interfaces, by giving the developer access to a graphical

specification language. With this language, a user interface is created by

"drawing" a user interface using widgets and/or other user interface

elements. Examples of this kind of UIMSs are, according to Myers (1995),

HyperCard by Apple, and Toolbook f r o m Asymetrix Corp.

Automatic generation UIMSs, are those that support development and

management of user interfaces, by automatically generating a user interface

f r o m a high-level description. The high-level description is created by a user

interface developer and can, for example, consist of a model of included

interaction objects, what they should do, and how these objects relates to each

other and to the underlying application. A model of this k ind is sometimes

called a description of the user interface on the semantic level (Löwgren,

1991). Example of this kind of UIMS is UIDE (Sukaviriya, Foley & Grif f i th ,

1993).

According to Löwgren (1991), UIMSs have not been as successful i n

development of user interfaces as predicted (see also Myers, 1995). UIMSs are

also not used as much as predicted in conjunction wi th industrial system

development. Reasons for this are, according to Löwgren (1991), Myers (1995)

and Reiferer (1994), primarily that UIMSs:

• usually are difficult to integrate into a system development

environment,

• are not adapted to what developers need.

126

Reasons w h y UIMSs are difficult to integrate include factors such as software

language incompatibility and limited usability. Many of the UIMSs (at least

the ones developed f rom a research perspective) utilize development

environments such as LISP, which make them diff icult to integrate w i th other

development environments. Other UIMSs are especially developed for certain

platforms, for example UNIX, and are diff icul t to integrate w i th other

software like Microsoft Windows.

That UIMSs are not adapted to what developers need is, according to

Löwgren (1991), primarily due to the fact that development of UIMSs has not

being influenced by developer needs. Influence has rather been f rom a

technical point of view. According to Löwgren (1991), an understanding of

the process of developing a user interface is required to influence the

development of UIMSs.

Other influential factors are that many UIMSs (at least the ones called

traditional UIMSs) require profound programming expertise, as well as deep

knowledge of the specific tool. They are difficult , if not impossible, for use by

human factors specialists and graphic designers who lack such knowledge.

Probably, they are not interested in, and have not enough time for, learning a

complex language and an advanced UIMS environment. Automatic

generation UIMSs are at present time not mature enough (see, for example,

Myers, 1995), to be an alternative in industrial system development.

6.3.4 Application Frameworks

Application frameworks are especially developed UIMSs for development of

user interfaces for a specific type of platform or a specific k ind of application.

Examples of applications frameworks are, according to Myers (1995), MacApp

127

(described in Schmucker, 1986) and Unidraw (described in Vlissides & Linton,

1990). In m y opinion, also UIMSs for development of data bases, for example

4GL tools, can be called application frameworks.

Another type of application frameworks are the ones, developed out of the

concept of small software modules. These can be put together to create special

application programs such as document management programs (Paley,

Hansen, Kazar, Sherman, Wadlow, Neuendorf fer, Stern, Bader & Peters, 1988,

referenced in Myers, 1995). In these application frameworks, the cut and paste

technique is further developed. In a specific document i t is possible to

incorporate tools such as a drawing program and/ or a calculation program.

Using this approach i t is possible to use functionality f r o m these programs

without opening the separate programs. Examples on this approach can be

found in OLE f rom Microsoft and OpenDoc f r o m Apple.

6.3.5 Conclusions

User interface tools primarily support implementation and functioning

(management) of user interfaces. If we look at user interface tools f rom the

perspective of the activities in the system development process, as described

earlier i n the thesis, i t is possible to make fol lowing conclusions. User

interface tools support:

• part of software design,

• part of implementation and unit testing,

• part of operation and maintenance.

128

User interface tools do not support:

• identification of need, identification of user requirements

(requirements definition), overall system design, identification of

software requirements, and integration and testing.

User interface tools do not comprehensively support software design. They

do support design of specific user interface elements. Not supported is design

of user interface as a whole. With respect to implementation and unit testing,

user interface tools support implementation, and in exceptional cases testing.

The MIKE system (Oisen & Halversen, 1988), the Framer system (Fischer &

Lemke, 1988; Fischer & Lemke, 1989; Fischer, Lemke, Mastaglio & Morch,

1990), the KRI system (Löwgren & Nordqvist, 1990; 1992) and TUNE

(Nordqvist 1996), illustrate how to support evaluation of user interfaces. Only

the M I K E system can be called a user interface tool. A l l others are modules

that can possibly be used together w i th a user interface tool. In operation and

maintenance, many user interface tools can support further development of a

user interface carried out in connection wi th the different kinds of

maintenance mentioned by Sommerville (1992). This is especially true for user

interface tools making it possible to change a user interface without need to

change the application code.

User interface tools do not support early and late activities i n the system

development process, as none has been developed for this purpose. (That user

interface tools are sometimes used as prototyping tools during early activities

in system development does not necessarily mean that support is provided).

User interface tools have been developed to support design, implementation

and evaluation of user interfaces.

Development of user interfaces, and utilization of user interface tools are

often regarded as a stand-alone activity. This has caused minimal effort to

129

integrate those tools w i t h other available tools, for example different kinds of

CASE systems. Although efforts has been made (see, for example, Johnson et

al., 1990; Löwgren 1991; Myers 1995, for a description of these approaches),

much work remains before user interface tools are integrated wi th other

system development tools.

Another factor that influences the value of user interface tools in system

development, particularly user interface development, is that they are not

adapted to user interface developer needs. According to Löwgren (1991)

UIMSs are not adapted to the requirements of developers. For user interface

tools i n general, Myers and Rosson (1992); Myers (1995); Rosson, Maass, and

Kellogg (1988), also mention deficiencies in this respect. For example, Myers

and Rosson (1992) consider the task to investigate user needs, and user

requirements on the user interface to be developed, as the main difficulties i n

conjunction wi th development of user interfaces. Myers (1995) point to the

need for tools that support task analysis. Rosson et al., (1988) advocate that

user interface tools support creation of task scenarios and discussion of

different design ideas. Existing user interface tools do not support these

activities to the needed level of detail.

6.4 Traditional Computer Support in System Development and its
Relevance for Usability Work

Above mentioned computer support tools for the system development

process has, despite the deficiencies described, contributed to more efficient

industrial system development (Myers, 1995; Sommerville, 1996). However,

the question remains as to the extent that these tools support a system

development process that focuses on users and use of the system. In other

words, do these tools support usability work, and if so, how? Below, an initial

analysis discusses the main points of this question.

130

In looking at the conclusions made for CASE systems and user interface tools,

f rom the perspective of usability work in industrial system development, i t is

apparent that traditional computer support for system development seldom

supports usability work. Following is the basis for this conclusion. The point

of departure is the simple "model" of support levels presented in section 5.6.

From this, CASE systems and user interface tools:

• do not support documentation of results of most methods for usability

work,

• partially support utilization of a single method,

• do not support accomplishment of all aspects of usability work in a

specific system development activity,

• partially support transfer of results f rom usability work in one system

development activity to subsequent system development activities,

• do not support integrated usability work throughout the entire system

development process.

When comparing these conclusions, wi th the model and the methods

advocated i n earlier chapters, i t is possible to concretize them further.

Traditional computer support for system development supports

documentation of results f rom business analysis (see, Upper-CASE,

Cronholm, 1994), and prototyping (user interface tools). Also supported is the

utilization of some methods (business analysis, prototyping) in that some

CASE systems (Upper-CASE) and user interface tools can be used in these

activities. Not supported is accomplishment of all aspects of usability work in

a specific system development activity. The tools do not give any answers to

issues as, what methods to use, how to combine them, and how results f rom

one method can contribute to another method. Traditional computer support

for system development partially supports transfer of results f r o m usability

work in one system development activity to subsequent activities, as user

131

interface tools can be used to further develop the prototypes. They do not

support integrated usability work, as basic integration between different tools

is missing (Sommerville, 1996).

Using the usability work model, advocated in this thesis, i t is also possible to

conclude the following. Traditional computer support for system

development does not support the evaluative aspects of usability work to any

great extent. CASE systems or user interface tools do not contain significant

functionality for evaluation of user interface designs (see, for example, Myers,

1995; Löwgren, 1991) or other usability aspects.

To contribute to the elimination of these deficiencies in computer support for

usability work, a number of studies are presented in Chapter 7. These studies

present different simple tools that support evaluation. Three of the studies

focus on the issue of evaluating user interfaces in conjunction wi th design and

implementation. The fourth study provides a simple illustration of how to

support evaluation that user requirements are in a computer system being

developed.

132

7. SUMMARY OF THE STUDIES

7.1 Introduction

The studies in this thesis have the general and common goal of studying the

possibility to support development of computer systems, that fulf i l ls user

requirements and are usable, w i t h different types of basic computer support.

While the studies focus on low-level problems (for example, consistency i n

user interfaces, design of user interface elements), computer support for these

can hopefully contribute to increased overall usability i n computer systems.

7.2 Study 1: A Knowledge-Based Tool for User Interface Evaluation and
its integration in a UIMS

This study had three objectives. The first was to develop a prototype tool for

knowledge-based evaluation of user interfaces (the KPJ system). Design goals

for this prototype called for it to have capacity to illustrate possibility to use

knowledge-based techniques (specifically the critiquing approach). I n that

way making it possible to utilize expert knowledge to support evaluation of

user interfaces. Secondly, this study also discussed how a tool of this k ind

could be integrated in a User Interface Management System (UIMS). Thirdly,

the study also tried to illustrate the possibility to support evaluation on more

than the presentation level.

Justification for the study was the identified need to supplement UIMSs w i t h

the capacity to evaluate user interfaces (Myers, 1989; Olsen, Green, Lantz,

Schulert & Sibert, 1987).

133

7.2.1 A Knowledge-Based Tool for Evaluation of User Interfaces, the KRI System

The fol lowing are the KRI system's primary components:

• a knowledge-base containing evaluation knowledge,

• an inference mechanism,

• a database containing guidelines concerning user interface design,

• a taxonomy of user interface aspects (elements).

The knowledge-base consists of a set of rules. These were drawn up after

studying user interface experts evaluating user interfaces and interpreting

applicable guidelines. The inference mechanism is based on forward chaining

where the rules are used to identify and report design flaws. The database

contains guidelines f rom Smith and Mosier (1986), used as a reference for

possible comments concerning deficiencies in user interface design. The

knowledge-base and the database emphasize knowledge relative to

presentation and syntax levels of the user interface.

The taxonomy had two functions. First, to give users of the KRI system the

choices for the evaluation of user interface elements. The taxonomy is

presented as a graph in the user interface of KRI to facilitate evaluation

choices. Secondly, the taxonomy serves as a foundation for structuring the

knowledge-base.

Evaluation of a user interface using the KRI system was largely performed in

the fol lowing mariner:

1. the developer developed a design proposal (user interface),

2. the representation (presentation and syntax) of the design proposal

was loaded into the KRI system,

134

3. using the graph, the developer selected in an interactive way what user

interface elements to evaluate,

4. w i t h these selected elements as criteria, the KRI system inspected the

user interface representation and executed the applicable rules,

5. when a user interface element d id not fol low a rule i n the knowledge­

base, it was noted as a comment in the result file,

6. when the KRI system had completed the evaluation, the developer

studied the result file (comments), referenced guidelines and change

suggestions.

Practical use of KRI:

The KRI-tool was used to evaluate an application consisting of three separate

tables for entering data and six pull-down menus. The necessary activation of

tables before data entry could be performed through use of specially

dedicated functions keys.

In evaluation of the function keys a comment concerning the mismatch

between presentation order of the tables and the implicit order of the

functions keys was generated. The reason for this comment was that the

tables were activated w i t h function key 3 for the top table, 1 for the middle

table and 2 for the bottom table.

Practical use of the KRI system demonstrated that knowledge-based

technique can be used to support evaluation of user interfaces. However,

when user interface experts studied the comments generated, a number of

comments were judged as trivial, or that they failed to address semantic

(meaning), user, or task (pragmatic) issues. The reason for this limitation i n

the KRI system was that the user interface representation used d id not handle

these issues.

135

7.2.2 Integration with a UIMS

Systems such as the KRI system must be integrated wi th a UIMS to better

support evaluation during user interface design. Using the Seeheim model

(Tanner & Buxton, 1985) as a basis, an extended model supplemented w i t h a

knowledge-based evaluation module (KBE) was developed, see Figure 14

below.

Figure 14: An extension of the Seeheim model

This KBE module is intended to support both design of a user interface (ui)

and evaluation (analysis) of registrations f rom use of a user interface. During

design of a user interface, the KBE module can be used to evaluate design

proposals. This is achieved by integrating the evaluation functionality i n the

KRI system wi th a commercially available UIMS, TeleUSE (Telesoft, 1989).

Based on the representation (X widgets) i n TeleUSE it is possible to evaluate

the design proposal wi th respect to presentation aspects.

ui User

log spec.

By utilizing the time stamped protocol (interaction log) generated by TeleUSE

during use of a user interface, the knowledge in the KBE module can be used

136

to evaluate user interaction wi th the system. Although this log only delivers

information about the lexical (presentation) level, i t is possible to have

information about, how often menu alternatives etc., are chosen, usual

sequences, errors in user interface handling and help requests, for example. In

this way i t is possible to supplement the low-level evaluation performed at

design-time w i t h information related to user and task issues. From this run­

time evaluation it is possible to obtain evaluation information usually only

attainable f r o m high-level representations.

7.2.3 Conclusions

The results of the study indicated the possibility to utilize knowledge-based

techniques (and in that way expert knowledge) to support design and

evaluation of user interfaces. The study also principally discussed, how the

evaluation functionality in the KRI system could be integrated w i t h a UIMS.

With this integration, developers have access to evaluation support for the

presentation aspects of user interface elements in conjunction w i t h design.

Through use of the knowledge-base to analyze the interaction log i t is also

possible to obtain informadon on deficiencies i n user interface design related

to user interaction wi th the computer system.

7.3 Study 2: Knowledge-Based Evaluation as Design Support for
Graphical User Interfaces

The aim of this study was to further investigate ways to make human factors

knowledge available when a User Interface Management System (UIMS) is

used to develop user interfaces. This study focused on three issues mentioned

in study 1. First, to investigate the possibility to use traditional knowledge

sources such as guidelines and styleguides in computer support for user

137

interface evaluation. Second, to augment a UIMS wi th this k ind of

knowledge-base. Third, to further explore performance of run-time

evaluations during development of user interfaces and i n that way support

evaluation of user interface aspects related to user and task.

I n the study, a prototype knowledge-based tool (KRI/AG) containing

knowledge f r o m guideline and styleguide collections was developed. This

tool was integrated wi th a UIMS, to extend the design and implementation

environment w i th an evaluation module. The knowledge-based tool can be

used at the convenience of a developer to evaluate design proposals

developed in the UIMS. Wi th this approach the developer can have

information concerning further development of the design as needed. In other

words, formative evaluation of user interface is supported.

7.3.1 The KRI/AG System

The K R I / AG system consists primarily of a parser and a knowledge-base, see

Figure 15 below.

KRI /AG Comments
TeleUse

UIL Tex^

Figure 15: Overall architecture of K R I / A G

The parser is used to translate the representation (UIL) of the user interface,

created in the UIMS tool (TeleUSE) to a representation understood by

138

K R I / A G . The representation contains information concerning static parts of

the user interface, for example, buttons, menus and forms.

The knowledge-base is used to evaluate the user interface representation and

to generate possible comments about design deficiencies. The knowledge-base

contain rules generated f rom guideline and styleguide documents (for

example, Brown, 1988; Open Software Foundation, 1988; Smith & Mosier,

1986). In K R I / A G , there are rules concerning graphic design, menu design,

menu dialogue and other dialogue.

Practical use of K R I / A G :

K R I / A G was used to evaluate a user interface consisting of a map window, a

number of tools for manipulation of overlay symbols (military units, etc.,) i n

the map, a number of option menus for inspection or change of symbol

attributes and two pull-down menus containing global commands. The

evaluation resulted in a number of comments. A n example of a generated

comment is: "There is no Help menu in the menu bar. Every application

should have a Help menu. The recommended standard menus in the menu

bar are File, Edit, View, Options and Help, in that order. (Motif Style Guide p.

7-42)."

Practical use of K R I / A G to evaluate a user interface showed that guidelines

and styleguides (in this case, Motif) can be used to automatically evaluate a

UIMS-developed user interface. However, analysis of these evaluations

revealed that most of the design knowledge was useful only when the actual

use situation was considered.

139

Support issues:

Two important issues related to development of support systems for user

interface design were identified during development and evaluation of

K R I / A G . The first related to how developers of user interfaces shall be

supported. The second concerned the level of evaluation appropriate for a

design support tool.

Concerning the first issue, a number of authors (see, for example, Tetzlaff &

Schwartz, 1991; Lemke & Fischer, 1990) have advocated the use of toolkits,

good design examples and user interface skeletons rather than guideline and

styleguide documents. However, practice has shown that despite this kind of

support i t is still possible to develop user interfaces that violate guidelines as

well as styleguides. Possible deviations f rom guidelines and styleguides are

deficiencies i n consistency wi th in and between applications. From the

prelirninary results obtained in this study, it is possible to believe that the

K R I / A G system can support designers working on design issues related to

consistency in user interface.

Concerning level of evaluation at which a design support tool is most

effective, this study, and study 1, showed that evaluation at the task level

provides the best data. Evaluation at the task level can be performed in two

ways. One is to use a design representation where information about user

tasks as well as domain knowledge are represented (see, for example, Foley,

Kim, Kovacevic & Murray, 1989). Another is to collect and analyze logs

(registrations) f r o m real use of a user interface. In the study the second way

was discussed, here called run time evaluation (RTE). The reason for this was

that; this method was regarded as more compatible w i t h commercially

available design tools; there was no additional complexity in the design

situation (rich and complex representations are harder to create and

140

interpret); and i t d id not depend on a priori assumptions about the use

situation as does the first method.

A n RTE function to collect and analyze logs can be integrated wi th K R I / A G

and TeleUSE. Wi th this addition to KRI /AG, it is possible to evaluate logs

generated by TeleUSE in conjunction wi th practical use of a user interface.

Since TeleUSE utilizes X events and a specially developed language and

event mechanism to manage events (called D language), i t is only possible to

collect logs on low-level aspects. Examples of data that may be collected are:

keyboard input, button presses, mouse position. Utilizing a combination of

knowledge-based and algorithmic techniques, logs may be analyzed and

comments generated on deficiencies i n a user interface not possible to assess

in design time evaluation. Some of the user interface properties that might be

evaluated w i t h the RTE functionality are:

1. long sequences for common operations,

2. change of interaction technique wi th in a task,

3. inconsistency i n manipulation syntax (object-command or command-

object),

4. detection of errors in handling of user interface, and use of help,

5. identification of accelerators for most common user actions.

Also a conceptual framework to relate the idea of runtime evaluation (RTE) to

software development was developed, see Figure 16 below. According to this

framework a task can be simulated or real-life. Simulated tasks can be defined

f rom requirements specifications or they can consist of general interaction

wi th the user interface. Simulated tasks can be tested in the development

environment. Real-life tasks must be the real tasks the system is intended to

support and they have to be carried out in the real environment. Users can

also be simulated or real-life. A simulated user can be someone i n the

development team or a person chosen at random wi l l ing to pretend being the

141

intended user of the system. A real-life user is one of the users for whom the

system is intended.

real-life

User

(4) 4,5
real-life

User

simulated 2,3 1

simulated real-life

Task

Figure 16: The space of R T E and properties possible to evaluate

In Figure 16, the properties possible to evaluate using RTE mentioned above

are inserted in the evaluation space (number in parentheses means the

property can be evaluated to some extent). According to the framework, i t is

possible to evaluate, for example, properties 2 and 3 wi th simulated users and

simulated tasks, while properties 4 and 5 requires real-life users and tasks.

From this it was concluded that simulated users and/or simulated tasks can

be used to evaluate some user interface properties. Thus making it possible to

carry out evaluation early in the system development process and to minor

costs.

7.3.2 Conclusions

The study showed how human factors knowledge, in the form of guidelines

and styleguides, can be included into computer support to evaluate a UIMS-

produced user interface design. This kind of tool can probably reduce the

number of design flaws related to user interface consistency.

142

The study also indicated that to address deficiencies i n user interface

associated w i t h user and task the use situation must also be considered. As a

possible solution to this problem a function for run time evaluation (RTE) was

suggested, together w i t h examples of user interface aspects possible to

evaluate utilizing the RTE function.

Finally, a framework for relating evaluation of user interface properties to

different phases in the system development process was presented. This

framework illustrated that some user interface aspects could be evaluated

using simulated users and tasks, and in that way be included early in the

system development process.

7.4 Study 3: TUNE: A Tool for User Interface Evaluation

The purpose of this study was to develop a prototype tool (TUNE), that

facilitated inclusion of human factors knowledge, in the form of guidelines

and styleguides (GLSG), in development of user interfaces. The reason for this

was the increased awareness of the difficulty to use present GLSG documents

in conjunction wi th development of user interfaces (de Souza & Bevan, 1990;

Mosier & Smith, 1986; Tetzlaff & Schwartz, 1991). This difficulty has resulted

in that developers are reluctant to use this type of documents (Smith &

Mosier, 1984; Thovtrup & Nielsen, 1991). A number of methods and computer

support tools have been developed to overcome this barrier (Study 1 and 2 in

this thesis; Nielsen & Molich, 1990; Perlman, 1989a, b).

Due to approaches often used in industrial system development, use of these

methods and tools may not be practical. For example, in many system

development projects UIMSs are not used and so the UIMS solutions in Study

1 and 2 cannot be adapted. Therefore, a prototype for a simpler computer

143

support tool (TUNE) was developed. TUNE was designed to illustrate how to

facilitate the usually time consuming and laborious process of evaluating

whether a user interface complies w i t h GLSGs (specifically, The Windows

Interface: An Application Design Guide, Microsoft, 1993). TUNE was tested by

evaluating selected applications.

7.4.1 TUNE

TUNE mainly consists of test programs for static and dynamic tests

(implemented in C++)and a GLSG database, see Figure 17 below.

Application]
tested

TUNE

Static test

Dynamic tests

GLSG database

Figure 17: Overall architecture of TUNE

Test
Tesult

Static tests are utilized to evaluate the existence and appearance user interface

elements. Examples of static tests are:

• existence of menus and menu items,

• appearance of mnemonics and short-cuts.

Dynamic tests are utilized to evaluate if user interface elements behave as

specified in the GLSG being used. Examples of dynamic tests are:

• function of menu items, mnemonics, short-cuts and buttons,

144

• presentation of dialog boxes when menu items followed by three dots

are selected.

The rules for accomplishing the tests are in the GLSG database or the test

programs. In the GLSG database are rules that can be chosen, depending on

the specific user interface elements i n the application being evaluated. In the

test programs are rules considered as generic for all applications. Util izing the

rules, TUNE evaluates a user interface by inspecting the information about

user interface elements in an application and checking that static properties

are as specified in GLSGs. For a GLSG for dynamic behavior, TUNE activates

the user interface element and checks that the behavior is as specified in

GLSGs. Deviations f rom GLSGs are writ ten to a result file that may be

inspected after an evaluation.

Practical use of TUNE:

TUNE were used to evaluate three applications, and the results are

summarized as follows. A number of deviations f rom GLSGs were identified.

Most of the deviations were related to the fact that the developer had

forgotten some GLSGs. A number of design flaws were also repeated in the

user interface. Developers had objections to evaluation results on very few

occasions, i n those cases they preferred other labels for menu items than the

ones defined in GLSGs.

TUNE was also evaluated against a number of pre-defined goals. These goals

were; reduction of time needed for evaluation of GLSG compliance; support

the task of evaluating all user interface elements; enhance consistency in user

interfaces; and support iterative design of user interfaces. The study to

investigate if these goals were realized was performed by comparing TUNE

testing of the three applications and manual evaluation by three usability

145

experts. The results f r o m the evaluation are described briefly below. (Note,

results f r o m manual evaluation are presented as mean values).

Reduction of time needed for evaluation of GLSG compliance:

In Figure 18, below, time used (min) for manual and TUNE evaluation is

depicted.

A B C

Manual 115 21 135

TUNE 20 4 27

Figure 18: Time used (min) for manual and TUNE evaluation for three

applications

As illustrated in Figure 18, time used in TUNE evaluation is about 20% of

time used in manual evaluation. From this it is possible to conclude that

TUNE reduces time needed for evaluation of GLSG compliance.

Support the task of evaluating all user interface elements:

Figure 19, below, illustrate number of evaluated user interface (ui) elements

for TUNE and manual evaluation compared to total number of u i elements

for three applications.

146

A B C

Manual 231 38 290

TUNE 252 36 305

Total number 255 39 308

Figure 19: Number of evaluated ui elements together with total number of

ui elements

The results i n Figure 19 indicates that TUNE evaluation result i n that more u i

elements are evaluated compared to manual evaluation (at least for

application A and B). The reason for the discrepancy between TUNE

evaluation and total number is that TUNE did not evaluate the Exit menu

item (including mnemonic and shortcut). Figure 19 also illustrate that the

difference between TUNE and manual evaluation is greater when the

application is more complex (more ui elements).

Enhance consistency in user interfaces:

Figure 20, below, illustrates number of recognized deviations for manual and

TUNE evaluation for three applications. The basis for using number of

deviations as an indication of enhanced consistency was our hypothesis that

the more deviations recognized (and corrected) the more consistent user

interface.

Manual

TUNE

69(222) 33 (73) 58 (97)

85 42 83

Figure 20: Number of recognized deviations in manual and TUNE

evaluation for the three applications

147

From Figure 20 i t is possible to conclude that TUNE evaluation result in that

more deviations are recognized. However, this is only true if only

implemented GLSGs are considered. If all GLSGs and the usability experts

expertise is also included, manual evaluation result i n detection of more

deviations (numbers in parentheses).

Support iterative design of user interfaces:

Since TUNE can be used to evaluate user interface designs in progress i t is

possible to use TUNE in iterative design. Also interviews w i t h designers who

have used TUNE indicated that they experience TUNE as a support tool in

iterative design.

7.4.2 Conclusions

Preliminary conclusions f r o m utilizing TUNE can be summarized as follows:

• evaluation using TUNE is less time consuming than manual

evaluation,

• evaluation using TUNE causes more user interface elements to be

evaluated, especially for complex applications,

• TUNE identifies more deviations compared to manual evaluation,

wi th in its scope of GLSG coverage,

• TUNE supports iterative design, as a developer can use it for personal

support when evaluating a user interface under development.

I t is important to observe two basic limitations in TUNE. TUNE only

evaluates simple user interface elements such as menus, menu items, dialog

boxes and buttons. TUNE only evaluates presentation and behavior of user

interface elements. Evaluation wi th respect to task and user is not supported

in TUNE. Despite these constraints, the study illustrated that TUNE can

148

support a developer in the laborious work of inspecting user interface

compliance wi th defined GLSGs.

7.5 Study 4: Computer Support for User Requirement Evaluation in
System Development

The purpose of this study was to illustrate how to support evaluation of user

requirements fulf i l lment i n an application being developed. To do this, a

prototype for evaluating if defined user requirements are in a computer

system was developed (TURE, Tool for User Requirement Evaluation). The

reason for the study was the need to f ind a means of supporting the

comprehensive and laborious process of validating that user requirements are

covered in the developed computer system. This process is currently

performed manually. TURE was used in a system development project to

investigate advantages and disadvantages of this approach in comparison to

manual evaluation of user requirement compliance.

7.5.1 TURE

As a platform for the development of TURE, WinRunner (Mercury Interactive

Corporation, 1993, a, b, c) was used. WinRunner is a tool for development of

automatic software tests of applications that use Microsoft Windows. TURE

consists of the following components: The Learn GUI Objects function i n

WinRunner and a number of specially developed test scripts. The Learn GUI

Objects function is used to create a representation of the user interface in the

application being evaluated. This representation includes, for example, logical

names (labels on buttons, menus etc.,) and physical descriptions (window,

dialog box, menu, etc.,) of user interface elements. The test scripts consist of

functions in a C4ike programming language, containing defined user

149

requirements. These functions are then used to check that defined user

requirements are in the application. The overall architecture of TURE is

illustrated i n Figure 21 below.

Application to

be evaluated

Leam GUI
objects
function

Test

scripts
CommentsL

WinRunner

Figure 21: Overall architecture of T U R E

Creation of test scripts necessitates some kind of requirements documentation

(a system requirements specification, for example). With the requirements

documentation as a basis, user requirements are transformed into a test script.

The level of detail i n the requirements documentation influences creation of

test scripts. When requirements lack sufficient detail, i t is necessary to ask the

user to be more specific about their requirements. If this is impossible, details

in test scripts must usually wait until a more detailed documentation (for

example, a software requirements specification) is developed. In Figure 22,

below, an example of a user requirement and the resulting test-script is

illustrated.

Example of a user requirement:

Selection of the command "List of address" shall result in presentation of a dialog
box "List of address" in the working area.

Part of the resulting test script (tets if there is a command for "List of address"):

i f (menu_select_item("Options; Lits of address... ")!=E_OK)

report message("2.4.7.6.4.4 There is no command for List of address");

Figure 22: An example of user requirement and resulting test-script

150

When a prototype, or a version of the application, has been developed, the

Learn GUI Objects function is used to create a representation of the user

interface. In the case the requirements documentation is very detailed, and all

user interface elements are defined (and implemented in the test-script), an

evaluation can be performed almost immediately. Otherwise, i t is necessary to

further develop the test script using the generated representation as a basis.

TURE used in practice: A case study:

The study to investigate possible advantages and disadvantages using TURE

in practical system development, was carried out by comparing manual and

TURE evaluation in evaluating a developed computer system. Performance

measures compared were time to create validation specification (a validation

specification is a detailed check list for every requirement specified, used in

manual evaluation of an application) and test scripts respectively, and time

used in manual and TURE evaluation of the application. The results f r o m this

case study is depicted in Figure 23 below.

Manual TURE

Time used in conducting

the evaluation.

Time used in creating
validation spec./test-scripts

8h 1 h

8 h 8 h

Figure 23: Comparison of manual and TURE evaluation

As illustrated in Figure 23, the time used for creating Validation specification

and test-scripts were the same (Note, the number given in the figure should

not be seen as absolute, measurement detail was restricted to 15-min

intervals). The reason for this was mainly the fact that both validation

151

specification and the test-scripts were created f rom scratch and that both

requires roughly the same amount of work.

Concerning time used for manual and TURE evaluation the results indicated

that use of TURE was much faster.

7.5.2 Conclusions

The result f rom the study showed that almost equal amounts of time were

needed in creation of test scripts and validation specification. The case study

also showed that less time was needed to accomplish evaluation using TURE,

compared to manual evaluation. However, these results should not be

generalized to evaluation of other applications. Further studies are necessary

to make any conclusions about possible advantages in wider use of TURE.

The study only demonstrated that it is possible to use computer support when

evaluating if user requirements are implemented in an application. Also, i t is

important to note that TURE only inspects user requirements reflected in a

user interface. Much work remains before TURE can be considered an

efficient tool for use during system development.

Further results f rom practical use of TURE indicated that:

• i t was possible to identify a number of deviations f rom defined user

requirements,

• some of the deficiencies were due to defects in the test-script (some

requirement were implemented using other user interface elements

and TURE searched for originally defined elements),

• tracing identified deviations back to user requirements was simplified

by identification of original requirements i n the test report (comments),

152

• the possibility to replay the evaluation session facilitated

communication wi th developers,

• additional activities are necessary when evaluating an application, for

example, validation of user requirements, control if user interface

elements have been replaced or changed names, incremental

development of test-scripts during system development.

7.6 Concluding Remarks

The studies accomplished within this thesis have illustrated and exemplified

the fol lowing:

• i t is possible to support development of user interfaces w i t h tools that

inspect user interface design proposals,

• this support is on a low level and focuses on appearance and behavior

of individual user interface elements,

• i t is possible to utilize knowledge f rom usability experts, as well as

guideline and styleguide collections wi th this type of tool,

• i t is possible to further develop this type of tools and to, at least

partially, evaluate user interfaces wi th respect to user and task issues,

• tools for evaluation of the appearance and behavior of individual user

interface elements can be integrated wi th UIMS tools,

• i t is possible to develop support systems to, at least partially, inspect

what user requirements are implemented in the computer system

developed,

• the tools illustrated in this study are simple prototypes, therefore no

definitive conclusions can be drawn,

• further work is necessary.

Below, a short discussion of above conclusions are presented.

153

Studies 1, 2 and 3 illustrated the feasibility of supporting development of user

interfaces w i t h evaluation tools. These tools can be stand-alone modules, or

integrated modules i n a UIMS.

Studies 1, 2 and 3 demonstrated that these types of tools support design at a

low level. Developers participating in the evaluation of the tools felt that

identified design flaws were trivial and/or not related to user and task.

However, even if the identified design flaws are trivial, i t is of value to

identify them. Many complex computer systems can include hundreds of user

interface elements. If the number of simple design flaws is large, there w i l l be

dramatic impact on computer system usability. Another reason for the

importance of identifying simple design flaws is that for some applications

consistency in and between systems can be of great importance. Command

and control systems and process control systems are examples of two types of

systems where simple design flaws could have dramatic impact.

Studies on user interface design and evaluation used knowledge f rom user

interface experts as well as knowledge in guideline and styleguide

documents. This is a valuable new feature. The potential to implement

guidelines and styleguides in computer support for evaluation of user

interfaces suggests that this kind of knowledge can be used more often in

industrial system development.

Studies 1 and 2 also discussed the possibility to further develop the evaluation

functionality to include registration and analysis of user interaction w i t h a

computer system. While this technique does not directly address design flaws

related to user and task, it is possible to draw some indirect conclusions about

design flaws relative to these factors. For example, frequent use of the help

function or long sequences for accomplishing usual actions indicates

deficiencies i n adaptation of user interface to user and task.

154

Studies 1 and 2 illustrated how to integrate the evaluation functionality w i t h a

UIMS tool. Regrettably, this integration has not been developed further.

Preliminary work indicates need for development of a function for analysis

and compilation of the great number of "events" generated by the UIMS

during user interaction wi th a computer system.

Study 4 demonstrated that it is possible to develop computer support for

evaluation that user requirements (some of the user requirements related to

the user interface) are implemented in an application. This study should be

considered as a pilot study and no definitive conclusions should therefore be

drawn. The study provides only a preliminary indication that i t is possible to

support evaluation of whether defined user requirements are implemented.

While the study goal was not about handling user and task aspects along w i t h

user interface evaluation, some comments are possible. Further development

of the tool presented in this study may extend its function to include

evaluation of user interfaces f r o m a user and task perspective. User

requirements exemplified in the study suggest that it is possible to also use

this k ind of scripts as a basis for evaluation of user interface design issues.

Supplementing the RTE functionality described in study 2 wi th this type of

script can make a more extensive evaluation of user interfaces f r o m the

perspective of user and task practical. This idea of course needs further study

to be more fu l ly investigated.

A l l tools presented in the smdies are prototypes. They should be regarded as

simple illustrations of what is possible. However, a number of the tools can

probably be of value in development of user interfaces, particularly if further

developed.

Further research is necessary to investigate how the above mentioned tools

can support the process of developing user interfaces and usability work.

155

There are a number of issues that need further study. Here, a few of them,

already mentioned in the studies, are discussed.

First, i t is very important to continue the study of how to make it possible to

handle user and task issues in design, development and evaluation of user

interfaces. The studies did not provide a clear answer, although possible

solutions are indicated.

Second, f rom my experience in usability work in industrial system

development, i t is important to further develop the kinds of tools described to

make them possible to use (and evaluate) in a number of real system

development projects. This is necessary to avoid the mistakes presented in

Löwgren (1991) that occurred during development of UIMSs.

Third, i t is important to further study how to integrate, in an efficient way,

tools containing user interface design knowledge wi th UIMSs and other kinds

of User Interface Tools.

Fourth, it is necessary to further study how the process of developing user

interfaces is related to, and influenced by other system development activities.

To develop support for user interface development, i t is necessary to

understand how other activities i n the system development are accomplished.

Although some preliminary studies of the system development process and

user interface development have been made (see, for example, Bellotti, 1988;

Rosson et al., 1988) extended studies within this area are necessary.

Finally, it is necessary to continue the study of how the tools exemplified

above can be integrated in industrial system development, wi th methods for

usability work, and wi th other tools. This issue is elaborated in Chapter 8.

156

8. FUTURE WORK

8.1 Executive Summary of Work Performed

The material i n the previous chapters can be summarized into three parts. The

first part, i n Chapters 1 to 4, uses a traditional description of the system

development process to exemplify integration of usability work into system

development activities. A definition of usability work and a number of

methods for usability work are used to describe this integration. The use and

outcome f rom the application of these methods is described for different

system development activities. The second part , Chapters 5 to 6, uses the

foundation of the first part to describe the need for further and more

comprehensive integration of usability work into industrial system

development. Also traditional computer support in system development and

its relevance for usability work is discussed. Part 3, Chapter 7, reviews studies

on simple computer-based tools to support usability work, primarily user

interface development.

The work of integrating usability work and industrial system development is

of course not completed. The work in this thesis can be considered as a point

of departure. In the remainder of this Chapter ideas concerning possible

future attempts are briefly described and reviewed.

Usability work is extensive and requires performance of many activities to be

effective; in turn, the need for a range of supporting sub-activities arises.

Therefore, preliminary proposals for computer supported usability work

(CSUW) in system development, are presented. Other ideas wi th respect to

future work, are described in the end of each chapter, presented earlier.

157

8.2 CSUW in Industrial System Development

8.2.1 Introduction

To facilitate identification and discussion of possible CSUW in different

system development activities, each system development activity is briefly

reviewed. Following is a short description of usability work advocated for

each system development activity. Finally, ideas concerning possible

computer support are presented. Where computer support for the different

methods exists (to my knowledge), they are also mentioned. CSUW proposals

should be considered as preliminary. The goal is to present and discuss

simple ideas on how to support usability work.

The justification for advocating CSUW are summarized as follows:

• the need to document usability work results, to facilitate use in

subsequent and parallel usability work and system development

activities,

• the need to continuously develop obtained results further (for example,

different kinds of models and prototypes) as additional knowledge is

acquired,

• the necessity to make usability work easier and faster to perform. A

number of the methods exemplified in this document require excessive

resources (time, people and money). A l l efforts resulting in usability

work delivered faster and cheaper, w i l l encourage its integration into

the industrial system development process,

• the need for communicating usability work results so that all

participants benefit. Computer support that facilitates development of

prototypes is important i n this communication process (see, for

example, Andriole, 1990,1995; Wood & Kang, 1992),

158

• i n the case where method support is included in the computer support

(see, for example, some CASE systems) use of the method by other than

experts is facilitated.

See also section 5.6, for further motives for CSUW.

8.2.2 Identification of Need

Short summary of system development activity:

Identification of need is the first activity i n the system development process.

Here, usually a need, or idea, concerning specific computer support or

improvement of business, is presented by a customer or user. The need or

idea is often expressed in general terms, resulting in the necessity to identify

and concretize specific needs or ideas.

Short summary of usability work:

To support identification of need, inclusion of business analysis, prototyping

and use testing is advocated as a means of providing more complete data.

Prototyping is here accomplished using simple prototyping techniques. Use

testing consists of simple use tests where users perform a small number of

work tasks and use problems are identified. Also the accuracy of the model is

use tested.

Possible computer support:

In connection wi th identification of need, computer support for business

analysis, prototyping and use testing w i l l speed up work and reduce

investment of staff time.

159

In business analysis (basically consisting of identification and description of

current business, identification and prioritization of change needs and

modeling of new business) the following computer support w i l l contribute to

usability work. First, computer support to describe current business in a way

both resulting in an overall description of the complete business and

containing detailed information. This would make it possible for business

people and developers to ful ly understand the business. Second, computer

support to assist i n the prioritization of change needs. Third, computer

support for modeling business change. Important here is that the models

present a general view of the business and can be understood by all involved

in development. Computer support is also useful in illustrating dynamics in

the changed business, to increase probability that participants in the business

analysis understand potential effects of change proposals.

The method for business analysis described here uses computer support,

MacRASP (other business analysis methods also use computer support, for

example, the TRIAD method, Willars, 1993a, b). This computer support

mainly assists in description of current business, modeling of changed

business and consistency checking of descriptions and models. Support for

prioritization of change needs or for illustration of business dynamics is

minimal.

Hughes (1996) discuss tools for illustrating business process dynamics (based

on system dynamics). Also tools like Ithink (High Performance Systems, Inc.,

1994) and ReThink (Gensym Corporation, 1995) can be valuable.

In conjunction wi th identification of need, prototyping consists mainly of

development of use cases, screen layouts (describing services) and

storyboards. Simple computer support is sufficient to assist in documentation

of results f r o m prototyping (for example, word processing and drawing

160

programs). More advanced functions that illustrate dynamics in prototypes

are usually not necessary. Prototypes supplements business models to

increase probability that business people/users understand proposed

business design.

Use testing can also be supported using simple documentation support to

document the work tasks forming the basis i n use testing, use problems and

user opinions about prototypes and other models.

The concretized needs or ideas f rom this system development activity need to

be documented using natural language. Therefore, some fo rm of

documentation support is also needed here. Probably some CASE-system

supporting documentation can be of value. A n interesting support alternative,

in the f o r m of computer-based templates, is presented in Andriole (1996).

These templates can, according to Andriole, 1996, be used (and further

developed) in the entire system development process.

8.2.3 Identification of User Requirements (Requirements Definition)

Short summary of system development activity:

In identification of user requirements, the developer and user identifies and

defines user requirements on the computer system to be developed. In this

process, detailed analysis of identified needs (ideas) is performed. The

purpose being to identify all user requirements on the future computer

system, and to describe these requirements in a way understood by

developers as well as users.

161

Short summary of usability work:

In identification of user requirements, task analysis, prototyping, usability

specification and use testing were advocated. Prototyping is here also

accomplished w i t h simple prototyping techniques. Use testing is carried out

w i t h real users and work tasks. The aim of use testing being to verify that

necessary services are going to be delivered by the computer system (to be

developed) and that tasks can actually be performed.

Possible computer support:

Computer support for task analysis, prototyping, usability specification and

use testing during identification of user requirements w i l l facilitate usability

work through, for example, reduction of time for completion of these

activities.

Task analysis includes collection of task information, analysis of the

information and modeling of tasks. Computer support for these activities

offers structured documentation for easier analysis. Documentation support

to better organize collected information is needed. This documentation

support w i l l support task analysis i n a more profound way if also

functionality to directly structure information into groupings of goal, sub-

goals, procedures, objects and actions are included. It is also useful to include

support for analysis of the information. For example, to identify

representative, central and generic components in tasks. Modeling of work

tasks w i l l also benefit through support for building of goal structures,

procedure structures and taxonomic structures in accordance w i t h TKS (Task

Knowledge Structure). A prototype tool, ADEPT, has been developed, that

probably can support development of task models (Johnson, Wilson,

Markopoulos & Pycock, 1993; Johnson, et al., 1995; Wilson, et al., 1993; Wilson

& Johnson, 1995). While this tool is focused on user interface design, i t can

probably be useful also in the identification of user requirements activity.

162

Tools like Top Down are, according to Andriole, 1996, also useful for creating

task models. Tools also of value to support task analysis are, according to

Andriole, 1989, DecisionMap and Expert Choice, at least if there is a need to

prioritize tasks to be included in the computer system to be developed.

As prototyping mainly uses the same kind of simple prototyping techniques

as i n identification of need, the need for support is similar. A n interesting

prototyping technique for developing simple prototypes is presented in

Landay and Myers (1995). They have developed a tool for Sketching

Interfaces Like Krazy (SILK), allowing developers to sketch user interfaces

using an electronic stylus.

Usability specification does not need extensive computer support. Word

processing and drawing programs, supplemented by functionality to divide

general usability specifications into more detailed usability specifications, and

to check for consistency, w i l l support development. Without this k ind of

functionality it can be difficult to manage the set of usability specifications

needed in development of large and complex computer systems.

Use testing can in conjunction wi th identification of user requirements be

supported by the same kind of computer support as in identification of need.

Of value to document is:

• need for other services,

• necessary change of services to better suit work tasks,

• i n what respect tasks are possible to perform,

• critical comments concerning correctness of the prototype (model),

• critical comments concerning work task performance.

163

Also some kind of computer support to document identified user

requirements is necessary. This kind of computer support was mentioned in

sub-section 8.2.2.

As a supplement to the above, support for the process of determining if all

defined services (user requirements) are in the prototype w i l l provide more

complete usability data. A simple prototype tool was described in Study 4

(Computer Support for User Requirement Evaluation in System

Development) that perhaps can be used to support this process (if further

developed, of course).

8.2.4 Overall Design of the System

Short summary of system development activity:

In overall design of the system, focus is on issues concerning distribution of

functions to different parts of the system. Questions concerning what

functions to be performed by the computer system and by the user can (shall)

also be addressed.

Short summary of usability work:

Usability work advocated in connection wi th this activity was business

analysis, task analysis, contextual design (part of) and prototyping. The

results of business analysis, task analysis and prototyping were obtained

previously and the models and descriptions are immediately usable.

Contextual design (part of) is carried out during system design. Models,

prototypes and descriptions can also be integrated to create a model of the

"complete system," which can be use tested to check that general user

requirements are fulfi l led. The results f rom User Profiling, Cognitive

(Systems) Engineering and GOMS are probably also of value. These methods

164

provide, for example, information important for the allocation of functions

between computer system and user. Also, cognitive walkthrough

(jogthrough) and further development of the usability specification were

advocated.

Possible computer support:

In overall design of the system, use of results (models, descriptions,

prototypes, etc.,) f r o m earlier usability work provides a foundation upon

which to base the design. For these results to be usable, computer support that

finds different models, descriptions and prototypes, compares them, checks

for consistency and presents results f rom evaluation of the models and

prototypes is recommended. The possibility to inspect models and prototypes

w i t h early usability specifications as a basis also aids design. Integration of

models and prototypes to create a general model of the complete system, and

to use test it , is advisable. Therefore, computer support to illustrate and

integrate models and prototypes are useful.

Cognitive walkthrough (jogthrough) w i l l benefit f rom support focused at

documentation of work tasks, task actions, users and their knowledge. To

further develop the usability specification the support tool described in 8.2.4

can be used.

165

8.2.5 Identification of Software Requirements (Software Requirements Analysis)

Short summary of system development activity:

In analysis of software requirements, user requirements are transformed into

a description appropriate for software development. For example, f low charts,

object models and so on.

Short summary of usability work:

During identification of software requirements, performance of prototyping

by continuously developing prototypes further was advocated. Here, further

development could also mean development of a completely new prototype.

Also, further development of other models (for example, business models and

task models) and the usability specification was advocated. Use testing of

prototypes and other models were also considered necessary.

Possible computer support:

Further development of prototypes and other models, and continuous

evaluation that software requirements in a proper way reflect the user

requirements are key issues. Therefore, i t should be useful to have the same

kind of computer support as in the preceding system development activities.

In the case where further development of a prototype means development of

a completely new prototype, it can be of value to utilize some of the tools that

support more advanced prototyping techniques. For example, one of the User

Interface Tools described earlier.

To verify that defined software requirements reflect user requirements,

computer support w i l l simplify the process. In my opinion, this need may be

solved in at least two ways. First, to provide computer support for manual

166

handling and comparison of documented user requirements and software

requirements. This can maybe be done wi th some kind of hyper-text tool.

Second, to develop algorithms that automatically compare documented user

and software requirements.

A n interesting tool that probably can support the difficult work of verifying

that software requirements reflect user requirements is presented in Shipman

and McCall (1994). This Hyper-Object Substrate (HOS) system supports

incremental formalization of information expressed in an informal way by

users.

8.2.6 Software Design

Short summary of system development activity:

In software design, functions are allocated to different software modules and

software is structured in some convenient way (for example, object-oriented

design and/or functional design). Further, f l ow of information, data

structures and algorithms are defined and described. In software design, also

user interface design is performed.

Short summary of usability work:

The usability work advocated here, promoted the use of guidelines and

styleguides, in the sense that relevant guidelines and styleguides should be

identified. Also, prototyping of user interface design was advocated.

Prototyping is carried out using simple as well as more advanced prototyping

techniques. The prototype is then evaluated using guidelines and styleguides,

heuristic evaluation, cognitive walkthrough (jogthrough) and use testing in a

combination adapted to the situation. Use testing wi th real users and work

167

tasks is done later, when design has reached a more final form. Also, further

development of the usability specification is performed.

Possible computer support:

To identify guidelines and styleguides, and to evaluate the user interface

design wi th these as a basis, is a laborious process (see, for example, de Souza

& Bevan, 1990; Mosier & Smith, 1986; Tetzlaff & Schwartz, 1991). As a

consequence, guidelines and styleguides are not used (Smith & Mosier, 1984;

Thovtrup & Nielsen, 1991). From this, i t is possible .to conclude that computer

support w i l l assist this work and encourage guidelines and styleguide use.

Also a number of computer support tools have been developed. Perlman

(1989a, b) has developed a hyper-text based checklist. Sadler (1993) has

developed an interactive media to support user interface design. Reiterer

(1994) presents a multimedia tool and expert system to support the process of

developing user interfaces. Studies 1 and 2 in this thesis present a knowledge-

based tool, integrated wi th a UIMS, that automatically check for user interface

compliance wi th defined guidelines and styleguides. Study 3, describes a

computer-based tool for automatic inspection of user interfaces (MS Windows

based user interfaces) compliance wi th MS Windows styleguides.

In software design, prototyping is focused on modeling user interface design.

For this purpose, it can be appropriate to use more advanced prototyping

techniques. To support this work, i t is possible to utilize some of the User

Interface Tools described earlier and to develop, for example, limited

functionality prototypes, high functionality prototypes or selective fidelity

prototypes. However, for User Interface Tools to be of real value i n a design

situation, i t is necessary to supplement them wi th design knowledge on at

least two levels. The first level is related to general design of user interface,

where the knowledge is focused on what interaction technique to choose in

different situations. The second level concerns more detailed knowledge for

168

design of user interface elements. With respect to the first level, i t is possible

to utilize different kinds of hyper-text tools (MITRE, 1991; Perlman, 1989, a,

b), or multimedia tools (Reiterer, 1994). The computer support tools presented

in Studies 1, 2 and 3, can be used in evaluation based on level 2 knowledge.

However, these tools cannot be used before a design proposal has been

developed.

Concerning heuristic evaluation and cognitive walkthrough (jogthrough)

there is value in using simple computer support to assist i n documentation of

results f r o m these inspections.

In use testing it can be of value to have computer support to register and

analyze user interaction wi th the prototype. Registration can be supported on

at least two levels. The first level, described in, for example, Dumas and

Redish (1994), supports evaluation by giving access to a computer-based

form, where an evaluator can make notes concerning observations about what

a user is doing or saying. The second level, supports an evaluation by

automatically registrating user actions on a prototype. For example, button

presses, selection of menu items and time to react on information presented.

This type of registration usually requires some kind of analysis tool to

compile and present low level interactions for usability work to be efficient.

From my experience, i t is laborious and time consuming to manually compile

and analyze this kind of registrations, also for simple applications (see also

Harrison, Owen & Baecker, 1994). The V A N N A system and Timelines system

(Harrison et a l , 1994), are two support systems for collection and analysis of

data generated in conjunction wi th use testing. Wi th these systems it is

possible to collect, analyze and visualize quantitative and qualitative data, by

using, for example, pre-defined event and interval markers and color coding.

Perhaps also usable is the kind of tool described in study 2, where a runtime

evaluation module was illustrated.

169

8.2,7 Implementation and Unit Testing

Short summary of system development activity:

This activity mainly consists of implementation (programming) of different

software modules in accordance wi th software design and testing of the

modules to verify specified function.

Short summary of usability work:

Simple kinds of usability work was advocated here for example, cognitive

walkthrough (jogthrough), heuristic evaluation and use of guidelines and

styleguides. Also, utilizing usability specifications to continuously evaluate

user interface elements implemented was recommended.

Possible computer support:

In the same way as in software design, i t can be of value to have access to

similar tools mentioned in this context. Where a usability specification was

documented in a computer support, this tool can also be used during

implementation and unit testing.

The above mentioned computer support can perhaps be supplemented w i t h

computer support (TURE f rom Study 4) recommended for identification of

user requirements. Utilizing user requirements implemented in TURE, i t

might be possible to test implemented software modules taking into

consideration the services implemented in the modules.

170

8.2.8 Integration and Testing

Short surrurtary of system development activity:

In integration and testing, software modules are integrated and then tested to

ensure that integrated modules work as defined. This process is iterated unti l

all software is integrated and tested.

Short summary of usability work:

During integration and testing, use testing wi th real users and real work tasks

was advocated.

Possible computer support:

The same kind of computer support tools for use testing, described in

connection w i t h software design can be of value in integration and testing.

8.2.9 Operation and Maintenance

Short summary of system development activity:

When the computer system has been installed and acceptance testing has been

carried out, the system is set in operation. After this, continuous maintenance

activities usually are accomplished as long as the system is used. The purpose

w i t h these maintenance activities is to correct errors and deficiencies, and to

further develop the computer system.

171

Short summary of usability work:

Usability work advocated in connection wi th operation and maintenance was

use testing in a realistic environment.

Possible computer support:

Use testing in the real environment implies further requirements for

computer support. For example, i n this context it can be of value to simulate

actions f r o m other businesses and other users, i n order to achieve a more

realistic evaluation situation. Also the kind of support tools for registration

and analysis of user interaction described in connection wi th software design

and integration & testing can be valuable (see, for example, Nielsen, 1993).

8.3 Summary

Above, a number of different computer support opportunities has been

exemplified. These proposals are not complete. They should be seen as an

attempt to initiate a discussion about the possible need for computer support

tools and what they shall support. Hopefully, this brief description of

different kinds of computer support w i l l lead to initiation of work focused on

supporting usability work in industrial system development. Although, a

number of tools have been developed, most are prototypes or research tools.

Important aspects that should influence this future work (hopefully both

research and development) are mentioned by Löwgren (1991). They can be

summarized as need for increased focus on practical system development and

continuous feedback of experiences f rom practical use. Besides the

development of computer support that focuses on usability work, i t is also

necessary to study how these possible computer support tools can be

172

integrated wi th traditional computer support for system development, for

example CASE systems and User Interface Tools.

173

R E F E R E N C E S

Adelman, L. (1992). Evaluating Decision Support and Expert Systems. John

Wiley & Sons, Inc., New York. USA.

Adelman, L., and Donnell, M . L. (1986). Evaluating Decision Support

Systems: A General Framework and Case Study. In S. J. Andriole (ed.),

Microcomputer Decision Support Systems: Design, Implementation, and

Evaluation. QED Information Sciences, Inc., Wellesley, Massachusetts.

USA, pp. 285-309.

Adler, P., and Winograd, T. (1992). The Usability Challenge. In P. Adler, and

T. Winograd, (eds.), Usability: Turning Technologies into Tools, New York:

Oxford University Press, pp. 3-14.

Allusi , E. A. (1991). The Development of Technology for Collective Training:

SIMNET, a Case History. Human Factors. Reprinted in L. Voss. A

Revolution in Simulation: Distributed Interaction in the '90s and Beyond.

Pasha Publications Inc., 1993 , Arlington, VA. 22209. USA, pp. 168-187.

Andersen, N-E, Kensing, F., Lundin, J., Mathiassen, L., Munk-Madsen, A.,

Rasbech, M . , and Sörgard, P. (1990). Professional Systems Development,

Experiences, Ideas and Action. Prentice Hall International Ltd. , United

Kingdom.

Andriole, S. J. (1989). Handbook of Decision Support Systems, TAB Professional

and Reference Books, Blue Ridge Summit, PA. USA.

Andriole, S. J. (1990).Information System Design Principles for the 90s, GETTING

IT RIGHT!. AFCEA International Press, USA.

174

Andriole, S. J. (1991). Storyboard Prototyping for Requirements Verification.

In S. J. Andriole and S. M . Halpin (eds.), Information Technology for

Command and Control, Methods and Tools for Systems Development and

Evaluation. IEEE Press, New Jersey, USA, pp. 82-98.

Andriole, S. J. (1994). Prototype or elseIEEE Software. May.

Andriole, S. J. (1996). Managing Systems Requirements: Methods, Tools, and

Cases. McGraw-Hill Companies, Inc., USA.

Andriole, S. J., and Adelman, L. (1991). Prospects for Cognitive Systems

Engineering. In S. J. Andriole and S. M . Halpin (eds.), Information

Technology for Command and Control, Methods and Tools for Systems

Development and Evaluation. IEEE Press, New Jersey, USA, pp. 52-59.

Andriole, S. J., and Adelman, L. (1995). Cognitive Systems Engineering for User-

Computer Interface Design, Prototyping, and Evaluation. Lawrence Erlbaum

Associates, Publishers, Hillsdale, New Jersey, USA.

Andriole, S. J., and Monsanto, C. A. (1995). Interactive Collaborative

Requirements Management. Software Development, May.

Apple Computer (1992). Human Interface Guidelines: The Apple Desktop

Interface. Author.

Ashworth, C , and Goodland, M . (1990). SSADM: A Practical Approach.

McGraw-Hill .

ASTM (1991). Standard Guide for Rapid Prototyping of Computerized

Systems. ASTM Designation E 1340-91, American Society for Testing

and Materials, 1916 Race St., Philadelphia, PA 19103, USA.

175

Bellotti, V. (1988). Implications of Current Design Practice for the Use of

H C l Techniques. In D. M . , Jones, and R., Winder (eds.), People and

Computers IV, Proceedings of the Fourth Conference of the British Computer

Society, Human- Computer Interaction Specialist Group, University of

Manchester, 5-9 September, Cambridge University Press, Cambridge,

pp. 13-34.

Bergsten, P., Bern, M . , Kool, P., and Wingstedt, U . (1993). Verktyg för grafiska

användargränssnitt. Rapport nr. 20. Swedish Institute for System

Development, Stockholm, Sweden.

Beyer, H . , and Holtzblatt, K. (1993). Contextual Design: Toward a Customer-

Centered Development Process. Software Development '93 Spring

Proceedings, Santa Clara, California, Feb., USA.

Boar, B. (1984). Application Prototyping: A Requirements Definition Strategy for

the 80s. New York: Wiley Interscience, USA.

Bodart, F., Hennebert, A - M . , Leheureux, J-M., Provot, L, and Vanderdonckt,

J. (1994). A Model-Based Approach to Presentation: A Continuum f r o m

Task Analysis to Prototype. Proceedings of Eurographics Workshop on

Design, Specification, Verification of Interactive Systems. Bocca di Magra,

8-10 June, pp. 25-39.

Boehm, B. W. (1988). A Spiral Model of Software Development and

Enhancement. IEEE Computer, 21, (5), May, pp. 61-72.

Brown, C. M . L. (1988). Human-Computer Interface Design Guidelines. Ablex

Publishing Company, Norwood, USA.

176

Brown, A. W., Earl, A. N , and McDermid, J. A. (1992). Software Engineering

Environments, Automated Support for Software Engineering. McGraw-Hill

Book Company, London, United Kingdom.

Bubenko, J. (1989). Selecting a Strategy for Computer-Aided Software

Engineering. SYSLAB, Stockholm University, Sweden.

Card, S., Moran, T., and Newell, A. (1983). The Psychology of Human-

Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum.

Carroll, J. M . (1995). The Scenario Perspective on System Development. In J.

M . Carroll (ed.), Scenario-Based Design, Envisioning Work and Technology

in System Development. John Wiley & Sons, Inc., New York, USA, pp. 1-

17.

Carroll, J. M . , and Rosson, M . B. (1985). Usability specifications as a tool i n

iterative development. In Hartson, H . R. (ed.),Advances in Human-

Computer Interaction. Ablex, pp. 1-28.

Carlshamre, P. (1994), A Collective Approach to Usability Engineering:

Technical Communicators and System Developers in Usability-

Oriented Systems Development, Linköping Studies in Science and

Technology, Thesis No. 455. Department of Computer and Information

Science, Linköping University, Sweden.

Chapanis, A., and Budurka, W. J. (1990). Specifying human-computer

interface requirements. Behaviour & Information Technology, vol. 9, No. 6,

pp. 479-492.

177

Christel, M . G., and Kang, K. C. (1992). Issues in Requirements Elicitation.

Technical Report CMU/SEI-92-TR-12 ESC-TR-92-012. Software

Engineering Institute, Carnegie Mellon University.

Cronholm, S. (1994). Varför CASE-verktyg i systemutveckling? - En motiv-

och konsekvensstudie avseende arbetssätt och arbetsformer. Humaniora

och Samhällsvetenskap FHS-rapport 5/94, Licentiatavhandling. Institutionen

för Datavetenskap, Linköpings Universitet, Linköping, Sweden.

Davenport, T. H . (1993). Process Innovation. Harvard Business School Press,

Boston, Massachusetts, USA.

Davis, A. M . (1990). Software Requirements: Analysis and Specification.

Prentice-Hall, Inc., USA.

Davis, A. M . (1993). Softiuare Requirements: Objects, Functions and States.

Prentice-Hall, Inc., New Jersey, USA.

Defense Information Systems Agency (1994). Department of Defense Technical

Architecture Framework for Information Management, Volume 8: Department

of Defense HCl Style Guide. Author, June.

De Souza, F., and Bevan, N . (1990). The Use of Guidelines in Menu Interface

Design: Evaluation of a Draft Standard. In D. Diaper, D. Gilmore, G.

Cockton, and B. Schäkel (Eds.), Human-Computer Interaction - Interact

'90. North-Holland, pp. 435-440.

Desurvire, H . W. (1994). Faster, Cheaper!! Are Usability Inspection Methods

as Effective as Empirical Testing? In J. Nielsen and R. L. Mack (eds.),

Usability Inspection Methods. John Wiley & Sons, pp. 173-202.

178

Desurvire, H . W., Kondziela, J. M . , and Atwood, M . E. (1992). What is

Gained and Lost When Using Interface Evaluation Methods Other than

Empirical Testing? In A. Monk, D. Diaper, and M . D. Harrison (eds.),

People and Computers VII. Cambridge: Cambridge University Press, pp.

89-102.

Diaper, D. (1989). Task Analysis for Knowledge Descriptions (TAKD): The

Method and an example. In D. Diaper, (ed.), Task Analysis for Human-

Computer Interaction. Ellis Horwood, pp. 108-159.

Dix, A., Finlay, J., Abowd, G. and Beale, R. (1993). Human-Computer

Interaction. Prentice Hall International Limited. United Kingdom.

Dumas, J. S., and Redish, J. C. (1994). A Practical Guide to Usability Testing.

Ablex Publishing Corporation, Norwood, New Jersey. USA.

Enqvist, H . , and Lethovaara, K. (1996). Personal communication.

Eisner, H . (1987). Computer Aided Systems Engineering. Prentice Hall ,

Englewood Cliffs, New Jersey, USA.

Fernandez, K. (1992). User Interface Specifications for Navy Command and

Control Systems. AC/141(IEG/5)WP/122, June.

Fischer, G., and Lemke, A. (1988). Framer: Integrating Working and

Learning. Manuscript submitted to IJCAI89.

Fischer, G., and Lemke, A. (1989). Design Environments: From Human-

Computer Communication to Human Problem-Domain

Communication and Beyond. In IJCAV89 Workshop: A New Generation of

Intelligent Interfaces, pp. 53-58.

179

Fischer, G., Lemke, A., Mastaglio, T., and Morch, A. (1990). Using Critics to

Empower Users. In CHI'90 Proceedings, pp. 337-347.

Fisher, A. S. (1988). CASE, Using Software Development Tools. John Wiley &

Sons, Inc., New York, USA.

Flygvapnet (1993). Handbok Systemarbete L1FV. Ver. 2.0. Author. Sweden.

Foley, J., Kim, W., Kovacevic, S., and Murray, K. (1989). Defining Interfaces

at a High Level of Abstraction. IEEE Software. January, pp. 25-32.

Goddard Space Flight Center (1992). Human-Computer Interface Guidelines.

Author, Aug.

Goldkuhl, G. (1991). Stöd och Struktur i Systemutvecklingsprocessen. Paper

presented at the Conference on Systemutveckling i praktisk belysning.

Norrköping, Sweden.

Goldkuhl, G. (1992). Metodanpassning av C ASE-verktyg. Institutionen för

datavetenskap, Linköpings Universitet, Sweden.

Goldkuhl, G. and Röstlinger, A. (1988). Förändringsanalys: Arbetsmetodik och

förhållningsssätt för goda för ändringsbeslut. Studentlitteratur, Lund,

Sweden.

Gordon, V. S., and Bieman, J. M . (1994). Rapid Prototyping: Lessons

Learned. IEEE Software, pp. 85-95.

Gould, J. D., Conti, J., and Hovanyecz, T. (1983). Composing Letters w i t h a

Simulated Listening Typewriter. Communications of the ACM. 26, 4,

Apr i l .

180

Green, M . (1985). Report on Dialogue Specification Tools. In G. Pfaff (ed.),

User Interface Management Systems Springer Verlag, Berlin, Germany,

pp. 9-20.

Hammer, M , and Champy, J. (1993). Reengineering the Corporation: A

Manifeste for Business. Harper Collins Publishers Inc., New York, USA.

Harrison, B., L., Owen, R., and Baecker, R. M . (1994). Timelines: A n

Interactive System for the Collection and Visualization of Temporal

Data. In W. D. Davis and B. Joe, (eds.), Graphics Interface '94. Banff,

Alberta, 18-20 May, Palo Alto, CA: Morgan Kaufmann Publishers, pp.

141-148.

High Performance Systems, Inc. (1994). The Visual Thinking Tools for the

90's. Author.

Hollnagel, E., Mancini, G., and Woods, D. D. (1988). Cognitive Engineering in

Complex Dynamic Worlds. London: Academic Press, United Kingdom.

Holtzblatt, K., and Beyer, H . (1993). Making Customer-Centered Design

Work for Teams, Communications of the ACM. October, Vol . 36, No. 10,

pp. 93-103.

Holtzblatt, K., and Jones, S. (1993). Contextual Inquiry: A Participatory

Technique for System Design. In D. Schüler and A. Namioka (eds.),

Participatory Design: Principles and Practices. Lawrence Erlbaum

Associates Publishers, Hillsdale, New Jersey, pp. 177-210.

Hughes, G. M . K. (1996). Process Reengineering Case Studies. In S. J.

Andriole, Managing Systems Requirements: Methods, Tools, and Cases.

McGraw-Hil l , USA.

181

IEEE P1233-1993 (1994). Guide for Developing System Requirements

Specifications. Draft. Institute of Electrical and Electronics Engineers, Inc.

New York, USA.

IEEE std 830-1993 (1994). IEEE Recommended Practice for Software

Requirements Specifications. Institute of Electrical and Electronics

Engineers, Inc. New York, USA.

Jackson, M . A. (1983). System Development. Prentice-Hall.

Jacobson, L, Christenson, M . , Jonsson, P., and Overgaard, G., (1992). Object-

Oriented Software Engineering. Reading: Addison-Wesley Publishing

Company, USA.

Jeffries, R., Miller, J. R., Wharton, C , and Uydea, K. M . (1991). User

interface evaluation in the real world: A comparison of four techniques.

CHI'91 Conference Proceedings, pp.119-124.

John, B. E. (1995). Why GOMS?. Interactions, October, pp. 80-89.

John, B. E., and Kieras, D. E. (1996). Using GOMS for User Interface Design

and Evaluation: Which Technique? ACM Transactions on Computer-

Human Interaction. Vol. 3, No. 4, December, pp. 287-319.

Johnson, H . , and Johnson, P. (1989). Integrating task analysis into system

design: Surveying designers' needs. Ergonomics. 32, pp. 1451-1467.

Johnson, H . , and Johnson, P. (1990a). Integrating task analysis and system

design: Surveying designer's needs, Ergonomics. 32,11, pp. 1451-67.

182

Johnson, H. , and Johnson, P. (1991). Task Knowledge Structures:

Psychological basis and integration into system design. Acta

Psychologica. 78, pp. 3-26.

Johnson, P. (1992). Human Computer Interaction: Psychology, Task Analysis and

Software Engineering. McGraw-Hill Book Company, London.

Johnson, P., Johnson H. , Waddington, R., and Shouls, A. (1988). Task

Related Knowledge Structures: Analysis, Modeling and Application. I n

D. M . Jones and R. Winders (eds.), People and Computers: From Research

to Implementation, HCl'88. Cambridge University Press, United

Kingdom, pp. 137-155.

Johnson, P., and Johnson, H . (1990b). Knowledge Analysis of Tasks: Task

Analysis and Specification for Human Computer Systems. In A.

Downtown (ed.), Engineering the Human-Computer Interface. McGraw-

H i l l .

Johnson, P., Drake, K., and Wilson, S. (1990). A Framework for Integrating

UIMS and User Task models in the Design of User Interfaces. In D. A.

Duce, M . R. Gomez, F. R. A. Hopgood, and J. R. Lee (eds.), User Interface

Management and Design; Proceedings of Workshop on User Interface

Management Systems and Environments. Springer Verlag, pp. 203-216.

Johnson, P., Wilson, S„ Markopoulos, P., and Pycock, J. (1993). ADEPT -

Advanced Design Environment for Prototyping w i t h Task Models.

Demonstration Abstract. In Proceedings of INTERCHI'93. Apr i l , A C M

Press, p. 56.

Johnson, P., Johnson, H . , and Wilson, S. (1995). Rapid Prototyping of User

Interfaces Driven by Task Models. In J. M . Carroll (ed.), Scenario-Based

183

Design, Envisioning Work and Technology in System Development. John

Wiley & Sons, Inc., New York, USA, pp. 209-246.

Karat, C-M. (1992). Cost-Justifying Human Factors Support on Software

Development Projects. Human Factors Society Bulletin. 35 (11), pp. 1-4.

Karat, C-M. (1994). A Comparison of User Interface Evaluation Methods. I n

J. Nielsen and R. L. Mack (eds.), Usability Inspection Methods. John Wiley

& Sons, pp. 203-233.

Karat, C-M., Campbell, R. L., and Fiegel, T. (1992). Comparison of Empirical

Testing and Walkthrough Methods in User Interface Evaluation. I n

Proceedings of the ACM CHI'92 Conference. (Monterey, CA, May 3-7), pp.

397-404.

Kelly, C , and Colgan, L. (1992). User Modeling and User Interface Design.

In People and Computers VII, Proceedings of HCI'92 Conference.

Cambridge University Press, pp. 227-239.

Landay, J. A., and Myers, B. A. (1995). Interactive Sketching for the Early

Stages of User Interface Design. In Proceedings of CHT95, Mosaic of

Creativity. May 7-11, A C M Press, pp. 43-50.

Lederer, A. L., and Prasad, J. (1992). Nine Management Guidelines for

Better Cost Estimating. Communications of the ACM. 35, 2 (February), pp.

51-59.

Lemke, A., and Fischer, G. (1990). A Cooperative Problem Solving System

for User Interface Design. In Proceedings of the Eight National Conference

on Artificial Intelligence, pp. 479-484.

184

Lewis, C. (1982). Using the 'Thinking-Aloud' method in Cognitive Interface

Design. Research Report RC9265. IBM T. J. Watson Research Center,

Yorktown Heights, NY, USA.

Lewis, C , and Rieman, J. (1993). Task-Centered User Interface Design.

Shareware, ftp.cs.colorado.edu.

Löwgren, J. (1991). Knowledge-Based Design Support and Discourse

Management i n User Interface Management Systems. Linköping Studies

in Science and Technology, Dissertations No. 239. Department of Computer

and Information Science, Linköping University, Sweden.

Löwgren,}. (1993). Human-Computer Interaction: What Every System Developer

Should Know. Studentlitteratur, Lund, Sweden.

Löwgren, J., and Nordqvist, T. (1990). A Knowledge-Based Tool for User

Interface Evaluation and its Integration in a UIMS. I n D. Diaper, D.

Gilmore, G. Cockton, and B. Shackel (eds.), Human-Computer Interaction

Interact '90. North-Holland, pp. 395-400.

Löwgren, J., and Nordqvist, T. (1992). Knowledge-Based Evaluation as

Design Support for Graphical User Interfaces. I n CHI '92 Proceedings,

pp. 181-188.

Maulsby, D., Greenberg, S., and Mander, R. (1993). Prototyping an

Intelligent Agent Through Wizard of Oz. Proceedings of ACM

INTERCHI'93 Conference. Amsterdam, The Netherlands, Apr i l 24-29.

Mayhew, D. J. (1992). Principles and Guidelines in Software User Interface

Design. Prentice Hall , Englewood Cliffs, NJ.

185

McClure, C. (1989). CASE is Software Automation. Prentice Hall.

Mercury Interactive Corporation (1993a). X Runner/WinRunner Technical

Overview, ver. 1.0. California, USA: Author.

Mercury Interactive Corporation (1993b). WinRunner User's Guide,

California, USA.: Author.

Mercury Interactive Corporation (1993c). Context Sensitive Testing, User's

Guide, California, USA.: Author.

Microsoft (1993).The Windows Interface: An Application Design Guide.

Microsoft Press, Redmond, Washington, Author.

Miller-Jacobs, H . H . (1991). Rapid-Prototyping: A n Effective Technique for

System Development. In J. Karat (ed.), Taking Software Design Seriously.

Academic Press, Inc., pp. 273-286.

MILSTD 498 (1994). Military Standard for Software Development and

Documentation, AMS C No. N7069.

MITRE (1991). Dynamic Rules for User Interface Design, DRUID 2.0 B MITRE

Corporation, Bedford Massachusetts, USA.

Mosier, J. N . , and Smith, S. L. (1986). Application of Guidelines for

Designing User Interface Software, Behaviour and Information Technology.

3, pp. 39-46.

Myers, B. A. (1989). User-Interface Tools: Introduction and Survey. IEEE

Software. January, pp. 15-23.

186

Myers, B. A. (1993). State of the Ar t in User Interface Software Tools. In H .

R. Hartson and D. Hix (eds.), Advances in Human-Computer Interaction.

Vol. 4, Ablex Publishing Corporation, Norwood, New Jersey, USA, pp.

110-150.

Myers, B. A. (1995). User Interface Software Tools. ACM Transactions on

Computer-Human Interaction, Vol. 2, No. 1, March, pp. 64-103.

Myers, B. A., and Rosson, M . B. (1992). Survey on User Interface

Prograrnming. In Proceedings of CHI'92 Conference on Human Factors in

Computing Systems, pp. 195-202.

Nielsen, J. (1990). Paper versus computer implementations as mockup

scenarios for heuristic evaluation. Proceedings of IFIP INTERACT'90

Third International Conference on Human-Computer Interaction.

Cambridge, UK, 27-31 August, pp. 315-320.

Nielsen, J. (1992). Finding Usability Problems Through Heuristic

Evaluation. Proceedings of the ACM CHI'92 Conference. (Monterey, C A,

May 3-7), pp. 373-380.

Nielsen, J. (1993). Usability Engineering. Academic Press, Inc. San Diego CA.

Nielsen, J. (1994). Heuristic Evaluation. In J. Nielsen and R. L. Mack (eds.),

Usability Inspection Methods. John Wiley & Sons, Inc., pp. 25-62.

Nielsen, J. (1995), Applying Discount Usability Engineering, IEEE Software.

January, pp. 98-100.

187

Nielsen, J., and Molich, R. (1990). Heuristic Evaluation of user interfaces.

Proceedings of ACM CHI'90 Conference. (Seattle, WA, 1-5 April) pp. 249-

256.

Nordqvist, T. (1995). Computer-Supported for User Requirement

Evaluation in System Development. Research Report, TULEÅ 95:37.

Luleå University of Technology.

Nordqvist, T. (1996). TUNE: A Tool for User Interface Evaluation. In

Proceedings of the Sixth Australian Conference on Computer-Human

Interaction, (OZCHI'96). Hamilton, New Zealand, November 24-27, pp.

129-134.

Näslund, T. (1994). Usability is extremely important - but it's somebody

else's job, I hope. In P. Kerola, A. Juustila and J. Järvinen (eds.),

Proceedings of the 17th IRIS (Information Systems Research Seminar in

Scandinavia). University of Oulu, Dept. of Information Processing

Science, pp. 653-667.

Olsen, D., Green, M . , Lantz, K., Schulert, A., and Sibert,}. (1987). Whither

(or wither) UIMS? In Proceedings of CHI+GI'87, pp. 311-314.

Olsen, D. R., Jr., and Halversen, B. W. (1988). Interface Usage Measurements

in a User Interface Management System. In ACM SIGGRAPH

Symposium on User Interface Software and Technology Proceedings UIST'88.

A C M , New York, pp. 102-108.

Open Software Foundation (1988). OSF/Motif Styleguide, revision 1.1,

Cambridge Massachusetts, USA.

188

Open Software Foundation (1993). OSF/Motif Styleguide, rev. 1.2. Prentice

Hall, Englewood Cliffs, New Jersey, USA.

Palmer, J. D. (1990). Software System Requirements Engineering for

Command and Control. In S. Andriole (ed.), Advanced Technology for

Command and Control Systems Engineering. AFCEA International Press,

Fairfax, Virginia, 22033-3899 USA, pp. 18-31.

Perlman, G. (1989a). System Design and Evaluation wi th Hypertext

Checklists. Proceedings of the 1989 IEEE Conference on Systems, Man and

Cybernetics, pp. 1187-1193.

Perlman, G. (1989b). The checklist method for applying guidelines to design

and evaluation. Proceedings of INTERFACE 89, pp. 271-276.

Poison, P. G., Lewis, C , Rieman, J., and Wharton, C. (1992). Cognitive

Walkthroughs: A method for theory-based evaluations of user

interfaces. International Journal of Man-Machine Studies. 36, pp. 741-773.

Preece, J., Rogers, Y., Sharp, H . , Benyon, D., Holland, S., and Carey, T.

(1994). Human-Computer Interaction. Addison-Wesley, Wokingham,

England.

Raghavan, S., Zelesnik, G., and Ford, G. (1994). Lecture Notes on

Requirements Elicitation. Educational Materials CMU/SEI-94-EM-10.

Carnegie Mellon University, Software Engineering Institute.

Reiterer, H . (1994). User Interface Evaluation and Design, Research Results of the

Projects Evaluation of Dialogue Systems (EVADIS) and User Interface Design

Assistance (IDA). R. Oldenbourg Verlag, Munich, Germany.

189

Rettig, M . (1994). Prototyping for Tiny Fingers, Communications of the ACM.

Apri l .

Robinson, P. J. (1992). Hierarchical Object-Oriented Design. Prentice Hal l ,

Englewood Cliffs, New Jersey, USA.

Rosson, M . B., Maass, S., and Kellogg, W. A. (1988). The Designer as User:

Building Requirements for Design Tools f rom Design Practice.

Communications of the ACM. Vol. 31. No. 11, November, pp. 1288-1298.

Rowley, D. E., and Rhoades, D. G. (1992). The Cognitive Jogthrough: A

Fast-Paced User Interface Evaluation Procedure. Proceedings of the ACM

CHI'92 Conference. (Monterey, CA, May 3-7), pp. 389-395.

Royce, W. W. (1970). Managing the Development of Large Software

Systems: Concepts and Techniques. In Proceedings IEEE WESTCON. Los

Angeles, USA, pp.1-9.

Sadler, H . J. (1993). Making i t Macintosh: A n Interactive Human Interface

Instructional Product for Software Developers. In INTERCHI '93

Adjunct Proceedings, pp. 37-38.

Sage, A. P. (1992), Systems Engineering. John Wiley & Sons, Inc., New York,

USA.

Sage, A. P., and Palmer, J. D. (1990). Software Systems Engineering. John

Wiley & Sons, Inc., USA.

Schmucker, K. J. (1986). MacApp: A n Application Framework. Byte, 11, Vol .

8, August, pp. 189-193.

190

Sharon, D., and Bell, R. (1995). Tools that Bind: Creating Integrated

Environments. IEEE Software. 12, (2), March, pp. 76-85.

Shipman I I I , F. M . , and McCall, R. (1994). Supporting Knowledge-Base

Evolution w i t h Incremental Formalization. Proceedings of Human Factors

in Computing Systems, CHI'94. Apr i l 24-28, Boston, Massachusetts, USA,

pp. 285-291.

Shneiderman, B. (1992). Designing the User Interface: Strategies for Effective

Human-Computer Interaction. Second edition. Addison-Wesley, Reading,

Massachusetts, USA.

Smith, S. L. (1988). Standards Versus Guidelines for Designing User

Interface Software. In M . Heiander (ed.), Handbook of Human- Computer

Interaction. Elsevier Science Publishers B. V. North-Holland,

pp. 877-889.

Smith, S. L., and Mosier, J. N . (1984). The User Interface to Computer-Based

Information Systems: A Survey of Current Software Design Practice.

Behaviour and Information Technology. 3, pp. 195-203.

Smith, S. L., and Mosier, J. N . (1986). Guidelines for Designing User

Interface Software, Technical Report, MTR-10090. The MITRE

Corporation, Bedford, M A , 01730, USA.

Sommerville, I . (1992). Software Engineering. Fourth edition. Addison-

Wesley Publishing Company Inc., USA.

Sommerville, I . (1996). Software Engineering. Fif th edition. Addison-Wesley

Publishing Company Inc., USA.

191

Sukaviriya, P., Foley, J. D., and Griff i th, T. (1993). A Second Generation

User Interface Design Environment: The Model and the Runtime

Architecture. In Human Factors in Computing Systems Proceedings

INTERCHI'93. A C M , New York, pp. 375-382.

Tanner, P., and Buxton, W. (1985). Some Issues in Future User Interface

Management Systems (UIMS) Development. In G. Pfaff, (ed.), User

Interface Management Systems. Springer Verlag, Berlin, Germany.

Telesoft AB (1989). TeleUSE Reference Manual. 1.0 edition. Linköping,

Sweden, Author.

TELUB AB and System Development Associates (1990). RASP: En översikt.

Author. Sweden.

TELUB AB (1995). RASP Handbok. Author. Sweden.

Tetzlaff, L., and Schwartz, D. R. (1991). The Use of Guidelines in User

Interface Design. In CHI '91 Proceedings, pp. 329-333.

Thovtrup, H . , and Nielsen, J. (1991). Assessing the Usability of a User

Interface Standard. In CHI '91 Proceedings, pp. 335-341.

U.S. Department of Defense (1985). Defense System Software Development.

DOD-STD-2167. June.

Vlissides, J. M. , and Linton, M . A. (1990). Unidraw: A Framework for

Building Domain-Specific Graphical Editors. ACM Transactions on

Information Systems. 8, Vol. 3. (July), pp. 204-236.

192

Waddington, R., and Johnson, P. (1989a). Designing and Evaluating

Interfaces Using Task Models. I n G. X. Ritter (ed.), 11th World Computer

Congress (IFIP Congress 1989). North-Holland.

Waddington, R., and Johnson, P. (1989b). A Family of Task Models for

Interface Design. In A. Sutcliffe and L. Macaulay (eds.),HQ'89.

Cambridge University Press.

Wasserman, A. I . (1990). Tool Integration in Software Engineering

Environments. In Proceedings of International Workshop on Environments.

Berlin, pp. 137-149.

Wharton, C , Rieman, J., Lewis, J., and Poison, P. (1994). The cognitive

walkthrough: A Practioners Guide. In J. Nielsen and R. L. Mack (eds.),

Usability Inspection Methods. John Wiley & Sons, Inc., pp. 105-140.

Whiteside, J., and Wixon, D. (1987). The Dialectic of Usability Engineering.

In H-J., Bullinger, and B. Shackel, (eds.). Human-Computer Interaction -

Interact '87. Amsterdam: Elsevier, pp. 17-20.

Whiteside, J., Bennett, J., and Holtzblatt, K. (1988). Usability Engineering:

Our Experience and Evolution. In M . Heiander (ed.), Handbook of

Human- Computer Interaction. Elsevier Science Publishers B. V. North-

Holland, pp. 791-817.

Wiklund, M . E. (1994), Usability in Practice, Academic Press, Inc.,

Cambridge, Massachusetts, USA.

Willars, H . (1993a). TRIAD, Modelleringshandboken N 10:1, SISU Rapport.

Sweden.

193

Willars, H . (1993b). TRIAD, Modelleringshandboken N 10:2, SISU Rapport.

Sweden.

Wilson, S., Johnson, P., Kelly, C , Cunningham, }., and Markopoulos, P.

(1993). Beyond Hacking: A Model Based Approach to User Interface

Design. In J. Alty, D. Diaper, and S. Guest, (eds.), Proceedings ofCHI'93.

Cambridge University Press, pp. 217-231.

Wilson, S., and Johnson, P. (1995). Empowering Users in a Task-Based

Approach to Design. In G. M . Olson, and S. Schuon, (eds.), Proceedings

on Symposium on Designing Interactive Systems: Processes, Practices,

Methods & Techniques, DIS '95. A C M , pp. 25-31.

Wixon, D., Holtzblatt, K , and Knox, S. (1990). Contextual Design: A n

Emergent View of System Design. In Proceedings of CHI'90: Conference on

Human Factors in Computing Systems. Seattle, WA, New York:

Association for Computing Machinery, pp. 329-336.

Wood, D. P., and Kang, K. C. (1992). A Classification and Bibliography of

Software Prototyping, Technical Report, CMU/SEI-92-TR-13. October.

Software Engineering Institute, Carnegie Mellon University, Pittsburgh,

Pennsylvania 15213, USA.

Woods, D. D. (1988). Commentary: Cognitive Engineering in Complex and

Dynamic Worlds. In E. Hollnagel, E., G. Mancini and D. D. Woods

(eds.), Cognitive Engineering in Complex Dynamic Worlds. Academic

Press, USA, pp. 115-129.

Woods, D. D., and Roth, E. M . (1988). Cognitive Engineering: Human

Problem Solving wi th Tools. Human Factors. 30(4), pp. 415-430.

194

Woods, D. D., and Roth, E. M . (1988). Cognitive Systems Engineering. In M

Heiander (ed.), Handbook of Human-Computer Interaction. Elsevier

Publishing Company, Amsterdam, Netherlands.

Workshop Proceedings (1991). Requirements Engineering and Analysis,

Technical Report, CMU/SEI-91-TR-30.

Voss, L. D. (1993). A Revolution in Simulation: Distributed Interaction in the

'90s and Beyond. Pasha Publications Inc., Arlington, VA. 22209, USA.

Study 1

Human-Comouter Interaction - INTERACT '90
D. Diaper et al. (Editors)
Eisevier Science PuDlisners B.V. (Ncnh-Hoilana) 395
3 IFIP. 1990

A Knowledge-Based Tool for User Interface Evaluation
and its Integration in a UIMS

Jonas Löwgren

Dept . of Computer and Information Science. L inköp ing Universi ty

S-5S1 S3 Linköping, S W E D E N

Tommy Nordqvist
Nat iona l Defense Research. Establishment (FOA52). P.O. Box 1165

S-5S1 11 Linköping, S W E D E N

Abstract

This paper describes and discusses a knowledge-based user interface evaluation tool, based
on the critiquing paradigm. The tool uses knowledge acquired from experts and from collections
of guidelines to evaluate a formal description of a user interface design, generating comments
as well as suggesting improvements.

After describing the system architecture and reporting some experiences, the paper focuses
on the possibility of incorporating a knowledge-based design tool in a User Interface Manage­
ment System (UIMS), making it possible to give constructive advice to the designer as well as
comments. We report some preliminary results from a project aimed at this integration.

1 I n t r o d u c t i o n

User Interface Management Systems (UIMSs) were orig­
inally conceived as tools for facilitating user interface
development within the existing software development
process. Issues such as rapid prototyping and reusabil­
ity are well understood and often put forward as ad­
vantages gained f rom using a UIMS. Recently, however,
there has been a notable interest in additional support
and functionality, not earlier considered part of normal
user interlace development software. For instance, My­
ers writes:

[UIMSs] do not support evaluation. Very few
user-interface tools provide any support for
evaluating the user interface. More research
into how the computer could do such evalu­
ation is needed before such support is prac­
tical. (Myers 1989, p. 23)

Similar observations have been made by several authors,
including Olsen et al (1987) and others. This paper
presents a contribution to the research called for by My­
ers in that we present a knowledge-based system that
illustrates the feasibility of computer-supported user in­
terface evaluation. Furthermore, we show how a tool
of this kind can be incorporated into a UIMS. provid­
ing support for user interface designers in designing and
evaluating user interfaces.

Other researchers have contributed work in the same
area, notable contributions including the Framer system

(Fischer and Lemke 1988. 1989) and a tool called De­
signer (Weitzman 1988). However, whereas the Framer
project focussed on an argumentative environment for
design, and Designer only represents low-level graphic
design knowledge, our aim is to support evaluation of
user interfaces on several levels, as we shall see presently.

2 T h e K R I sy s t em

The K R I system (Knowledge-based Review of user In­
terfaces) was developed as a pilot project in order to
assess potential advantages and disadvantages with a
knowledge-based critiquing approach to the problem of
supporting evaluation of user interfaces. To be precise,
we are dealing with what is known as expert-based evalu­
ation (Howard and Murray 1987) which comprises eval­
uation based on an expert's subjective knowledge. The
project addressed evaluation of form-filling user inter­
faces with menu-driven navigation by means of function
keys. This section describes the prototype system and
discusses some results and conclusions that arose.

2.1 System architecture

The KRI system, being a fairly traditional stand-alone
knowledge-based system, comprises the following prin­
cipal components:

• a knowledge base containing evaluation knowledge:

• a database with user interface design guidesines;

396

Figure 1: A part of the user interface aspect taxonomy.

• a user interface aspect taxonomy.

The evaluation knowledge base is represented in rule
form and contains evaluation knowledge from two main
sources: (i) transcripts of several expert evaluations of
a user interface under development, and (ii) the ex­
pert's interpretations of the general user interface de­
sign knowledge compiled in guideline documents (Smith
and Mosier (1986) and others). In the KRI system only
knowledge pertaining to the user interface levels of lay­
out and syntax was implemented. The reason for this,
as we shall see i n the subsequent section, was that the
user interface representation used in the system only
supported reasoning about these levels.

The inference mechanism of the system is forward
chaining, with the rules designed to detect and report
mistakes in the design. This is the most straightforward
way of building a critiquing system, but as we discuss
in section 4, i t is not the only way.

The guidelines, which were taken from Smith and
Mosier (1986), are not in themselves actively used in
the reasoning process of the system. Since the rule base
contains interpretations of some of the guidelines, the
contents are st i l l there, but the reason for storing the
guidelines also in a textual form is different. They are
used as justifications for some of the comments gener­
ated by the system. We found this to be reassuring to
the users of the K R I system.

The aspect taxonomy, part of which is illustrated in
Figure 1, is used in two ways. First, it is presented to
the user of the K R I system as a graph, in which the user
can mark the topics of interest for the current session.
Secondly, i t is used internally as a means of structuring
the knowledge base.

2.2 User interface representation

In order for the K R I system to be able to reason about
properties of the user interface that is being evaluated,
the user interface has to be represented in the system
in some way. Given the type of user interlaces that we
chose to focus on. viz. systems where the user employs
function keys to navigate in a number of menus and a
tree of forms to be filled out, we selected a simple ver­
sion of a transition network where the nodes contain in­
formation about which objects (menus and forms) that
are currently visible and active, and the tokens labeling
the arcs correspond to keystroke commands. The sys­
tems are supposed to run on a character graphics termi­
nal with a keyboard featuring arrow and function keys.
The objects of the interface are also represented sepa­
rately with information about their appearance. Thus
this representation gives us both lexical and syntactical
properties of the user interface.

2.3 System operation

In this section, we describe the work sequence of an eval­
uation session using the K R I system.

When the designer has developed a design suggestion
or a part of a design, i t is possible to have this evaluated
by the system in the following sequence. First, the user
interface representation is loaded into the system.

Next, the evaluation session is initiated. The first
thing that the user has to do is to select relevant as­
pects of the evaluation taxonomy for this session. This
selection phase is performed in an interactive way, where
the system decomposes the current selections into more
detailed topics, at each stage giving the user the oppor­
tunity to select the ones that are of interest. To let the
user compose his own evaluation plan is a convenient
way of addressing the generally very difficult problem of

397

planning evaluation sessions in a supportive way. When
the user is satisfied with the foci of interest for the re­
view, the system starts evaluating the user interface de­
sign.

In this phase, the system walks through the evalua­
tion plan that the user has just specified and executes
the rules that are associated with each evaluation do­
main. The forward chaining reasoning process gener­
ates conclusions and comments about the aspects of the
evaluated interface that the knowledge in the rulebase
covers. The system also processes the messages some­
what; for instance, when the same flaw is detected in
several components of the evaluated user interface, the
messages are aggregated to one single comment.

When the system has completed the evaluation, it
is possible for the user to browse through the results
and examine the comments generated in the evalua­
tion phase. The user can select evaluation domains to
analyze further. He can also select specific messages
and have the system present the reasons for generat­
ing the messages along with suggested improvements.
It is also possible to have the system search the guide­
lines database and present directly quoted guidelines as
a source of reference. The following example, where the
KRI tool was applied to evaluate an independently de­
veloped application, illustrates the kind of comments
that the system generates.

2.3.1 Example o f evaluat ion comments

The user interface under evaluation consisted of three
separate tables where the user could enter data. Six
pull-down menus were available in the top area of the
screen. Each table had to be activated before data entry,
i.e., the cursor had to be moved to that table. This could
be accomplished either by menu selection or by using
dedicated function keys. When the evaluation reached
the "Function keys" evaluation domain, the following
comment was generated (translated to English by the
present authors):

There is a mismatch between the presen­
tation order of the tables and the implicit
(ASCII code) order of the function keys used
to access the tables.

The reason why the system generated this comment is
that the tables (counting from the top of the screen)
were activated with function keys 3, 1, and 2, respec­
tively. The most interesting thing about this comment,
however, is that i t came as a surprise to the designer of
the user interface in question. He had used the func­
tion keys to reflect the order that he intended to be
the most suitable for carrying out the task, not consid­
ering the more simple-minded, lexical interpretation of
the ordering. His conclusion was that it might be worth
considering changing the screen layout.

3 Ep i s t emo log i ca l issues

In this section we discuss the evaluation knowledge rep­
resented in the system and how it can be acquired. Since
the level of knowledge is inherently related to what it is
intended to reason about, i.e., the user interface repre­
sentation, we also discuss briefly the issue of user inter­
face representation levels.

User interface design knowledge is compiled and pub­
licly available in collections known as guideline docu­
ments. Consider and compare the following two guide­
lines:

1. [For a menu,] related options should be grouped
from general to specific.

2. (For a button.] the selectable area should be at
least 0.25 in (0.6 cm) square.

They are both taken from a collection of computer graph­
ics guidelines compiled by Davis and Swezey (1983. p.
122), and illustrate well the span of such guideline collec­
tions. Ranging from presentation aspects through syn­
tactic and semantic (related to meaning) to pragmatic
(task-related) considerations, these guidelines are writ­
ten for humans to use and interpret. When we want
to implement this knowledge in specific design rules,
we have to interpret and tailor the guidelines in order
to arrive at something usable. As Smith (1988) points
out. this tailoring is also related to the specificity of the
guidelines: the more general they are, the more they
have to be qualified before they can actually be applied.

3.1 Knowledge acquisi t ion issues

As pointed out above, the available collections of guide­
lines provide an immense source of knowledge about user
interface design. This knowledge has to be classified and
sometimes specialized before i t can be used in a reason­
ing system, and a highly relevant question is to what
extent the guidelines are applicable at all for this pur­
pose. Let us dwell for a moment upon how the guide­
lines relate to the actual knowledge acquisition that was
carried out within the K R I project.

Our main method of knowledge acquisition was col­
lecting transcripts of a human factors expert evaluat­
ing several user interfaces. The transcripts were then
"played back" to the expert and the resulting discussion
generated the major part of the knowledge implemented
in the system. However, we found that many of the ex­
pert's comments pertained to higher levels such as task-
and user-related issues (pragmatics) that we were un­
able to handle due to the fact that our user interface
representation concerned only presentation and syntax.
The issue of user interface representation level is further
discussed below.

398

Figure 2: The Seeheim UIMS runtime mode!
our proposed enhancement, right.

The generality of the guidelines was demonstrated
by the observations that (i) it was almost always possi­
ble to find a guideline that catered for a remark made
by the expert, but (ii) there were almost no guidelines
that were specific enough to be implemented directly in
the system. Those that were, tended to generate com­
ments that the expert perceived as trivial. In conclu­
sion, guidelines do not seem to replace human experts
for knowledge engineering purposes.

3.2 User interface representation

When experts examined the comments generated by the
KRI system, a number of these comments were judged
either trivial or failing to take semantic aspects or user-
and task characteristics into account. The reason for the
system's inability to evaluate user interfaces on these
levels is of course that the user interface representation
used is not concerned with them. This turns out to be
a difficult tradeoff situation: high-level representation
techniques such as, for instance, the semantic-level rep­
resentation used in the UIDE system (Foley ei al 1987)
are not commercially feasible when considering compat­
ibility and methodology issues. They are also sometimes
very demanding to use. On the other hand, they open
up possibilities for user interface evaluation on a level
that can not be attained in the more conventional pre­
sentation and syntax representations.

4 E n h a n c i n g a U I M S

In the previous section, we saw that the K R I system in­
deed demonstrated the feasibility of a knowledge-based
critiquing approach to user interface evaluation support.
However, for a system of this kind to support design-
time evaluation and hence the user interface design­
ers, it has to be integrated in the design environment
(the UIMS). Furthermore, as pointed out by Fischer
and Lemke (1988), the integration of working and learn-

(adapted from Tanner and Buxton (19S5)), left, and

ing that would be obtained by integrating an evaluation
package in the design environment has many potential
educational benefits. The rest of this section is devoted
to describing a current project that is being carried out
with the aim of augmenting an existing UIMS with a
knowledge-based evaluation module, designed along the
lines of the K R I system. In this context, we also dis­
cuss how some of the problems of attaining an adequate
user interface representation can be addressed using the
UIMS runtime structure. For reasons of space, we can
not go into detailed discussions. The interested reader
is referred to Löwgren et al (1989) for a more thorough
treatment of this integration project.

4.1 A n architecture

Already in 1983, Tanner and Buxton formulated a model
of the runtime structure of a ULMS (Figure 2, left). This
model, which has gained widespread acceptance, covers
the activities involved in designing a user interface us­
ing a UIMS, and the resulting specifications and data.
The design process results in a user interface specifica­
tion (in some representation format) that is executed
together with the application at runtime. The UIMS is
responsible for collecting a log of all interactions occur­
ring between user and application across the interface.
This log may then be evaluated in some way. not further
detailed by Tanner and Buxton.

Our proposed enhancement is shown to the right in
Figure 2. We can see that the knowledge-based evalua­
tion module (KBE) is intended to support user interface
generation as well as evaluation of the interaction log.
The current project that we describe below mainly ad­
dresses the issue of design-time support. However, we
submit that using the interaction log can contribute to
the quality of the evaluation in several ways. For ex­
ample, it is possible to use information from the log to
compensate for a less expressive user interface represen­
tation. These two aspects of evaluation are discussed in
the two following subsections.

399

4.2 Design-time support

During the phase of user interface design, the KBE mod­
ule is used for evaluating the user interface specification
being constructed. This is accomplished by integrat­
ing the evaluation functionality into a design tool, a
UIMS. We are currently in the process of integrating
evaluation support into TeleUSE. a commercially avail­
able UIMS developed by TeleSoft (TeleSoft 1989). I t
is a general UIMS for graphical interfaces based on the
Seeheim model, dividing the user interface into presen­
tation, syntax, and semantic components. The presen­
tation level is expressed in terms of X Windows widgets,
while the syntactic aspects of a user interface is imple­
mented in an event handling language based on the D
language developed by Hil l (1986) in his Sassafras UIMS.
This language supports multithreaded dialogue and is
responsible for synchronizing the presentation with the
application functionality.

The current objective of the project is to support
evaluation on the presentation level, i.e., we are aug­
menting the TeleUSE graphical editor with a knowledge-
based module that is capable of evaluating a textual
representation of a collection of X widgets. We have de­
cided to implement evaluation on demand as opposed
to continuous monitoring. In other terms, there is an
evaluation command available for the user of the graph­
ical user interface editor. When this command is in­
voked, the selected interface objects or the whole inter­
face constructed so far is sent to the evaluation module
which generates comments and possibly suggestions for
changes.

4.2.1 Func t i ona l i t y of the K B E at design-time

There are a number of interesting design decisions to
be made when integrating a KBE into a user interface
design tool, including:

• T Y P E OF A D V I C E . Should the system only point
out Saws in the design (like the Framer system),
or should i t have (at least limited) capabilities of
generating design solutions?

• S P E C I F I C I T Y . A system based on general design
knowledge of the type found in guidelines collec­
tions can of course only generate comments on a
general, domain-independent level. We feel, how­
ever, that one of the most important benefits of an
evaluation system integrated into the design en­
vironment is its potential to support and enforce
organization- and end user-specific design rules.

• Locus OF C O N T R O L . Should the system auto­
matically comment upon every mistake i t detects,
or should we leave to the designer to call upon the
evaluation functionality?

4.3 Post-runtime evaluation

As was demonstrated earlier, the level of user interface
representation determines the level of reasoning in the
evaluation system. X widgets only determine appear­
ance, and hence that is all that we can evaluate at
design-time. But by using the interaction log, it is pos­
sible to compensate to some extent for this deficiency.
This log, which is essentially a time-stamped protocol
of all events pertaining to the user interface, contains
a lot of information that can be potentially useful for
evaluation purposes. Even though the information is on
a lexical level, it allows us to reason about several as­
pects of the user interface design, including selection fre­
quencies (for menu items and the like); user proficiency,
quantified analogously to the keystroke model (Card et
ai 1983); common subsequences that could possibly be
factored out; the empirical syntax implicitly formed at
runtime; errors and help requests, indicating the dia­
logue states that are particularly difficult for the user to
handle.

In conclusion, we believe that using the runtime log
for evaluation purposes is a way of addressing the dif­
ficult tradeoff between powerful user interface represen­
tations and designer acceptance.

5 Conclusions

The KRI project has indicated a certain potential for
success in using knowledge-based techniques for UI de­
sign support and evaluation. We have illustrated how
this kind of support tool may be used to enhance a tra­
ditional UIMS. In addition to supporting the designer in
his construction of user interfaces, the tool we propose
would also make use of the interaction log collected at
runtime. This would to some extent address the prob­
lem of needing a very rich user interface representation
for the purposes of adequate evaluation, a representa­
tion that may be too demanding to use to gain general
acceptance. The interaction log to some extent compen­
sates for deficiencies in the user interface representation
of the UIMS. Work is under way to implement this ar­
chitecture, which we feel would be a most valuable tool
in the hands of a user interface designer.

Smith (1988) acknowledges that a design tool such as
the one outlined in the present paper would shorten the
design time and ensure design consistency. However,
as he correctly points out, a tool that enforces design
guidelines may not be capable of accommodating desir­
able exceptions and innovative concepts. This is pre­
cisely why a critiquing approach to design support is so
attractive, combining compliance and non-intrusiveness
with the design power equivalent to that of an enforcing
tool.

400

A c k n o w l e d g m e n t s

The authors are grateful to Sture Hägglund for his valu­
able comments which helped improve this paper. Göran
Forslund and Björn Peters did a nice job of implement­
ing the KRI system. The current project group includes
Per Asplund at FOA, Kent Lundberg, Karl-Erik Hedin
and Leif Larsson at TeleSoft, Staffan Löf and Göran
Forslund at Epitec. and Sture Hägglund at Linköping
University, all of whom contributed to the work de­
scribed in the latter parts of this paper.

References

S. Card. T . Moran. and A. Newell (1983). The Psy­
chology of Human-Comput er Interaction. Lawrence
Eribaum Associates, Hillsdale. NJ.

E. Davis and R. Swezey (1983). Human factors
guidelines in computer graphics: a case study. Int.
Journal of Man-Machine Studies, 18:113-133.

G. Fischer and A. Lemke (1988). Framer: integrat­
ing working and learning. Manuscript submitted to
IJCAI 89.

G. Fischer and A. Lemke (1989). Design environ­
ments: from human-computer communication to hu­
man problem-domain communication and beyond.
In IJCAI'SS Workshop: A new yeneration of intelli­
gent interfaces, pages 53-58. Position paper.

J. Foley, C. Gibbs. W. C. K i m . and S. Kovacevic
(1987). A Knowledge Base for User-Computer In­
terface Design. Technical Report GWU-IIST-87-11,
The George Washington University, Washington DC,
August.

R. Hil l (1986). Supporting concurrency, commu­
nication, and synchronization in human-computer
interaction—the Sassafras UIMS. ACM Trans, on
Graphics, 5(3):179-210.

S. Howard and M . D. Murray (1987). A taxonomy of
evaluation techniques for HCl. In Proc. Interact'37.
pages 453-459.

J. Löwgren, T. Nordqvist, and S. Löf (1989).
Knowledge-Based Support for User Interface Evalu­
ation in User Interface Management Systems. Re­
search report L iTH-ID A-R-89-32. Linköping Univer­
sity.

B. Myers (1989). User-interface tools: introduction
and survey. IEEE Software, January.

D. Olsen, M. Green. K . Lantz, A. Schuiert. and J.
Sibert (1987). Whither (or wither) UIMS? In Pro­
ceedings of CHI+GVS7, pages 311-314.

S. L. Smith and J. N . Mosier (1986). Guidelines for
Designing User Interface Software. Report ESD-TR-
36-278, Mitre Corp., Bedford. MA.

S. L. Smith (1988). Standards versus guidelines for
designing user interface software. In M . Helander,
editor, Handbook of Human-Computer Interaction,
pages 877-889, Elsevier Science Publishers (North-
Holland).

P. Tanner and W. Buxton (1985). Some issues in fu­
ture user interface management system (UIMS) de­
velopment. In G. Pfaff, editor, G'ser Interface Man­
agement Systems, Springer Verlag. Berlin.

TeleUSE Reference Manual (1989). 1.0 edition, Tele­
Soft A B , Linköping, Sweden.

L. Weitzman (1988). Designer: A Knowledge-Based
Graphic Design Assistant. Technical Report ACA-
HI-017-88, MCC, Texas.

Study 2

CHI ' 92 May 3 - 7 , 1992

KNOWLEDGE-BASED EVALUATION AS DESIGN
SUPPORT FOR GRAPHICAL USER INTERFACES

Jonas Löwgren Tommy Nordqvist

Dept. ot Computer and Info. Science Nat. Defense Research Est. (FOA 531)

Linköping University P.O. Box 1165

S-581 S3 Linköping, Sweden S-5S1 11 Linköping, Sweden

jlo@ida.liu.se

ABSTRACT

Tiie motivation for our work is that even though user in­

terface guidelines and style guides contain much useful
knowledge, they are hard for user interface designers

to use. We want to investigate ways of bringing the

human factors knowledge closer to the design process,
thus making it more accessible to designers. To this
end, we present a knowledge-based tool, containing de­

sign knowledge drawn f rom general guideline documents

and toolkit-specific style guides, capable of evaluating
a user interface design produced in a U I M S . Our assess­

ment shows that part of what the designers consider
relevant design knowledge is related to the user's tasks
and thus cannot be applied to the static design repre­

sentation of the U I M S . The final section of the paper
discusses ways of using this task-related knowledge.

Keywords: user interface evaluation, design support,
guidelines, style guides.

INTRODUCTION

The need for human factors knowledge in the design

of information systems has been increasingly acknowl­

edged over the last decade. It is by now unanimously

agreed t liar, issues such .as usability, consistency and

overall appreciation can nil be facilitated by the appli­

cation ol" human factors expertise to the design process.

A popular medium for the propagation of human fac­

tors kiiowii'Jiic has b.-.'ii documents containing general

or environment-specific design rules. The former kind

Both authors contributed pqu.iUy to the contents and the
lircsciuatiort of this work.

= ermiss ion ro coov wtinout fee all or oart ot mis material is granted

oroviaea mat me ccoies are not m a a e or ctstriDutea tar direct com-
-nercial acvaniage. ine A C M coDyngnt nonce ana trie title of the puDlica-
:;on ana us aaie acoear. ana notice is given mat cooying is Dv permis­
sion or the Association for ComDuting Machinery To cooy otherwise.
~r fo reouonsn reauires a ree ana/or sDeciric oermission.

1 9 9 2 A C M 0 - 8 9 7 9 1 - 5 1 3 - 5 / 9 2 / 0 0 0 5 - 0 1 8 1 1,50

is called guidelines: the latter style guides. The knowl­
edge in these documents is characterized by being sup­

ported by general consensus, often validated through

experience or controlled experiments and by being ex­
haustive. Style guides in particular often represent de

facto industrial standards and the knowledge is often
prescriptive rather than suggestive (i.e., ''must" rather

than "should"). However, several objections have been
put forward to this type of knowledge dissemination.

Hammond et al [9] point to the problem that guide­

lines have to be general in order to be applicable in
most situations, which in turn makes them too general
for any specific situation. The context dependencies

present in real design problems are also hard to capture

in general guidelines. Hence, human factors knowledge
in the form of guidelines can be hard for designers to
use in their daily work. There is also some empiricai
evidence to support this conclusion: de Souza and Bc-

van [•!] showed by means oi an experiment that design­

ers had difficulty in interpreting over 90 percent of the

general guidelines given for a design task. Tetzlaff and
Schwartz [19] reported similar findings.

The Need For Support

It would appear that guidelines and style guide doc­
uments are inefficient ways of communicating human

factors knowledge to the designer. Not only are the

documents difficult to use. but it is also hard for the
designers to remember to apply all relevant rules to a
particular design problem. Our answer to this dilemma

is to investigate ways of bringing human factors support

closer to the design process, thus making the human
factors knowledge more accessible and operative. The
approach we have chosen is to augment the design and
implementation environment of a User Interface Man­
agement System {UIMS) with a knowledge base contain­

ing human factors knowledge. This knowledge is used
to evaluate the design built in the UIMS on the designer s
request, yielding wnat is known as a crmrjuijir/ system.
The aim is to provide formative evaluation, which is
defined as evaluation during system design, intended to

181

V CHI ' 92 May 3 - 7 , 1992

TeleUSE KRI/AG Comments

UIL
Farser Knowledge

base

Text

Figure 1: The overall architecture of the current impiementation.

provide feedback for subsequent design iterations [10].
We have chosen to address user interfaces built with the
M o t i f ™ tooikit since it is one of the emerging de facto
standards in the software industry, and since the Motif
Style Guide [15] contains much design knowledge on a
detailed level.

Related Work

Automatic evaluation of user interface design represen­
tations has been investigated for at least ten years; some
early examples include Reisner's work [16] on assess­
ing simplicity and consistency of commands represented
in a BNF grammar and the work by Bleser and Fo­
ley [1] on evaluation of a grammar representation with
respect to high-level design issues. A more recent ap­
proach, using knowledge-based techniques, is illustrated
by the Framer system by Lemke and Fischer [11] which
is a user interface design environment containing a cri­
tiquing system based on general design knowledge. The
major differences between Kramer and our work are
our emphasis on improving upon available knowledge
sources, particularly guidelines and style guides, and
our notion of runtime evaluation as described below.

ARCHITECTURE

The overall architecture of the K R I / A G prototype sys­
tem is illustrated in figure 1. The current design envi­
ronment is the widget editor of the TeleUSE UIMS from
Telesol't. which runs under the X Window S y s t e m ™ .
This editor, called the V I P . is a graphical widget builder
where tlie various Mot i f widgets are used as building
blocks in constructing a user interface. The design rep­
resentation can be stored in UIL [5], a de facto stan­
dard representation for widget instances, which is the
language understood by the evaluation system. It is
important to point out that the UIL representation cov­
ers only the "static'' user interface, i.e.. the components
which can be designed in the UIMS prior to execution of

the system. This includes buttons, menus, forms, etc.
but typically excludes the appearance and behaviour of

the domain objects. In the current prototype, the V I P
runs on a Sun SPARCstation.

K R I / A G is implemented in Epitool. a hybrid expert
system shell from Epitec featuring an object-oriented
concept representation wi th inheritance as well as a
rule language for wr i t ing forward or backward chain­
ing rules. The UIL representation of the user interface
to be evaluated is transferred to the DECstation on
which K R I / A G runs and parsed into the internal object
representation of Epitool . The knowledge base is then
applied to the user interface representation, possibly
yielding a number of comments on the design.

Trie Knowledge Base

As stated above, the knowledge base of K R I / A G is built
mainly from publicly available sources such as guide­
lines collections (e.g., Smith and Mosier [IS] and Brown
[3]) and the Motif Style Guide [15]. The reason for this
is that in an eariier project [13], we performed knowl­
edge acquisition almost exclusively along more conven­
tional lines (i.e.. eliciting knowledge from a user inter­
face evaluation expert). In this project, we wanted to
represent the human factors knowledge of the public

sources in a more accessible form.

It can be noted that there is still a fair amount of
human expertise represented in the process. One of us.
who did most of the interpretation of the guideline doc­
uments, is an expert in user interface evaluation. We
also used a scenario technique, where an independent
expert was given 20 examples of user interface design
Haws together wirb, our tentative comments upon them.
This material formed the basis for the knowledge acqui­
sition session with the expert, and the results served to
validate our analyses of the guidelines. To summarize,
the task of building a knowledge base from guidelines
and style guides is by no means trivial or mechanical.

182

CHI '92 May 3 - 7, 1992

Rule PopuprienuTit le m Q S F . H o t i f I s

F o r A l l T i n s t W h i c h l s HotiiSXmPopupMenu;

I i

Sot (C l a s s (M e n u l t e r t u ? i n s t , ;) = "XniLabel"))

Then

MakeCoramentO'The popup menu " , ' i r t s t . Same,

"does not nave a t i t l e . E v e r y nenu shou ld

have a unique t i t l e p l a c e d a t the top.

(MotiJ S t y l e Guide 4 . 2 . 3) ") ;

End;

Figure 2: A rule from the K R I / A G knowledge base. Note the

typical structure where the user interface representation is

examined with respect to design flaws i m this case a missing

title in a popup m e n u i .

In its current state, the knowledge base of K I U / A G
comprises about 70 rules and 30 functions 1 . The tech­

nique used for producing the comments is what is

known as analytical critiquing [6] , which means that
the proposed solution (in this case, the user interface
design) is analyzed with respect to possible Haws. The
alternative is the differential approach, where the cri­

tiquing system generates its own solution to the prob­
lem and compares it with the one proposed by the user,
pointing out the differences ami deviations. U'e have

argued elsewhere [12] that the domain of user interface
design in general is not eligible to a differential treat­

ment; the reasons are mainiy that the problem is not

well-defined and that there are many examples of mul­
tiple solutions with equal validity.

Figure 2 shows an actual rule from the KRI/AG knowl­

edge base, illustrating the type of knowledge used in an­
alytical critiquing systems. The level of the knowledge

is obviously limited to what can be represented in UIL.
viz. the layout and composition of widgets. This means

that the level of evaluation is accordingly limited to the
levels of presentation and syntax.

Table 1 shows a more detailed view of the current

contents of the knowledge base in K I U / A G . We can see
that roughly >i0% of the knowledce base consist of gen­
eral ruies. constructed from the guideline documents.
The reason for this is mainly that we spent more time on

analysing those documents and validating the results.

The remaining I U V { consist of Motif-specitic knowledge.
Almost ail of it is concerned with menu layout, orga­
nization aim interaction- fi t is is an important part of

'The tipitooi environment uses tiie concept ol Junctions to
denote procedural domain knowledge units winch return values,
ror purposes ot knowieuae base sree assessments, they may be
considered ecnial to rules.

1 i| General i Motif i

j Graphical layout l(10 i •1 i
! Menu layout !! 1 6 i 2i i

1 Menu dialogue ! 13 ; " 1
j Other dialogue '1 20 t 0 1

Table 1: A breakdown of the topics covered by the current

K R I / A G knowledge base and the distribution over general

guidelines and Motif Style Guide rules. Numbers are percent

of the total knowledge base.

the Motif Style Guide, but not as dominant as it might

appear in our knowledge base. We expect to be able to

extend the .Motif-specific part of the knowledge base as
the analysis of the Style Guide proceeds.

EXAMPLE

This section illustrates the use of K R I / A G to evaluate

the user interface of an actual application, built using

the TeleUSE UIMS.

The Tactical Map Editor...
Figure 3 illustrates the appearance of the application we
chose for evaluation. I t is an editor for tactical maps in a

military setting, developed at FOA 531. The main win­
dow shows a detailed view of an area, with a static map

overiayed with symbols representing military units and
borders between the areas of responsibility for the dif­

ferent units. The small window to the left is an overview

of the whole area covered by the geographic data avail­
able. The square indicates the area currently presented

in the main window.

Six tools (shown beneath the overview window) are

available for the manipulation of the overlay symbols on
the map: Create U n i t . Crea te Border , Create Po­
s i t i on , Clear. Move and E d i t ('-Förband' ' . "Grans'.

"Position". "Radera", "Flytta" and "Redigera", respec­

tively). The form in the lower left corner is used to in­

spect or edit attribute values for the selected unit and
to provide new values when a new unit is created. Seven
of the nine helds are actually option menus which pop

up on a mouse click, giving the user a choice of all per­
missible values for the field in question.

There are two pulldown menus containing global
commands. The left one ("Arkiv"') is the typical File
menu, containing commands such as Load. Save and
E x i t . The right one contains commands to set various
presentation properties. Finally, the text field at the
bottom right is used to present various kinds of textual

information.

183

V CHI ' 92 May 3 - 7, 1992

Afliv imttunmqv

Figure J: The user interface of the tactical map editor.

.. Evaluated
We used vip to generate a U I L description of the user

interface shown in figure 3 and passed the description

i o K R I / A G . The system generated a number of com­

ments in Swedish, which we present below (translated

to English and aggregated since the system, for exam­

ple, generated the same comment for each of the seven

option menus).

• The (text field at the bottom] does not have a label.

There should be a label or header above or to the

left of i t . (Smith and Mosier 1.-1:5 and 1.4:17)

• The text fields in [the dialog boxes which appear

when the user selects Save As or Open! do not

have default values. (Smith and Mosier 3.1.2:3 and

1.8:1)

• The items in the option menus are in alphabeti­

cal order. I f there is a logical order, it should be
used. Otherwise, i f the frequency of use is known,

it should be used in ordering the items. (Smith and
Mosier 2.5:16-17)

• There is no Help menu in the menu bar. Every

application should have a Help menu. The recom­

mended standard menus in the menu bar are File.
Edi t . View. Options and Help, in that order.

(Mot i f Style Guide p. 7-42)

• The menus in the menu bar do not have mnemon­

ics. Specifically, the Fi le menu should have the

mnemonic F . (Mot i f Style Guide 3.3.3, pp. 7-42.

7-46)

• The items in the Fi le menu are not standard.

The following items should be in the menu: New.
Open Save. Save As . . . , Pr int or Print
Close and Ex i t . (Mot i f Style Guide p. 7-23)

• None of the items in the menus of the menubar have

accelerators. I t is a good idea to use accelerators

for the most frequently used items. (Motif Style

Guide 3.3.2. 4.2.3. pp. 7-3, 7-4)

By empirical assessment of our previous project [13], we

found that references to the guidelines documents were

central to acceptance of the evaluation tool. In that sys­

tem, there was an option which displayed the relevant

guideline for each comment generated during evalua­

tion. In K R I / A G . we provide only a reference to the

184

f CHI ' 9 2 May 3 - 7, 1992

source documents. It would, however, be straightfor­
ward to provide an option to present the actual guide­
line texts and pictures online.

DISCUSSION
Recall that the motivation for our work was the obser­
vation that guidelines and style guides seem to be iiard
to use in practice. The K R I / A G prototype described
above represents a first step towards facilitating the use
of these knowledge sources in design. This section dis­
cusses two of the most important issues raised by our

approach: how to support designers, and the appropri­
ate level of evaluation for a design support tool.

How To Support Designers
In their study of the use of guidelines for user interface
design, Tetzlatf and Schwartz [19] concluded that since
guidelines were found hard to use. the dependence upon
them should be minimized. Instead, toolkits and inter­
active examples of good designs should be used and the
role of the guidelines should be mainly to provide infor­
mation which is intrinsically unavailable through those
vehicles. The similar idea can be found in implemented
form in the Framer design environment [11] where a l i ­
brary of initial design skeletons is available to provide
starting points for the designer.

Widget builders such as the V I P actually represent a
move towards the idea of reusable examples, since some
of the widget templates in the modern toolkits are fairly
complex and come with a good deal of encapsulated
appearance and behaviour. Prominent exampies are
the FileSeiectionDialog and other ready-to-use popup
dialogues in Motif. However, as many exampies from
practice show, it is still not impossible to construct user

interfaces which violate general design rules and toolkit-
specific style ruies. These violations, of course, impair
usability as weil as the overall impression of the pro­
duced system. A particular issue when toolkit-specific
style rules are concerned is inter-application consistency
(recall the missing mnemonics and Help menu in the
map editor example above). We believe that a good
way of reducing these violations is to augment the de­
sign environment with knowledge of general design and
specific style, as demonstrated by the K R I / A G system.

When And How? The current system prototype re­
views the design oniy when the designer explicitly re­
quests comments. This is contrary to other work in the
area of knowledge-based design environments. In par­
ticular. Lemke and Fischer [111 report that their ini­
tial Framer system worked in the same way as K R I / A G .
They found that it was sometimes hard for the sys­
tem to give meaningful comments on a design, since
the designer had chosen a suboptinial path in the de­
sign space early on and pursued it too far before sub­
mitting the design for comments. When they reworked

the critiquing moduie to continuously monitor the de­

signer s work and react as soon as it found anything
worth commenting, the resulting system was 'more ef­
fective. " i.'nfortunately, they do not report any con­
trolled experiments. We regard the issue of critiquing
strategy to be a question in need of empiricai studies,
and we hope to be able to carry out such studies in the
near future. This can be done either by implementing
an active design evaluation module or by Wizard-of-Oz

techniques.

Level Of Evaluation
During the evaluation of our previous user interface

evaluation tool [13], we found that evaluation on the
level of user tasks was highly desirable. This can
aiso easily be established by examining the knowledge
sources used for K R I / A G : both the generai guidelines
and the Mot i f Style Guide contain many ruies concern­
ing the user's behaviour and tasks. One example from
Motif [15. p. 4-21] is the following.

Applications should provide accelerators for
frequently used menu items. In general, accel­
erators should not be assigned for every menu

item in an application.

The crucial word here is "frequently'', since there is
no way of determining by analysis of a Mot i f design
representation whether a menu item is going to be used
frequently. This means that rules such as the one above
cannot be properiy implemented in an evaluation tool
of the K R I / A G type. What we had to do there (compare
;he seventh comment to the map editor example above)
was to leave the judgment to the designer.

There are in general two ways of achieving evalua­
tion on the task level. One is to use a rich design rep­

resentation where user tasks and domain semantics are
specified in the design tool. An example of a design en­
vironment based on this idea is U I D E by Foley ei al [']
where the designer specifies the semantics of the user
actions and the domain objects. The other way is to
collect and analyze logs f rom actual tests of the user
interface under construction. We believe that the sec­
ond method, which we call runtime evaluation or RTE,
is preferable since it is more compatible with existing
design toois. does not introduce additional complexity
for the designer and relies less on a priori assumptions.

The rest of this section is devoted to a discussion of
bow to combine runtime evaluation with the design-
time evaluation techniques described so far.

Runtime Evaluation. Other researchers have touched
upon the subject of logging interaction and automati­
cally evaluating the resulting data. Siochi and Hix [17]
started from the hypothesis that repetitions indicate
interesting user behaviour. In a small study, they let
subjects use a test interface, collected logs of all the

185

V CHI ' 9 2 May 3 - 7, 1 9 9 2

real-life

User

simulated J

simulated real-iife
Taste

figure 4: The space of RTE. The solid line shows the ap­

proximate time order ol" different evaluation forms in a tradi­

tional waterfall approach to software development, whereas

:he dashed line illustrates an extremely user-oriented proto­

typing approach.

interactions and also determined two major usability
problems by observation. When their system analyzed
the logs with respect to maximal repeating patterns,
the same problems were indicated. Olsen and Ilalversen
1.14] had earlier shown how logging could be integrated
in a U I M S architecture to give metrics concerning the use
of different commands. Before we discuss the technical
feasibility in our setting, let us introduce a conceptual
framework which is intended to relate the idea of R T E
to different philosophies of software development.

We propose a two-by-two matrix of R T E where the di­
mensions are the task and the user involved in the test

situation. The task can be either simulated or real-life.
Simulated tasks can be defined based on the require­
ment specification or the activity analysis, depending
on whether they have been formulated, or they can con­
sist of general handling of the user interface without
consideration of the particular tasks in the target envi­
ronment. Simulated tasks can be tested in the develop­
ment environment. Real-life tasks, on the other hand,
have to be the real tasks that the system is intended to
support. Moreover, the tests have to take place in the
delivery environment.

On the user dimension, we have simulated and real-
life users. The simulated user can be the original devel­
oper, a customer representative, a subject person cho­
sen at random or anyone else who is wiiling to pretend
being the intended user of the system. If a user analy­
sis has been produced earlier in the project, it may be
used to aid the "impersonator." A real-life user, as the
term implies, is one of the users for whom the system
:s intended.

This matrix can be used to reiate the different forms
of UTE to different software development philosophies.

as shown in figure 4. Two exampies of different philoso­
phies are illustrated, with the traditional waterfall ap­
proach (denoted by a solid line) progressing from simu­
lated tasks through real-life tasks with simulated users
and then, in the test phase of the project, to real-life
tasks and users. The other example (the dashed line) is
an extremely situated design approach where prototyp­
ing and development with real-life users are paramount
(see. for example. Bødker [2]).

A general property of the matrix is that the cost asso­
ciated with different forms of evaluation increases with
the degree of realism. For example, i t is more expensive
(in terms of money, time or effort) to carry out a test

with real-life tasks than with simulated. I t also seems to
be the case that the degree of realism is transitive, i.e.,
a user interface property which can be tested with sim­
ulated users or with simulated tasks can also be tested

with real-life users or tasks. The reverse relation does
not obviously hold.

Properties To Evaluate. The TeleUSE architecture is
based on the Seeheim model [8] and uses its own event
mechanism and language, called D. for synchronizing
the user interface with the functionality of the applica­

tion. We can expect to be able to collect logs consisting
of D events as well as the X events which give low-level
information such as keyboard input and mouse position.
The idea is then to evaluate these logs using a combi­
nation of knowledge-based and algorithmic techniques
and to generate comments on the user interface design
in analogy with K R I / A G .

While we performed knowledge acquisition for
K R I / A G , we formulated many user interface properties
of the kind that could not be assessed in design-time

evaluation. We will now present some of those proper­
ties and indicate how they could be measured using the
logs collected during user interface testing.

1. Long sequences for common operations. In the
way demonstrated by Siochi and Hix. the system
can detect repeating sequences and comment upon
them if they occur often enough. A case which re­
quires particular attention is when the user has to
traverse submenus to reach the desired (frequent)

operation.

2. Switching of interaction techniques during the
same task. If the user is found to be switching
from. say. keyboard to mouse and then back again
for the same input focus and within a small amount
of time, it is worth commenting.

3. Syntactical inconsistency. In a graphical user in­
terface, it is desirable that the manipulation syn­
tax is the same throughout the system. This means
to consistently use either Object-Command syntax
(first select an object or several objects and then

186

CHI ' 9 2 May 3 - 7, 1992

real-life (4) 4 5

User

simulated 2 3 1

simulated real-life
Task

Figure 5: Our sample properlies inserted in the evaluation

space. An entry in parentheses means that the property can

be evaluated to some extent.

apply an operation on it or them) or Command-

Object (operation first, then objects). To analyze

this, the system can assume that the operations

are invoked via the static part of the user inter­

face (buttons, menus, etc.) which is constructed at

design-time, whereas the objects of the operations

are application-driven.

4. Detecting errors and help requests, i f the design ad­

heres to Motif standards, errors and help requests

can be detected by looking for WarningDiaiogs and

use of the He lp menus, respectively. Otherwise,

the D events corresponding to help request and

application errors would have to be tagged in a

special way. In both cases, comments showing the

dialogue states where more than an average of er­

rors or help requests occurred would be valuable

for the designer.

5. Accelerators for the most frequeni operations. It

would be easy to count the number of times dif­

ferent menu items are used and then check for ac­

celerators for the most frequent ones, pointing out

possible deficiencies to the designer. Similarly, the

system couid suggest that a frequently used button

in a form containing text input components should

be made the default. This wouid in effect assign

the carriage return key as an accelerator for the

frequently used button.

To put these properties into the context of user inter­

face development. let us insert them in their cheapest

possible places in the RTE matrix, as shown in figure 5.

A number in parentheses means that the property can

be addressed to some extent. For example, the detec­

tion of errors and help requests (property 4) can be done

with respect to syntactical errors for a simulated task.

but in order to detect domain errors, a reai-life task

is needed. I f we would now draw a time order arrow

reflecting the software development approach used, the

resulting picture would show us when we can expect to

evaluate the different properties.

SUMMARY
We have shown by means of the K R I / A G prototype how

some design knowledge, general guidelines as well as

toolkit-specific style guides, can be applied to evaluate

a user interface design produced in a UIMS. We believe

this to be a valuable step towards bringing human fac­

tors knowledge closer to the design process, thus making

it more accessible and operative. Our analyses, how­

ever, indicate that much of the design knowledge can

be applied only by taking into account the actual use

situation. We have outlined how data collected during

tests of the produced prototype can be used to bring

also this use-related design knowledge to bear and pre­

sented a framework for relating these tests to the soft­

ware development approach in use.

ACKNOWLEDGMENTS
The authors want to thank Peter Ericsson from FOA

531 and Lennart Olsson f rom Enator for implementing

the current KRI /AG prototype, and Staffan Löf from

FOA 531 for many excellent design ideas and creative

discussions. Prof. Sture Hägglund read an earlier ver­

sion of this paper and gave many useful comments, for

which we are grateful. We would also like to thank Nils-

Erik Gustafsson from Ellemtel. our expert, for giving us

the time we needed wi th him.

This work has been funded by the National Defense

Research Establishment (FOA) and the Swedish Board

for Industrial Development of Information Technology

(IT4).

Motif is a trademark of The Open Software Foun­

dation. Inc. X Window System is a trademark of the

Massachusetts Institute of Technology.

REFERENCES
[1] T. Bleser and J. Foley. Towards specifying and

evaluating the human factors of user-computer in­

terfaces. In CIII'S2 Proceedings, pages 309-314.

1982.

'21 S. Bødker. Through the interface—a human activ­

ity approach to user interface design. Lie. thesis

D A I M I PB-224. Aarhus University, 1987.

[3] C. Brown. Human-Computer Interface Design

Guidelines. Ablex Publishing Corp., .NJ. 1988.

[4] F. de Souza and N. Bevan. The use of guidelines

in menu interface design: Evaluation of a draft

standard. In D. Diaper. D. Gilmore. C, Cockton.

187

CHI ' 9 2 May 3 - 7, 1992

and B. Shackel. editors, Human-Computer Interac­
tion — lnienct'90, pages 435-140. North-Holland,
1990. Participants Edition.

[5] Digital Equipment Corp. Guide to the XVI User
Interface Language Compiler, 2.0 edition, 1988.

|S] G. Fischer, A. Lemke. T . Mastaglio. and A. Morch.
Using critics to empower users. In CHI'90 Proceed­
ings, pages 337-347, 1990.

[7] J . Foley, W. Kim. S. Kovacevic. and K. Murray.
Denning interfaces at a high level of abstraction.
IEEE Software, pages 25-32, January 1989.

[8] M. Green. Report on dialogue specification tools.
In G . Pfaff, editor, User Interface Management
Systems, pages 9-20. Springer Verlag, Berlin, 1985.

[9] N. Hammond, M. Gardiner, B. Christie, and
C. Marshall. The role of cognitive psychology
in user-interface design. In M. Gardiner and
B. Christie, editors, Applying Cognitive Psychology
to User-interface Design, chapter 2, pages 13-53.
John Wiley Si Sons, Chichester, 1987.

[10] S. Howard and M. D. Murray. A taxonomy of eval­
uation techniques for HCl . In H.-J. Bullinger and
B. Shackel. editors, Human-Computer Interaction
— Inieract'S7, pages 453-459, 1987.

[11] A. Lemke and G. Fischer. A cooperative prob­
lem solving system for user interface design. In
Proceedings Eight National Conference on Artifi­
cial Intelligence (AAAI-90), pages 479-484, 1990.

[12] Jonas Löwgren. Knowledge-Based Design Sup­
port and Discourse Management m User Inter­
face Management Systems. Ph. D. dissertation,
Linköping University. March 1991. Linköping

Studies in Science and Technology # 239.

[13] Jonas Löwgren and Tommy Nordqvist. A
knowledge-based tool for user interface evaluation
and its integration in a UIMS. In D. Diaper,
D. Gilmore, G. Cockton, and B. Shackel. edi­
tors. Human-Computer Interaction — Interact'90.
pages 395-100. North-Holland, August 1990. Also
as research report LiTH-IDA-R-90-15.

[14] D. Olsen and B. Halversen. Interface usage mea­
surements in a user interface management sys­
tem. In Proc. ACM SIGGRAPII Symposium on
User Interface Software (UIST'SS), pages 102-108.
ACM Press. 1988.

[15] Open Software Foundation, Cambridge, MA.
OSF/Motif Style Guide, 1988. Revision 1.1.

[16] P. Reisner. Formal grammar and human factors
design of an interactive graphics system. IEEE
Trans, on Soflwan Engineenng, SE-7(2):229-240.
March 1981.

[17] A. Siochi and D. Hix. A study of computer-
supported user interface evaluation using maximal
repeating pattern analysis. In CHV91 Proceedings,
pages 301-305, 1991.

[18] S. L . Smith and J . N. Mosier. Guidelines for de­
signing user interface software. Report E S D - T R -
86-278, Mitre Corp., Bedford, MA, 1986.

[19] L. Tetzlaff and D. Schwartz. The use of guidelines
in interface design. In CHV91 Proceedings, pages
329-333. 1991.

188

Study 3

T U N E : A Tool for User Interface Evaluation

Tommy Nordqvist, Defence Material Adrriinistration and Luleå University of Technology, Sweden

Abstract

The present paper describes and discusses a
prototype tool (TUNE) for computer-supported evaluation
of guideline and styleguide compliance in user interfaces.

The aim of the tool is to facilitate the use of human factors
knowledge, in the form of guidelines and style guides,
GLSG, when developing user interfaces.

After discussing the increased interest in GLSG
compliance and reasons for computer-support in this area,

TUNE is presented shortly, together with experiences from
practical use. With these experiences as a basis the
possible benefits in using the tool to evaluate GLSG
compliance is discussed. The paper finally presents future

development of TUNE, for example implementing more
GLSG.

1. Introduction

When developing interactive information systems,

great efforts are focused on development o f the user

interface. A study by Myers and Rosson [7] for instance,

points to the fact that about 50% of the software code relate

to the user interface.

This has resulted in much work focused on the

development of user interfaces within the research

community as well as within large vendor companies. For

example documents containing general or platform-specific

GLSG's [5;9:13] have been developed to support

development of -oser interfaces.

Unfortunately, such documents have proven to be

difficult to use for designers [1;6;14J. One reason is that

many of the GLSG documents are very comprehensive,

which makes it difficult for designers to find specific

GLSG's. Another reason is that GLSG's are, in many

cases, difficult to interpret in the practical design situation.

Accordingly, very few designers use existing GLSG's

collections in practice [12; 15].

Researchers have tried to solve these problems in

many ways. One example is formulating a smaller amount

of usability heuristics to be used in heuristic evaluation.

Another example is a knowledge-based system,

integrated with a user interface management system

(UIMS), enabling automatic evaluation of a user interface

compliance with GLSG's [3;4]. A third example is

hypertext checklists for evaluation of a user interface

compliance with GLSG's [11].

In our business, we have experienced an increased

interest in user interface compliance with GLSG. This

interest is often expressed in a formal requirement to

conform to a specific GLSG, particularly 'The Windows

Interface: An Application Design Guide' [5]. A

requirement of this kind makes i t difficult to use only

heuristic evaluation, because we can not guarantee that the

user interface comply with specific GLSG's by using this

method. Nor can we use knowledge-based design support

integrated with an UIMS, since UIMS tools are rarely used

in our system deve'opment projects. Hypertext checklists

are also inconvenient because o f the time needed for

evaluation of a user interface compliance with all GLSG in

above mentioned documents, even i f the work is supported

by a hypertext tool.

At the same time we need computer-support to

evaluate user interface GLSG compliance. The primary

reason for this is that manual evaluation of user interface

GLSG compliance is a tüne-consuming activity. Another

reason is our experience that it is a very difficult, i f not

impossible, task to evaluate that ajl user interface elements

comply with defined GLSG's when evaluating manually. A

third reason is that we are often developing tactical support

systems, which makes consistency especially important

(see also, [8], p. 7 and p. 132). The computer-support

should also support iterative design, otherwise it wil l not be

used.

From above reasons, a number of goals for a tool for

evaluation of GLSG compliance have been defined:

1. Reduce the time needed for evaluation of GLSG

compliance,

2. support the task of evaluating all user interface

elements,

3. enhance consistency in user interfaces,

4. support iterative design of user interfaces.

0-8186-7525-X/96 $05.00 © 1996 IEEE
129

In an attempt to f u l f i l l these goals we have developed

a prototype tool for evaluation of GLSG compliance,

TUNE (Tool for User Interface Evaluation).

2. The Evaluation Tool: TUNE

2.1. User Interface Elements Evaluated

The TUNE prototype support evaluation of GLSG

compliance of user interface elements frequently present in

the computer systems we ar: devsiopfctg. Tüe USÄ-
interface (ui) elements selected were pull-down menus,

menu items, mnemonics, shortcuts, dialog boxes and

burtons (OK and Cancel buttons in dialog boxes). (About

70% of the GLSG's in [5] concerning above mentioned

user interface elements are implemented in TUNE for

now).

The aspects to be evaluated were;

• existence of ui elements,

• uniqueness of menu titles, mnemonics and

shortcuts,

• correspondence between the title of a dialog box

and the name of the selected menu item,

• order of ui elements (menus, menu items),

• proper action when selecting ui elements.

Dynamic tests are used to evaluate that user interface

elements behave as specified in the GLSG. Examples of

dynamic tests are:

• function of menu items, mnemonics, short cuts and

buttons,

• presentation of dialog boxes when selecting menu

items followed by three dots.

The rules for performing the tests are either located in

the GLSG database or in the test programs. In the GLSG

database are rules that could be selected depending on the

application evaluated. In the test programs are rules that

are seen as generic for all applications. Examples of rules

located in the GLSG database are; mandatory menus in the

menu bar, mandatory menu items. Examples of rules

located in the test programs are; no space in a menu name,

unique menu items and mnemonics within a mena

With the rules as a basis TUNE evaluates the user

interface elements in the apphcation by reading the

information concerning u i elements using windows

standard functions and check that the static properties of

the user interface elements are as specified in the GLSG's.

For GLSG's concerning dynamic behavior TUNE activate

the user interface elements and check that they behave as

specified in the GLSG. Deviations from the GLSG's are

then noted in the result file.

Application
tested

Static tests

I^ynaniic tests

JTest
Iresuit

GLSG database

Figure 1: Overall architecture of TUNE

2.2. Architecture
The overall architecture of TUNE is presented in

Figure 1 above. TUNE consists mainly of test programs

(implemented in C++) for static and dynamic tests, and a

GLSG database. Static tests are used to evaluate that user

interface elements exist and their appearance . Examples of

static tests are:

• existence of menus and menu items,

• appearance of mnemonics and short cuts for menu

items.

2.3. The procedure for using TUNE
The procedure for evaluation of GLSG compliance

using TUNE is illustrated below:

1. Start of application to be evaluated.

2. Start of TUNE.

3. Selection o f test programs and GLSG's from the

database.

4. Start oftest.

5. Evaluation of user interface elements. (Here it is

possible to choose between interactive or batch-

mode evaluation.)

6. Opening test report.

130

3. Evaluation of G L S G Compliance: An
example

3.1. Description of the evaluated application

The evaluated computer system was a military

application consisting of a main window and a great

number of menus. In the main window, different types of

forms are presented for receiving, writing and sending

data messages from/to different combat net radios out in

the field. The menus are partly used to present the different

forms to be used in the main window, partly to define

properties of the system to support work with the

application. Figure 2 below, illustrates the appearance of

the application. Our task was to evaluate the user interface

compliance according to the GLSG's implemented in

TUNE. The result from the evaluation was going to be

used as input for the final implementation of the

application.

cases adjusted to the GLSG's in the original volume. The

result repon is structured in the following way: First, the

evaluated interface elements are presented as they appear

in the evaluated application. Then the comments generated

in the evaluation of the user interface elements are

presented.
The result from the evaluation was presented to the
designers of the evaluated application. The reactions from
them were that almost all of the comments were actually
design flaws when developing the prototype. They also
commented the fact that many of the design flaws were
repeated. For example, when designing the user interface,
they had forgotten the GLSG regarding shortcuts and hence
all the shortcuts deviated from the GLSG. The only
objection to the evaluation result was that in their opinion
Save form was a better name than Save. After discussing
with the designers their conclusion still was that the
designer-selected name of the menu item in a better way
reflected the functionality. However, the designers.realized
the importance of consistency with other applications in a

PC-Dart 1.0

Arkiv Redigera DART-tormat Inställningar Meddelanden Filter Visa Fdnsler

Qppna...
Flytta...

Kopiera...

Ctrl+A

Ctrl+B
Ctrl+C

Saara m a l l -

Öppna mall...

Ctrl+D
Ctrl+E

Fdrhandsgranska inst... Ctrl+F

Skriv ut inställningar Ctrl+G

Skrivarinställning...

Skriv ut...
Ctrl+H

Ctrl+i

Exportera... Ctrl+J

Avsluta AK+F4

-1 OPM t- -
Tätnt OPU Matnamn Utqänq TU
161C34 Sancei 1(33 A8 VJ Natl C0M1

Sant
•TS1C37 Sanaer 1C4 AB Vj Natl COM1

Sant
181C33 DATAMEDD ICO VJ AB Natl COM1

i

MOD: SKYDD SK REL: SDX RAP: NEDK 7J1CNEDK £.KV:0 3:

Figure 2: The appearance of the application evaluated.

3.2. The evaluation
The evaluation of the application's user interface

GLSG compliance was performed as described in section

2.3.

3.3. Results.
The evaluation resulted in 85 deviations from the

GLSG's defined. An excerpt from the result repon.

generated from the evaluation, is presented in Figure 3

below. The results are translated into English and in some

military situation and chose the name Save. The result from
the evaluation was then introduced into the design
specifications for the implementation of the final system
(Further aspects of evaluating the application were handled
by human evaluators using the GLSG's not yet
implemented.)

4. Further applications evaluated

TUNE has also been used to evaluate two other

applications. One was an application for presenting and

131

File menu

Presentation of the user interface elements in the
application evaluated.

Menu item: Shortcut: Mnemonic: Menu item in Swedish:

Open... Ctrl+A 0 Öppna...
M o v e - Ctrl+B M Flytta...
Copy... Ctrl+C C Kopiera...
Save form... Ctrl+D F Spara mall...
Open form... Ctrl+E P Öppna mall...
Control preview... Ctrl+F Förhandsgranska inst...

Comments generated in the evaluation of the user interface
elements.

Comments: *

Menu item New is not found.
Shortcut for Open... is not as defined in GLSG.
Use of the mnemonic for Open... does not result in any action.
The dialog box presented when Open form... is selected has no OK button.
When selecting Control preview... no dialog box is presented.

Figure 3: An excerpt from the result report.

handling geographical information. Another was an

application for presenting attacking enemy aircraft in an

anti-aircraft setting. The results from these evaluations

were mainly the same as for the evaluation presented here.

5. Discussion

The work presented above illustrates how to

automatically evaluate GLSG compliance in user interface

design. Even though TUNE only focused on above

mentioned user interface elements, the work points to the

potential of automatic evaluation of user interface elements

and thus facilitating the use o f human factors knowledge in

user interface development.

5.1 TUNE and the defined goals

To evaluate TUNE against the goals listed earlier

following study were conducted. In parallel with the TUNE

testing of the three applications, manual evaluation was

also accomplished by three usability experts. (The number

of usability experts was determined with [25] as a basis.)

The data collected in manual evaluation and TUNE

evaluation were:

• time used for performing the evaluation,

• number of evaluated user interface elements.

• number of identified deviations from GLSG's,

• interviews with developers who had used TUNE

when developing user interfaces.

Time used (rninutes) was registered by the usability

experts and by the TUNE operator. (Time for preparation

of the manual evaluation and TUNE evaluation was not

included in the registration.) Number of evaluated user

interface elements was registered through analysis of the

reports from the usability experts and from TUNE. Number

of identified deviations was registered by letting the

usability experts note every deficiency on paper, which was

then analyzed, ir.z bv studvsa the result resort f rom

TUNE. The interviews were performed individually for the

three developers. It is important to notice here that when

we are talking about time and number below, we only

discuss in terms of the user interface elements mentioned

earlier. Also the status of development for the different

applications are very different, so the numbers given in the

figures should not be compared over applications.

Goal 1): Reduce the time needed for evaluation of

GLSG compliance. In Figure 4 below the time used for

manual evaluation and TUNE evaluation of the three

applications is presented. Time used for manual evaluation

is here presented as mean values for the three evaluators.

132

A B C

Manual

TUNE

115 21 135

20 4 27

Figure 4: Time used, in minutes, for manual

evaluation and TUNE evaluation for the three

applications.

As can be noticed in Figure 4, time used for TUNE

evaluation is about 20% of the time used for manual

evaluation. It is therefore possible to conclude that TUNE

reduces the time needed to evaluate GLSG compliance.

Goal 2): Support the task of evaluating all ui elements

in the application. In Figure 5 below, number o f evaluated

user interface elements is presented together with the total

number of user interface elements for each application. I t

should be noticed here that when we refer to the total

number of user interface elements we mean those elements

mentioned in section 2.1. Number of evaluated user

interface elements is here presented as mean values for the

three usability experts.

A B C

Manual 231 38 290

TUNE 252 36 305

Total number 255 39 308

Figure 5: Number of evaluated ui elements together
with total number of elements.

deviations recognized (and corrected) the more consistent
user interface. For the manual evaluation only the

deviations that are unique are presented, in other words, i f

two evaluators has recognized the same deviation it is only
regarded as one deviation.

A B C

69 (222) 33(73) 58(97)

85 42 83

Figure 6: Number of recognized deviations in manual
and TUNE evaluation for the three applications.

As can be noticed in Figure 6, the number of

recognized deviations is higher for TUNE evaluation then

in manual evaluation. This is true only as you have the

implemented GLSG's as a basis. Manual evaluators

recognize more deviations (the figures within brackets in

Figure 6) i f you have all GLSG and the usability experts

'design expertise' as a basis.

Goal 4): Support iterative design of user interfaces.

Because of the possibility to use TUNE to evaluate a user

interface design in progress it is possible to receive

comments on different design suggestions. It is also

possible to use TUNE as a personal support tool in the

design and implementation. For instance, to use TUNE in a

design situation where the designer can evaluate a design

prototype. In this case it is possible to have comments

presented for the designer together with the specific user

interface element evaluated. Also, interviews with

designers indicate that they consider TUNE as a support

for iterative design.

As can be noticed in Figure 5, TUNE evaluation

results in that more user interface elements are evaluated

and also that almost all user interface elements are

evaluated. The reason for the difference between TUNE

and the total number is that we are not evaluating the menu

item Exit (together with mnemonic and shortcut). Figure 5

also indicate that the difference in evaluated user interface

elements between manual evaluation and TUNE evaluation

is greater when the application is more complex. A

precondition for TUNE evaluating all user interface

elements is of course that GLSG are implemented for every

element.

Goal 3): Enhance consistency in user interfaces. In

Figure 6 below, the number of recognized deviations from

GLSG in manual evaluation and TUNE evaluation is

reported for the three applications. The reason why we

present those numbers is our hypothesis that the more

5.2. Related work

Of course it is not possible to replace usability

experts with a tool for user interface evaluation.

Nevertheless, a tool like TUNE could unburden usability

experts from the task of evaluating user interface

compliance with respect to existence, layout and

functionality GLSG's. Thus, making it possible for them to

concentrate on more important design issues.

It is important to remember that TUNE only handle a

minor part o f the usability issue. Compliance with GLSG

does not in any way guarantee that an interactive

information system wil l be usable. Therefore, it is

important to regard TUNE as a supplement to other

usability activities, for example heuristic evaluation,

cognitive walkthrough and user testing that are useful for

other aspects of the usability issue [2;8].

133

6. Future work
In the future development of TUNE we wil l focus our

efforts on extending the tool in three ways. First, to

evaluate additional user interface elements, for instance,

other types of menus, different kinds o f buttons, list boxes

and text boxes.

We estimate that it is possible to implement about

70% of the GLSG's in Microsoft [5] . Concerning the

remaining 30%. we think it is necessary to investigate the

possibility to make GLSG's more accurate in order to

implement them in TUNE. Some o f theses remaining

GLSG's can possibly be defined more accurately. For

example, consider following GLSG:

T f an object is so small or tbin that pointing or

clicking to select it would require extremely precise mouse

positioning, provide a hot zone around the object to

increase the area where clicking wi l l select the object' ([5],

p. 10).

I f we supplement this GLSG with:

'The selectable area (of an object) should be at least

0.6 square', [10], it would be possible to implement it in

TUNE.

Other GLSG's are more difficult to formulate in the

precise way needed. The following GLSG need further

information to be possible to implement:

'Each menu item should be represented by a

descriptive name or graphic' ([5], p. 83).

To implement this GLSG you need to know the

function of the item and to have knowledge about the

semantic meaning of the name of the menu item.

Second, we intend to develop tests with OSF/Motif

GLSG's as a basis, making it possible to use TUNE when

evaluating GLSG compliance in both MS Windows and

Mot i f user interfaces.

It is also important to develop TUNE further so that

the evaluator know which GLSG's are (or are not)

implemented in TUNE and which user interface elements

are (or are not) evaluated in a specific application.

Acknowledgments

The author wants to thank Per Asplund, Peter

Ericsson and Johan Strand, all at Enator Telub A B , for

their work at implementing TUNE. Leonard Adelman.

Jonas Löwgren and Kjel l Ohlsson read an earlier version of

this paper and had many insightful comments for which I

am very grateful.

This study was founded by the Swedish National

Board for industrial and Technical Development. Enator

Telub A B and the Defence Material Adrmnistration,

Sweden.
OSF/Motif is a trademark of the Open Software

Foundation. Inc. Windows is a trademark o f Microsoft

Corporation. Enator Telub AB is a consultant company
within information technology.

References

[I] F. De Souza. and N. Bevan. The Use of Guidelines in
Menu Interface Design: Evaluation of a Draft Standard. In
D. Diaper. D. Gilmore, G. Cockton and B. Schäkel Eds.,
Human -Computer Interaction - Interact '90. pp. 435-440.
North-Holland, 1990

[2] R. JeffriesJ.R. Miller, C. Wharton and K . M. Uydea, User
interface evaluation in the real world: A comparison of four
techniques. CHI'91 Conference Proceedings, pp. 119-124.
1991.

[3] J. Löwgren and T. Nordqvist, A Knowledge-Based Tool for
User Interface Evaluation and its integration in a UIMS. In
D. Diaper. D. Gilmore. G. Cockton. and B. Shackel Eds..
Human Computer Interaction - Interact '90. (pp. 395-
400). North-Holland, 1990.

[4] J. Löwgren and T. Nordqvist, Knowledge-Based Evaluation
as Design Support for Graphical User Interfaces. In CHI
'92 Proceedings, pp. 181-188. 1992

[5] Microsoft. (1992). The Windows Interface: An Application
Design Guide, Microsoft Press. Redmond. Washington:
Author.

[6] J. N.. Mosier. and S. L. Smith. Application of Guidelines
for Designing User Interface Software, Behaviour and
Information Technology, 3, pp. 39-46, 1986.

[7] B. A. Myers and M. B. Rosson. A Survey on User
Interface prograrnrning. In Proceedings of CHI '92._ po.
195-202, 1992.

[8] J. Nielsen. Usability Engineering. Academic Press.
London. 1993.

[9] Open Software Foundation. OSF'Motif Style Guide
Prentice Hall. 1992.

[10] R. N. Parrish, Development of Design Guidelines and
Criteria for User/Operator Transactions with Battlefield
Automated Svstems. Fairfax, Virginia: Synetics (August).
1980.

[I I] G. Perlman. System Design and Evaluation with Hypertext
Checklists. IEEE. pp. 1187-1193,1989.

[12] S. L. Smith and J. N. Mosier. The User Interface to
Computer-Based Information Systems: a Survey of Current
Software Design Practice. Behaviour and Information
Technology, 3, pp. 195-203.1984.

[13]S. L. Smith and J, N. Mosier, Guidelines for Designing User
Interface Software. (Technical Report MTR-10090). The
MITRE Corporation. Bedford. MA 01730. USA. 1986.

[14] L. Tetzlaff andD. R. Schwartz. The Use of Guidelines in
User Interface Design. In CHI' 91 Proceedings, pp. 329-
33. 1991.

[15] H. Thovtrup and J. Nielsen. Assessing the Usability of a
User Interface Standard. In CHI '91 Proceedings, pp. 335-
341,1991.

134

S t u d y 4

R E S E A R C H R E P O R T T U L E A 1 9 9 5 : 3 7

AVDELNINGEN FÖR TEKNISK PSYKOLOGI ISSN 0347 - 0881

ISRN HLU - TH - FR - -1995/37 - TULEA - - S

Computer Support for User
Requirement Evaluation
i n System Development

TOMMY NORDQVIST

TEKNISKA
HÖGSKOLAN I LULEÅ

LULEÅ UNIVERSITY OF TECHNOLOGY

C O N T E N T

A B S T R A C T

1. INTRODUCTION 1

2. COMPUTER SUPPORT FOR EVALUATION OF USER REQUIREMENT
COMPLIANCE 5

2.1 U S E OF T U R E IN THEORY: 7

2.2 PRACTICAL USE OF T U R E , A CASE STUDY 8

2.2.7 Creating the test-script: S
2.2.2 Evaluation of the computer system: 9
2.2.3 Analysis of the evaluation result: 11

3. DISCUSSION AND CONCLUSIONS 11

3.1 CREATION OF TEST-SCRIPTS: l l

3.2 EVALUATION OF AN APPLICATION 14

3.3 COMPARISON BETWEEN AUTOMATIC AND MANUAL EVALUATION-. 15

3.4 USABILITY ASPECTS 16

4. FUTURE WORK 18

R E F E R E N C E S

ACKNOWLEDGMENTS

A B S T R A C T

The present paper describes and discusses a computer-supported tool for

evaluation of a computer system's compliance with user requirements.

The aim of the tool is to support the difficult but important work of

validating that defined user requirements are implemented in the

computer system developed.

After discussing development of computer systems according to some

commercial standards, the need for evaluation of computer systems and

reasons for computer-support in this area, the tool TURE (Tool for User

Requirement Evaluation) is described. Also, experiences from practical use

of TURE are reported. With these practical experiences as a basis, TURE is

discussed in relation to the creation of test-scripts, evaluation of a compu­

ter system, comparison between automatic and manual evaluation, and

usability.

Finally, possible future development of TURE is presented, focused on the

need of implementing predefined test-functions, a function for attaching

these test-functions to relevant user interface elements, and a function for

registrating user interaction.

1

1. INTRODUCTION

When developing large computer systems the following activities are

usually accomplished (Dix et. al., 1993):

• Requirements specification.

• Architectural design.

• Detailed design.

• Coding and unit testing.

• Integration and testing.

• Operation and maintenance.

Requirements specification or requirements analysis, probably the most

important activity when developing computer systems, can be divided in

two activities (Palmer, 1990). The first activity is identification and defi­

nition of the users' requirements on the future system. Another term for

this activity is development of system requirements (DBEE P1233,1993;

MIL-STD-498, 1994). The result from this activity is a system requirement

specification (SyRS). The second activity is specification of the require­

ments on the software, in other words a requirement analysis from a

software perspective. Another term for this activity is definition of the

software requirements (IEEE std 830-1993; 1994; MIL-STD-498, 1994). The

result from this activity is a software requirement specification (SRS). See

also Andriole (1990) and Rombach (1990) for a discussion of user

requirements and software requirements.

The system requirement specification, which represents the users' basic

requirements on the future computer system, is often formulated in

natural language. When developing the software requirement specifi­

cation, these requirements are reformulated in a more formal language,

for example object models or flowcharts. The software requirement

2

specification is then the basis for subsequent activities in the development

of the system. When these activities are completed, the resulting computer

system is validated against the user requirements specified in the system

requirement specification.

Within the system development projects we are working with at Telub

AB, our role is primarily to help and support the user/customer when

developing computer systems. During requirement specification we are

helping the users to identify and define their requirements on the system,

in other words helping them to develop the system requirement specifi­

cation. This system requirement specification is then delivered to the

supplier of the future computer system. The supplier develops a software

requirement specification, and carries out the subsequent activities in

order to develop the computer system. When the system is delivered to

the user/customer, validation of the computer system's compliance with

the requirements specified in the system requirement specification is

usually carried out (ISO 9000-1991,1991). In this activity we are supporting

the user/customer in the validation process.

The system requirement specification has two main objectives. First, it is

the basis for the contract negotiations where the user/customer and the

supplier will come to an agreement about what to be produced. Second, it

is the basis when specifying software requirements. Therefore a system

requirement specification should have the following characteristics

according to I E E E P1233 (1993):

• "The requirements shall be formulated and organized to define the

system's external behavior completely, consistently and unambiguously

once the problem is thoroughly understood," (p. 4).

• "Each requirement shall be implementation independent.

• Each requirement shall be stated in such a way so that it can be

interpreted in only one way.

3

• Each requirement shall have the ability to be traced to specific customer

statements and to specific statements in the definition of the system

given in the SyRS as evidence of the source of a requirement.

• Each requirement shall have the means to prove that the system

satisfies the requirements," (p. 13).

The definition of requirements according to these characteristics and with

above-mentioned objectives, usually implies that the system requirement

specification is characterized by

• A focusing on the complete specification of the external behavior, or the

services the computer system should fulfill from the users perspective.

• Requirements often specified in detail and handling the external design

of the user interface. Layouts, interaction techniques, menus, dialog

boxes, forms and so on, are often specified explicitly in the requirement

specification. The reason for this is the need for validation.

• Large number of requirements' in the requirement specification even

for small systems.

As a result, comprehensive procedures and specifications regarding the

validation of the computer system under development have been

developed. These procedures and specifications are for instance called

acceptance tests, test specifications or system test specifications. In this

paper these procedures and specifications will be called validation speci­

fications. A validation specification for a specific computer system is a

detailed check list for every requirement defined in the system require­

ment specification. If we for instance study following requirement:

"The user should be able to use the computer system to copy earlier created

or received messages,"

4

the validation specification for this requirement could be formulated in

the following way:

Do the following: Check that:

Select the command "Copy.' A "Copy" form is

presented.

Select the type of message to be copied

by selecting message type. Do this for

for every type.

Messages of selected type is

presented in the window

messages.

Select message/messages to be copied by

clicking on them in the window for

messages. Do this for every message

and combination of messages.

Messages can be selected

and that selected messages

are indicated or presented

in the window for selected

messages.

Type an appropriate name for the message

which is copied

Any name is possible to

type and both characters

and numbers are accepted.

Select the catalogue where the copied

message shall be saved by clicking on the

catalogue name in the directory.

Appropriate catalogue

couls be selected as

indicated.

Press the OK button. Copied message is saved

under the chosen name

and under the selected

catalogue. The "Copy"

form is closed and the

application returns to the

earlier state.

5

Press the Interrupt button. The "Copy" form is closed

and the application returns

to earlier state without any

copy saved.

This implies that the possibility to validate the developed computer

system's compliance with user requirements in the system requirement

specification increase, but also that the validation is both comprehensive

and laborious to accomplish. This is particularly the case when performing

the validation manually, as in the projects we are working in. If this vali­

dation has to be done several times, as in iterative system development or

development of several versions of the system, the risk increases that:

• The computer system is not validated against all the user requirements

defined in the system requirement specification.

• The validation is very hard to replicate in exactly the same way.

• The validation is being so costly (in time and money) it is not

performed for every iteration or version.

• The computer system is not evaluated against the user requirements in

the system requirement specification but against the software

requirements.

2. COMPUTER SUPPORT FOR EVALUATION OF USER
REQUIREMENT COMPLIANCE

In an attempt to handle some of the problems in validating a computer

systems compliance with user requirements, we have developed a tool

called T U R E (lool for User Requirement Evaluation). With TURE it is

possible to evaluate a computer system's compliance with user require­

ments related to the user interface.

6

The overall architecture for TURE is depicted in Figure 1 below. As a

platform for the development of TURE we used WinRunner. WinRunner

is developed by Mercury Interactive Corporation and is a tool for

developing automatic software tests for Windows, Windows NT, and

O S / 2 applications. For a detailed description of WinRunner see Mercury

Interactive Corporation (1993a, b, c). (A similar tool is for example

WinTest developed by Microsoft).

Application to
be evaluated.

Learn Test-
GUI script
objects objects Comments

WinRunner

Figure 1: Overall architecture of TURE

TURE consists of the following main parts: The Learn GUI objects function

in WinRunner and the test-scripts developed for the applications to be

evaluated.

The Learn GUI objects function is used to create a representation of the

user interface of the application to be evaluated. This representation

includes the logical names of the user interface elements and their

physical description. The logical name is for example a button label, a

window label or a name defined by the developer of the application.The

physical description is a list of attributes that identify the element. This list

includes, for instance, type of user interface element (window, dialog box,

push-button, menu, menu item), the label of the element, co-ordinates for

the element on the screen, and text attached to the element. This list is

created with the Learn GUI objects function and can also be supplemented

manually.

7

The test-script consists of functions in a C-like programming language for

validating that the implemented application complies with defined

requirements. With these functions the application is evaluated to check

that defined user requirements are implemented and that the application

functions as specified.

2.1 Use of T U R E in theory:

When specifying the requirements and especially when developing the

system requirement specification the user requirements are transformed to

a test-script. The level of detail in the system requirement specification

influences the development of the test-script. Sometimes it may be

necessary to ask the users to articulate their requirements more precisely. If

this is not possible at the moment, it may be necessary to wait with the

details in the test-script until the development of the software

specification.

When a prototype or a version of the computer system has been

implemented, the Learn GUI objects function is used to generate a

representation of the user interface of the computer system. If the system

requirement specification was very detailed and all user interface elements

were defined, the test-script created is sufficient for the validation to be

carried out. If not, there is a need to develop the test-script further with the

generated representation as a basis.

The test-script is then used to evaluate the computer system's compliance

with user requirements. The possibility to do this evaluation on-line also

makes it possible to continously monitor the evaluation performed by

T U R E .

8

2.2 Practical use of T U R E , a case study

To investigate the practical use of TURE we decided to set up a study

comparing manual evaluation to evaluation with TURE. The study was

designed to investigate the time needed for creating test-scripts/validation

specifications and time needed for conducting the evaluation.

The study was accomplished by having different people conducting the

manual evaluation (including creating the validation specification) and

the evaluation with TURE (including creating the test-script). In this

section we are focussing on the issues of creating test-script, evaluation of

a computer system, and analysis of the result from the evaluation with

T U R E . The comparison between manual evaluation and evaluation with

T U R E is presented in the discussion and conclusions section.

2.2.1 Creating the test-script:

Simultaneous with the development of the system requirement specifi­

cation for a computer system for writing, sending, receiving and admini­

strating different kinds of messages, we developed a test-script to be used

when validating the computer system's compliance with user require­

ments. The requirement specification included user requirements in the

form of detailed requirements on operations the user/operator should be

able to do with the computer system. Examples of the requirements in the

requirement specification are presented in Figure 2 below. (The require­

ments are translated to english).

• Selection of the command "List of adress" shall result in presentation of

a dialog box "List of adress" in the working area.

• Selection of the command "Reset" shall result in presentation of a dia­

log box "Reset" in the working area. The button "All" shall be active.

9

• Selection of the command "Priority" shall result in presentation of a

window "Priority" in the working area.

• Selection of the command "Erase" shall result in presentation of a

dialog box "Erase" in the working area. The button "Yes" shall be active.

Figure 2: Examples on user requirements.

The requirements were then transformed to a test-script as described

above. An example of the transformed requirements is depicted in Figure

3 below.

(1) if (menu_select_item("Options; List of adress...")!=E_OK)

(2) report_msg("2.4.7.6.4.4 There is no command for List of

adress");

(3) else if(dialog_title(List of adress") !=E_OK)

(4) report_msg("2.4.7.6.4.4 When selecting the command for

List of adress no dialog box is presented")

(5) else win_close("List of adress");

Figure 3: An example from the test-script.

Line 1: Tests if there is a command for "List of adress".

Line 2: Prints the defined text in the test report.

Line 3: Tests if there is a dialog box for "List of adress".

Line 4: Prints the defined text in the test report.

Line 5: Closes the window or dialog box.

2.2.2 Evaluation of the computer system:

After the implementation of the first version of the computer system the

validation was carried out with TURE. A representation of the user

10

interface of the computer system was generated. The apphcation was then

evaluated according to the test-script and comments were generated.

The evaluation of the application's compliance with the defined user

requirements resulted for instance in the comments presented in Figure 4

below.

Requirement according

to req. specification:

Evaluation

carried out:

Comments:

2.4.7.6.4.4

2.4.7.6.4.5

2.4.7.6.4.8

2.4.7.6.5.2

2.4.7.6.5.6

Evaluation of the presence

and function of command

"List of adress".

Evaluation of the presence

and function of command

"Messages".

Evaluation of the presence

and function of command

"Reset".

Evaluation of the presence

and function of command

"Priority".

Evaluation of the presence

and function of command

"Erase".

There is no

command"List

of adress."

OK

There is no

command

"Reset".

There is no

command

"Priority".

When selecting

the Command

"Erase"no dia­

log box is pre­

sented.

Figure 4: An excerpt from the evaluation report.

In addition to these requirements it was also a requirement that the user

interface shall comply with the MS Windows styleguide. Evaluation of

11

this requirement was carried out with a tool called TUNE (Nordqvist,

1995).

2.2.3 Analysis of the evaluation result:

When studying the result from the validation of the computer system it is

possible to conclude the following. First, it was possible to identify a num­

ber of deviations from the requirements defined in the requirement

specification by means of TURE. Second, some deviations identified by

T U R E were due to some defects in the test-scipt. Third, the traceability to

the original requirements was simplified by the identification of the ori­

ginal requirements in the evaluation report. Fourth, the dialogue with the

developers was facilitated by the possibility to replay the evaluation

session.

When discussing the result from the evaluation with the developers, they

agreed that they had sometimes deviated from the requirement specifi­

cation. This discussion was to a great deal facilitated by the possibility to

replay the evaluation and in the user interface point to discovered devia­

tions and at the same time refer to the original requirement. Sometimes

the developers pointed out that the result from the evaluation was erro­

neous. This was due to the fact that the developers had implemented

some requirements with the help of other user interface elements. T U R E

was then not able to find the elements defined in the requirement speci­

fication, which resulted in TURE generating comments that the require­

ments related to these user interface elements were not fulfilled.

3. DISCUSSION AND CONCLUSIONS

The discussion and conclusions are divided in following sections: creation

of test-scripts, the evaluation of the application, comparison between auto­

matic and manual evaluation and usability aspects.

12

3.1 Creating the test-scripts:

To create test-scripts for evaluation of an application's compliance with

defined user requirements, the requirements have to be precise enough to

implement in the C-like language supported by WinRunner. This means

that considerable efforts have to be made to have the users define exphcitly

what they will be able to do with the computer system. A positive side-

effect of this is that this procedure also ensures that one condition in I E E E

P1233 (1993) is fulfilled, that all requirements on the system should be

possible to validate.

The process of creating test-scripts is at the moment as time-consuming as

creating the necessary validation specifications for manual validation, at

least if the validation is performed only once. This depends mainly on the

following:

• The requirements are often too generally formulated in the

requirement specification. (This is of course a problem even in manual

evaluation).

• Requirements without external behavior to the user can for the

moment not be validated with TURE.

• Presently, every test-script is created from scratch.

If the requirements are too generally formulated, we must return to the

users to have them elucidate what they want the application to do.

Integration of the work of identifying and defining the user requirements

on the apphcation to be developed, with the work of creating test-scripts

would probably facilitate the creation of test-scripts. This integration might

also contribute to the solution of the problem that many large software

development projects exceed their cost and time limits because of

deficiencies concerning the development of the requirements on the

computer system (see for example Lederer and Prasad, 1992) because of the

necessity to be explicit in the requirements definition to be able to

implement them in TURE.

13

Since T U R E is based on the evaluation of compliance with user require­

ments through the user interface we have for the moment no possibility

to validate requirements that relate to the application's inner functiona­

lity. This is a problem in many system development projects of today

where requirement specifications are formulated in terms of technical

functionality and not in terms of user requirements on the system (see for

example Andriole, 1990, for a discussion of the importance of focusing on

user requirements). This means that the functionality for the user risks to

be hidden by technical requirements. If one instead chooses to let the user

perspective dominate when identifying and defining requirements the

creation of test-scripts would be much easier. The effect of this approach on

the development of software requirement specifications is unknown.

Possibly it could contribute to the solution of the problem that many large

computer systems are so afflicted with serious deficiencies when delivered

that they are not used (Ince, 1988). It has been shown that these deficiencies

usually depend on problems in identifying and defining the requirements

on the future computer system (Lederer and Prasad, 1992, Palmer, 1990).

Function for
relating test-
functions and
user interface
elements

Directory of
pre-defined
test-functions

Application
tobe
evaluated

Representation
of the user
interface of the
application

WinRunner

Comments

Figure 5: Possible future architecture of TURE

14

Since every test-script is created from scratch, it requires the same amount

of effort for every apphcation to be evaluated. A possible approach to this

problem is to supplement TURE with a library of predefined test-functions

for different types of user interface elements, and a function for relating

applicable test-functions to the user interface elements in the represen­

tation of the application to be evaluated. An example of this further

development of T U R E is depicted in Figure 5.

3.2 Evaluation of an application

The evaluation of an application is rather straightforward since what is

done is: 1) creation of a test-script according to the system requirement

specification for the apphcation to be evaluated, 2) generation of a repre­

sentation of the user interface of the apphcation, 3) evaluation that the

application complies with defined user requirements, 4) analysis of

evaluation results, 5) presentation of evaluation results for the developers.

However, some additional activities are necessary in relation to the

evaluation of an application's compliance with user requirements using

T U R E .

First, a validation of the identified and defined requirements have to be

conducted. Experiences from system development points to the impor­

tance of validating requirements to ensure that the requirements are the

proper requirements, properly comprehended, properly formulated,

consistent, complete and possible to test (possible to verify and validate,

Boehm, 1984a). This is an extensive and difficult task that has to be done

irrespectively if the subsequent validation is done manually or with the

help of tools like TURE. In a way TURE could support this process since

we have an opportunity continually to test the requirements as the

apphcation is implemented.

15

Second, to continuously check if the user interface elements in the

application have got other names, or defined user interface elements have

been changed so that for instance menus have been replaced with dialog

boxes. As mentioned before, such changes mean that the user interface

elements generated in the representation do not correspond to elements in

the test-script.

Third, to ensure that changes of specific requirements, addition of new

requirements, and omission of requirements are continuously taken care

of and influence further development of the test-script.

3.3 Comparison between automatic and manual evaluation:

The results from the case study is illustrated in Figure 6.

Manual Automatic

Time elapsed for conducting 8h l h
the evaluation

Time elapsed for creating 8h 8h

test-scripts/validation specifications

Figure 6: Comparison between automatic and automatic evaluation.

As the figure indicates, it takes equally long time to create a test-script and

a validation specification. This depends mainly on the fact that for manual

as well as automatic evaluation the test-script/validation specification is

created from scratch for every application to be evaluated. With the

further development of TURE illustrated in Figure 5, we estimate that

reducing the time necessary for creating test-scripts with 50% is possible.

16

If we then consider manual and automatic evaluation with respect to the

time elapsed to conduct the evaluation, it obviously takes much shorter

time to conduct the automatic evaluation.

However, considering the magnitude of the time saved as possible to

generalize to other apphcations is risky. Further use of TURE is necessary

to create the necessary basis for any conclusion about the magnitude of the

time saved when using TURE. Still it is possible to say that the time saved

at least should be about 50% compared with manual evaluation. If we by

this can unburden people from the task of manually evaluating appli­

cations and instead focusing on other usability aspects, the possibility to

developing really usable computer systems in the future increases.

Another aspect worth pointing at when comparing manual and automatic

evaluation is the possibility of considerable time and cost savings when

evaluating a computer system's compliance with user requirements in

iterative system development. Even if the time used initially when

developing test-scripts or validation specifications is the same, our

preliminary experience is that the cost in time and money for further

development of the test-script is very small, as long as the apphcation is

not dramatically changed. For instance, in TURE replacing user interface

elements or taking into consideration design changes where the user

interface element's interrelations have been changed is very easy. It is

likely that the time saved, indicated in Figure 6, for evaluation of the

apphcation wül be the same for every iteration or version of the computer

system also. According to my opinion, this means that when developing

large systems where the number of iterations or versions could be more

than 10, the time and cost savings are large.

17

3.4 Usability aspects

Even if TURE supports evaluation of an application's compliance with

user requirements, TURE is of course not the answer to every question

concerning development of usable computer systems. If we consider T U R E

from the perspective of Löwgrens (1993) definition of usability:

"Usability is a result of Relevance, Efficiency, Attitude and

Learnabihty (REAL).

• The relevance of a system is how well it serves the users'

needs.

• The efficiency states how efficiently the users can carry out

their tasks using the system.

• Attitude is the users' subjective feelings towards the system.

• The learnabihty of a system is how easy it is to learn for

initial use and how well the users remember the skills over

time".

it is possible to say that TURE handles the relevance aspect of usability in

the sense that it is possible to evaluate to what degree the apphcation

comphes with the user requirements. This of course presupposes that

specified requirements really represent the users requirements.

TURE does not handle the efficiency aspect of usability since there is no

function in TURE to support the evaluation of how efficiently the users

can carry out their tasks using the apphcation. Supplementing TURE with

a function for registrating user interaction makes it possible also to handle

the efficiency aspect since then it is possible to registrate the users' interac­

tion with the computer system when carrying out relevant working tasks.

Nor does TURE adress the attitude aspect of usability since this is mainly a

question of what the user feels about the computer system. A more

18

thorough treatment of usability requires that TURE is supplemented with

different kinds of investigation methods to study this aspect.

With respect to the issue of how easy the computer system is to learn and

how well the users remember the acquired skills, this is not handled by

T U R E which focuses on whether the user requirements are implemented

in the computer system. But it is possible to imagine the use of a further

developed TURE in registrating and analyzing the use of the computer

system when it is delivered to the users.

Finally, I would hke to return to the relevance aspect and state that TURE's

evaluation of the relevance aspect also indirectly affects the other aspects

of usability. If the user functionality defined in the requirement specifi­

cation is not implemented in the computer system this is going to

influence the other usability aspects. For instance, if one studies the

learnabihty aspect it is possible to come to the conclusion that the

computer system is easy to learn, but this could still imply that the

computer system is missing task relevance. My personal experience is also

that it is possible to have a high value with respect to the user attitude of

the computer system but this does not guarantee that the computer system

is relevant for the task to be performed.

4. FUTURE WORK

There is a need to further develop TURE in many ways. First, TURE needs

to be extended according to Figure 5. The focus is then on developing

predefined test-functions to handle the different kinds of user interface

elements in a user interface. Developing a function for integrating these

test-functions and the user interface elements identified with the Learn

GUI objects function is also necessary.

Second, we see it as necessary to further develop TURE to deal with the

user interface elements utilized in geographical apphcations (GIS). At the

19

moment TURE could not handle symbols presented in a computerized

map display.

Third, in our opinion it is necessary to supplement T U R E with a function

for registrating user interaction, specially if we aim at adressing the

efficiency and learnability aspects of usability.

Fourth, developing TURE further is necessary so that we can
improve our dealing with situations where minor changes in the
user interface design have lead to replacement of user interface
elements when implementing the computer system. For the
moment we have to manually check that the representation
generated with TURE really contains the elements specified in the
requirement specification. A possible solution to this problem is to
develop a function to automatically check the correspondence
between the user interface elements in the test-script and the user
interface elements in the generated representation.

20

REFERENCES

Andriole, S. J., (1990). Information System Design Principles for the 90s,

Getting I T Right A F C E A International Press, Fairfax, Virginia.

Boehm, B. W., (1984a). Verifying and Validating Software Requirements

and Design Specifications. I E E E Software. Vol. 1, Number 1,

January 1984, pp. 75-88.

Dix, A., Finlay, J., Abowd, G. and Beale. R. (1993). Human-Computer

Interaction. Prentice Hall International Press (UK) Limited.

I E E E Std. 830-1993, (1994). I E E E Recommended Practice for Software

Requirements Specifications. Institute of Electrical and Electronics

Engineers, Inc., New York.

I E E E P1233, (1994). Guide for developing System Requirements

Specifications. Institute of Electrical and Electronics Engineers, Inc.,

New York.

ISO 9000:1991, (1991). Quality Management and Quality Assurance

Standard - Part 3, Guidelines for Application of ISO 9001 to the

Development, Supply and Maintenance of Software.

Ince, D. (1988). Software Development Fashioning the Baroque. Oxford

University Press.

Lederer, A. L . and Prasad, J. (1992). Nine Management Guidelines for

Better Cost Estimating.Communications of the A C M , 35, 2

(February), pp. 51-59.

Löwgren, J. (1993). Human-Computer Interaction, what every system

developer should know. Studentlitteratur, Lund, Sweden.

21

Mercury Interactive Corporation, (1993a). XRunner/WinRunner

Technical Overview, ver 1.0. Cahfomia: Author.

Mercury Interactive Corporation, (1993b). WinRunner User's Guide,

California: Author.

Mercury Interactive Corporation, (1993c). Context Sensitive Testing, User's

Guide, California: Author.

MIL-STD-498, (1994), Mihtary Standard for Software Development and

Documentation. A M S C No. N7069.

Nordqvist, T. (1995). Computer-Supported User Interface Evaluation.

Paper submitted for publication.

Palmer, J. D., (1990), Software Systems Requirements Engineering for

Command and Control, in Andriole SJ . (ed.) Advanced

Technology for Command and Control Systems Engineering.

A F C E A International Press, Fairfax, Virginia, USA.

Rombach, H . D. (1990). Software Specifications: A Framework. Curriculum

Module SEI-CM-11-2.1, Software Engineering Institute, Camegie

Mellon University, Pittsburg, Pa., January.

22

ACKNOWLEDGMENTS

The author wants to thank Per Asplund at Telub AB, for his work at

implementing the tool and the discussions concerning evaluation of user

interfaces. Jonas Löwgren, Kjell Ohlsson, Kristian Sandahl and Joachim

Karlsson read an earlier version of this paper and had many creative ideas for

which I am very grateful.

This study was funded by the Swedish National Board for Industrial and

Technical Development, Telub AB and the Defence Material Administration.

Winrunner is a trademark of Mercury Interactive Corporation.

OSF/Motif is a trademark of the Open Systems Foundation.

Windows is a trademark of Microsoft Corporation.

Telub AB is a company focused on consultancy services within information

technology and telecommunications.

El HÖGSKOLAN I LULEA
LULEÅ UNIVERSITY, SWEDEN

Institution/Department

NR

ISSN

ISRN

TULEA 1995:37

0347 - 0881

H L U - T H - F R - - 1995 /37-E- -SE

Upplaga/Number of Copies

Arbetsvetenskap 100 ex

Avdelning/Division Datum/Date

12 februari -96

Titel/TiÜe

Computer Support for User Requirement Evaluation in System Sevelopment

Författare/Author(s)

Tommy Nordqvist

Uppdragsgivare/Commissioned by Typ/Type

Telub AB and Luleå University

N U T E K

• Doktorsavhandling/Doctoral Thesis
• Licentiatuppsats/Liceiitiate Thesis
CS Forskningsrapport/Research Report
• Teknisk Rapport/Technical Report
D Examensarbete/Master Thesis
D Övrig rapport/Other report

Språk/Language

• Svenska/Swedish SL Engelska/English •
Sammanfattning, högst 150 ord / Abstract, max 150 words

Nyckelord, högst 8 / Keywords, max 8

Underskrift av granskare/handledare / Signature of examiner/supervisor

Kj.ell....QhJ.5.S.Q.n.
Napaiförtydligande:

Universitetstryckeriet 1997

