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Abstract 

 
 
In Laser Materials Processing there has always been a need for suitable methods to 
supervise and monitor the processes on line, to ensure correct production quality or to 
trigger alarms when failures are detected. Numerous investigations have been made 
in this field, including experimental and theoretical work. It is common practice in 
this field to monitor surface temperature, plasma radiation and back-reflected laser 
light, coaxially with the laser beam.  Traditionally, the monitoring systems involved 
carry out no statistical analysis of the signals received – they merely involve 
thresholds.  
 
This thesis looks at the feedback collected during laser welding using such a co-axial 
setup from a Digital Signal Processing point of view and also uses high speed video 
photography to correlate signal perturbations with process anomalies. 
. 
Modern Digital Signal Processing techniques such as Kalman filtering, Principal 
Component Analysis and Cluster Analysis have been applied to the measurement 
data and have generated new ways to describe the weld behaviour using parameters 
such as reflected pulse shape. The limitations of commercially available welding 
supervision systems have been studied and design suggestions for the next generation 
of on line weld monitoring equipment have been formulated. 



 



 

       V 

List of Publications 

 
The licentiate thesis consists of four papers. 
 
Paper I: State of the art of monitoring and imaging of laser welding defects, 
 R. Olsson, P. Norman, J. Powell and A. F. H. Kaplan 

unpublished manuscript, 17 pages (Chapter 5 in the thesis) 

 
Paper II: Advances in pulsed laser weld monitoring by the statistical analysis of 

reflected light. 
R. Olsson, I. Eriksson, J. Powell and A.F.H. Kaplan 

 Submitted to J Phys D: Appl Phys, Oct 2009 

 
Paper III:  Challenges to the interpretation of the electromagnetic feedback from 

laser welding 
R. Olsson, I. Eriksson, J. Powell, A. V. Langtry and A.F.H. Kaplan 

 Submitted to J Phys D: Appl Phys, Nov 2009 

 
Paper IV: Ripple formation on the surface of laser spot welds.  

I. Eriksson, R. Olsson, J. Powell, A. F. H. Kaplan and O. Sundelin 

 Submitted to J Laser Apps, Nov 2009 

 
   
Additional relevant publication: 

Pulsed laser weld quality monitoring by the statistical analysis of  
reflected light. 
R. Olsson, I. Eriksson, J. Powell and A.F.H. Kaplan,  
Proceedings of LIM 2009, Munich, June 15-19, 2009, WLT 

  

 

 
 



 



 

TABLE OF CONTENTS 

Preface………………………………………………………………I 

Abstract……………………………………...…………………….III 

List of Publications ……………………….……………………….V 

 

INTRODUCTION 

1. Structure of the thesis………………..………………………….1 
2. Motivation of the thesis …………………………………………1 
3 Methodological approach ……………………….………………2 
4. Introduction to laser welding,  
    process monitoring and signal processing .................................4 
  4.1 Laser welding ............................................................................4 
  4.2 Digital signal processing ...........................................................6 
  4.3 Process monitoring …................................................................7 
5. State of the art ............................................................................11 
  5.1 Introduction …..........................................................................12 
  5.2. Results from literature and discussion ....................................14 
  5.2.1 Microscopic post-process analysis of welding defects .........14 
  5.2.2 Modelling and simulation of laser welding defects  ……….15 
  5.2.3 High speed imaging of laser welding defects  ……..............15 
  5.2.4 In-process monitoring of laser welding defects ...........…….17 
  5.3 Digital Signal processing .........................................................22 
  5.3.1 Time domain analysis ...........................................................22 
  5.3.2 Frequency domain analysis …..............................................24 
  5.3.3 CO2 welding using audible signals …………......................24 
  5.3.4 Neural nets and fuzzy logic ..................................................23 
  5.3.5 Statistical signal processing methods ...................................25 
  5.4 Conclusions .............................................................................27 
6. Summary  of the papers ............................................................28 
7. Conclusions ................................................................................32 
8. Future work ...............................................................................34 

9 References …………………………………………...…………33 
 
 

ANNEX:  

Paper I:  (Paper I Corresponds to Section 5) ...............................11 
Paper II:   Advances in pulsed laser weld monitoring by the  

statistical analysis of reflected light ………….……….41 

Paper III:  Challenges to the Interpretation of the Electromagnetic  
Feedback from Laser Welding. ……………………….63 

Paper IV:  Ripple formation on the surface of laser spot weld. ......81 
 

 



 

 

 



Rickard Olsson Introduction 1 

Introduction 

 

1. Structure of the thesis  

 
This thesis is composed of an introduction, a literature survey and three publications. 
 

• Section 1 Describes the organization of the thesis. 
• Section 2 The motivation behind the thesis 
• Section 3 The methodological approach 
• Section 4 A short summary of laser welding, process monitoring and  

signal processing. 
• Section 5 State of the art. 
• Section 6 Summary 
• The publications 

 
 

 

   

Sensors     

High speed 

imaging 
    

CW welding     

Pulsed 

welding 
    

On line 

analysis 
    

Off line 

analysis 
    

Theory     

 Table 1 Disposition of the four papers 
 

2. Motivation of the Thesis 

Lasers for Material Processing, especially Metal Processing have been in commercial 
use since the late 1970’s and have today reached a high level of maturity and 
acceptance in fields ranging from heavy industry to aerospace, medical devices and 
basic research. 
In industry, using lasers for welding purposes introduces a second challenge, namely 
the problem of how to ensure that the weld is free from defects by on-line 

Paper 
III 

Paper 
IV 

Paper 
II 

Paper 
I 
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 monitoring. This thesis deals with various approaches towards on-line monitoring 
and supervision of welding processes with a focus on pulsed Nd:YAG welding.  
In all situations where laser light is absorbed by a metal it is transformed into heat. 
The way in which this happens, and how the metal absorbs or reflects the incoming 
light is one of the factors determining the weld quality and this is of primary interest 
for monitoring.  
For supervision and monitoring two crucial questions are; 

- What in the process can be measured? 
-  How accurately can we measure it and to what extent can we rely on, and 

draw conclusions from, these measurements?  
 

Many of today’s commercial systems for weld supervision and fault detection are 
based upon the idea of a training phase where you tell the system what is a good weld 
and apply simple thresholds around a “golden template”. An alarm is triggered if the 
receives signal amplitude level goes outside the given limits. 
This leads to a situation where much of the supervision is: 

- Ad hoc. I.e. theoretical reasons for observed phenomena are not taken into 
account. 

- Inflexible, and cannot systematically correlate the received signal, to failure 
reasons.  

 
This thesis deals with various approaches towards on-line monitoring and supervision 
of welding processes with a focus on pulsed Nd:YAG welding.  
In all situations where laser light is absorbed by a metal it is transformed into heat. 
The way in which this happens, and how the metal absorbs or reflects the incoming 
light is one of the factors determining the weld quality and this is of primary interest 
for monitoring.  
For supervision and monitoring two crucial questions are; 
- What in the process can be measured? 
-  How accurately can we measure it and to what extent can we rely on, and 
draw conclusions from, these measurements? 
 
This research was carried out within the project DATLAS, which concentrates on the 
application of simple sensors to complex situation. This thesis therefore deals only 
with data collected from 1-dimensional sensors. I.e. no Digital Image Processing 
methods are included. 

3 Methodological approach 

 
The methodological approach of this Licentiate thesis can be understood by reference 
to the structure and order of the papers included. The work began with a literature 
survey of existing methods for welding supervision, covering sensor hardware, 
performance and detectable defects and what Digital Signal Processing (DSP) 
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methods have been previously applied to measurement data for supervision and fault 
detection. 
 
Paper I is a literature survey on the most common methods for laser welding 
supervision covering both defects, underlying phenomena, sensors and signal 
processing approaches. 
 
Paper II presents two ways to detect abnormal weld pool behaviour. 
In the first section of paper II DSP methods such as Kalman filtering, CUSUM 
detectors and Statistical Analysis was used to on one hand attenuate process and  
measurement noise and on the other hand to create ways to detect abnormal weld 
behaviour.  
This statistical analysis was further expanded in section two of this paper where 
linear regression and clustering techniques were introduced as a way to track the weld 
behaviour all the way down to a single pulse. 
 
Paper III presents a theoretical and experimental analysis of the practical limitations 
in a commercial supervision system. One main problem analyzed is the strong 
correlations between plasma and temperature signals found in the measurement data. 
A new way of presenting electromagnetic feedback from the weld zone – as a 3D 
data cloud is also presented in this work.  
The ideas presented in paper III are straight-forward to implement in hardware or 
software.  
 
Paper IV is a description of the resolidification of spot welded titanium observed 
from high speed imaging. This paper presents a qualitative explanation of the 
formation of surface ripples on the welds, together with results from high speed 
imaging, showing a method of reducing the ripple formation using suitable laser 
pulse modulation., 
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4. Introduction to laser welding, process monitoring and  

signal processing 

4.1 Laser welding 

 

   
Fig 1 Principle of laser welding 

 
Laser welding is today a mature and widely used technique for joining materials 
together by using a focussed laser beam. The laser is focussed onto the substrate 
material as seen in Fig 1 creating a concentrated spot with a high power density - 
generating either a conduction weld or what is called a keyhole weld which 
penetrates deep into the material. 
 
Lasers with power densities > 100 W/mm2 produce a keyholing action. The name 
“keyhole” originates from the fact that seen coaxially from above the combination of 
hole, melt front and rear area of resolidification forms a keyhole like shape. The 
keyhole is formed when a column of ionised metal vapour ( Fig 1, (4)) forms below 
the beam impingement point, absorbing the incoming laser energy and converting it 
into heat generating the melt. The positive result of this is that narrow, deep welds 
can be achieved with small heat affected zones or alternatively, it is also possible to 
achieve very fast processing of thin sheets. This “keyhole” welding process is more 
efficient than a process where the weld shape is governed by thermal conduction 
only. 
 
Advantages of laser welding 

• Deep narrow welds  
• Low heat affected zones (HAZ)  
• Low distortion due to thermal impact  

Principle of laser welding and conduction welding 

Conduction welding    Keyhole welding 

4 

2 

3 

5 

1. Laser Beam 
 
2.  Plasma cloud from 
pool 
 
3.  Molten metal 
 
4.  Keyhole 
 
5.  Weld penetration 
 
6. Shielding gas 

6. 
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• High production rates  
• Flexibility  
• No tool wear  
• Ease of automation  
 
 
 
Laser Welding is used in 
• Automotive industry, tailored blanks, car body, gear boxes etc. 
• Shipbuilding industry  
• Medical Devices, stainless, titanium 
• Medical implants  
• Micro mechanics 

 
 
 

 
Fig 2 Real world situation 

 

The figure above shows a more detailed picture of a real world situation for  the basic 
principle of laser welding .Here we can also see many of the common sources of 
defects, like misalignment, incorrect focus and non optimal gas flow,   
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4.2 Digital signal processing 

Digital Signal Processing is a vast field that has had and has an enormous impact on 
research, industry and everyday life.  
Digital Signal Processing or Signal Processing in short can be described in many 
different ways, one of which is here directly cited from Wikipedia: 

“Signal processing is an area of electrical engineering and applied mathematics that 

deals with operations on or analysis of signals, in either discrete or continuous time 

to perform useful operations on those signals. Depending upon the application, a 

useful operation could be control, data compression, data transmission, denoising, 

prediction, filtering, smoothing, deblurring, tomographic reconstruction, 

identification, classification, or a variety of other operations. 

Signals of interest can include sound, images, time-varying measurement values and 

sensor data, for example biological data such as electrocardiograms, control system 

signals, telecommunication transmission signals such as radio signals, and many 

others.” 

Examples of tools used as Digital Signal Processing algorithms are, 

• Fast Fourier transforms (FFT) 
• Finite impulse response (FIR) filters  
• Infinite impulse response (IIR) filters  
• Wiener filters  
• Kalman filters 
• Echo Cancelling 
• Beam forming. 
• Adaptive filters 
 
Signal Processing can then be further sub divided into categories like 
Audio-, Speech-, Image-, Video-, Array or Statistical Processing. 
 

Statistical signal processing in particular is an area of Signal Processing where 
signals are treated as being observations from an underlying stochastic process. The 
processing deals with the statistical properties of the signals (observations) such as 
mean, covariance, etc...  
In many areas signals are modelled as a sum y(t) of a deterministic part x(t) and a 
stochastic component w(t). I.e.: 

    y(t) = x(t) + w(t) ,  

where the noise part w(t) is having a certain distribution such as Gaussian, flat, 
exponential, Rayleigh etc. 
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4.3 Process monitoring 

 
Fig 3 Monitoring setup 

 
The monitoring situation in this work can typically be depicted as in the figure above. 
In this work we have limited ourselves to the analysis of:  

• Weld pool infrared emissions. 
• Plasma optical emissions 
• Reflected laser light 

 
These features were stipulated in the goal of the funding project DATLAS - to 
investigate the feasibility of using simple 1-D semi conductor sensors as a 
complement, and in certain situations an alternative, to more expensive and 
computationally intensive 2D-camera solutions. 
 
Laser welding monitoring can roughly be divided into three different types:  

• pre-process, arranged ahead of the welding zone like seam tracking 
devices for identifying the edge position; 

• in-process monitoring, by on-line sensors observing the laser welding 
process. This can be done by using different sensors like photodiodes, 
cameras, pyrometers or acoustical sensors;  

• post-process inspection is carried out after the weld has solidified, either 
during the welding process with camera sensors, or afterwards by visual 
inspection, x-ray, ultrasound, fluorescence, microscopy or other 
inspection or testing methods. 
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Classification of welding defects 
Some common and important welding defects and their physical origin are 
summarised in Table. 2.  
 

Defect Explanation of the physical cause 

Pore 
Void 

Spherical gas bubble trapped by solidifying material 
Sharp edged volume caused by impurities or during 
resolidification 

Blow-out Caused by a near surface pore that opens and forms a crater 
Crack H/C Hot cracks are formed during solidifying in welded zone 

Cold cracks can form after welding, often in HAZ 
Undercut Not enough material in upper weld zone, depends on speed, 

power and gap 
Root dropout Too much molten material in lower weld zone 
Penetration Joint not completely penetrated, depends on oxidation, gas 

protection,     contamination of gas or fluctuation of laser power 
Lack of fusion The laser misses the joint, partially or fully 
Reinforcement Too much material in upper weld zone, fluctuation of gap width 
Table2: Classification of laser welding defects and explanation of their physical cause 
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Fig. 4 Typical setup 

 
The experiments involving pulsed welding were carried out using the set-up shown in 
Fig. 4  above.  
The use of 2D-sensors like cameras is an obvious and straight forward way of 
monitoring laser welding. There are however, a few drawbacks concerning cameras 
and Digital Image Processing techniques.  One such drawback is the need for a high 
processing speed because the welding process involves dynamic processes in the 
~10-20 kHz range. An on line monitoring system therefore requires frame rates in the 
order of several thousand frames per second. Such high frame rates lead to data 
transfer rates of several Gb/s and to be able to process data in real time this would 
often require dedicated hardware. 
This need for high frame rates also introduces an illumination problem, because a 
high light intensity is needed to get clear images. Both these drawbacks lead to costly 
and technically sophisticated solutions which are inappropriate to smaller companies 
or low volume production.   
One of the aims of this research was to see how much information about the welding 
process can be gathered using a simpler setup with only three 1D silicon photo diode 
sensors. High speed imaging was then used to correlate this data with the observed 
weld behaviour.  
A commercial supervision system, having three sensors was therefore used: one 
sensor for surface temperature (T) measuring radiation in the [ ]1100 1800 nmλ ∈ −  

interval, one for plasma radiation (P) ( 600 nmλ < ) and one for reflected laser light (R) 
centred around the Nd:YAG laser wavelength of1064 nm.  
Data from the sensors were sampled at frequencies of; 8 kHz (paper II and III) and 20 
kHz (paper 4).  
 

High speed 
Camera 
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Fig 5 Sensor sensitivity 
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5. State-of-the-Art 

 

Paper I. 

State of the art of monitoring and imaging of laser 

welding 
 

R. Olsson
1,2

, P. Norman
1
, H. Engström

1
, A. F. H. Kaplan

1 

 
1Luleå University of Technology, Luleå, Sweden 
2Laser Nova AB, Östersund, Sweden 
 

 
Abstract 
 
Several weld defects such as lack of fusion, blow-out holes, porosity, cracks and 
undercut can occur during laser welding. These defects can be crucial for product 
failure. Due to its complexity, the laser welding process and the origin of its defects 
are only partially understood. Both experimental observation and numerical 
simulation is difficult. Generally accepted knowledge of welding defects together 
with high speed imaging, X-ray transmission, and mathematical modelling have 
generated some understanding. However, experimental observation suffers from 
problems such as the small size of the process zone, its highly dynamic nature and the 
hot environment. In addition, the physical process is too complex for complete 
simulations. 

As well as avoiding welding defects through process understanding, detection is 
of importance in industrial production. Monitoring can be divided into pre-, in- and 
post-process inspection, and between on- and off-line. Off-line post inspection is 
often expensive. Nowadays in-process monitoring is provided by photodiodes or 
cameras, but owing to the lack of fundamental process understanding, it is limited to 
empirical correlations between the appearance of a defect and signal changes. 

The present review provides a survey on laser welding defects, on their 
experimental observation, on their theoretical treatment by modelling or simulation 
and on their detection by process monitoring. Despite wide ranging research efforts, 
the understanding and detection of laser welding defects is still very limited and 
unsatisfactory, and this hinders industrial implementation.  Further research will be 
needed to fully control this critical welding process and in turn to guarantee reliable 
production and safe product function. 
This survey is also considers methods for laser welding supervision from a Digital 
Signal Processing point of view. Both traditional 1-dimensional time or frequency 
domain methods as well more recent statistical and neural net approaches are 
covered. 
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Keywords: laser, welding, monitoring, imaging, defects, Digital Signal Processing 

5.1 Introduction 

 
The present paper provides a survey of literature on laser welding defects, divided 
into; 

• microscopic post-process analysis of defects,  
• mathematical modelling or numerical simulation of defect mechanisms,  
• high speed imaging of the welding process and  
• in-process monitoring of defects – which is the main focus of this work.  

 
The motivation of this literature study is the research project DATLAS - which 

aims at improving commercial process monitoring systems (photodiode based) 
through an improved knowledge of the mechanisms causing the welding defects and 
monitoring signal changes. To succeed with this we have, together with eight 
companies, performed tests on different materials, joints and material thicknesses to 
accomplish a matrix correlating the weld defects to the sensor signal for these 
different setups. However, beside revealing empirical correlation rules, high speed 
imaging, in cooperation with simulation of radiation emissions impinging on the 
sensor, is planned in order to try to predict and explain the context between the 
physical mechanism of the dynamic welding process (in particular the defect origins) 
and dynamic signal changes. The main objective is to improve the capabilities and 
limitations of the defect-signal and of the signal interpretation.  

Fig. 1 illustrates the connection between the laser welding process defects and 
how they can be monitored. The laser technique bubble in Fig. 1 includes; cw/pw, 
keyhole/conduction and laser/hybrid type welding 
 

 
 

Fig. 1: Process-defect correlations and a classification of process 

monitoring/inspection methods  
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The monitoring can be divided into three different types:  
(i) pre-process, arranged ahead of the welding zone like seam tracking 

devices for identifying the edge position; 
(ii) in-process monitoring, by on-line sensors observing the laser welding 

process. This can be done by using different sensors like photodiodes, 
cameras, pyrometers or acoustical sensors;  

(iii) post-process inspection is done after the weld has solidified, either 
during the welding process - with camera sensors or later - by visual 
inspection, microscopy or other inspection or testing methods. 

  
Classification of welding defects 
Some important welding defects [1] and their physical origin are summarised in Tab. 

1.  
 
Table 1: Classification of laser welding defects and explanation of their physical 

cause 

 
Defect Explanation of the physical cause 

Pore 
Void 

Spherical gas bubble trapped by solidifying material 
Sharp edged volume caused by impurities or during 
resolidification 

Blow-out Caused by a near surface pore that opens and forms a crater 
Crack H/C Hot cracks are formed during solidifying in welded zone 

Cold cracks can form after welding, often in HAZ 
Undercut Not enough material in upper weld zone, depends on speed, 

power and gap 
Root dropout Too much molten material in lower weld zone 
Penetration Joint not completely penetrated, depends on oxidation, gas 

protection,     contamination of gas or fluctuation of laser power 
Lack of fusion The laser misses the joint, partially or fully 
Reinforcement Too much material in upper weld zone, fluctuation of gap width 
 

These defects have been under serious investigation because they cause 
considerable problems to companies. The weld has to achieve appropriate mechanical 
properties under load conditions in order to maintain the function of the product. 
Weld failures weaken the material locally and can lead to fracture and catastrophic 
product failure. Therefore standardisation of welds and weld defects is essential, as 
well as their detection. All of the above defects have a three dimensional geometry 
and are therefore visible by the use of either ultrasound testing, X-ray or by 
observation of a cross section of the work-piece. 

Process monitoring can support the detection of defect welds. However as it 
lacks 100% reliability, such detection is only indicative. Some of the defects are easy 
to detect on-line during the process, but others are very difficult. A single reliable 
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sensor would be the most robust setup for the industry, as simple but reliable systems 
are wanted.  

5.2. Results from literature and discussion 

 
This section reviews the state-of-art of microscopic post-process analysis, 
mathematical modelling, process observation and process monitoring of welding 
defects. 

5.2.1 Microscopic post-process analysis of welding defects 

 
To be able to make accurate estimations of the type and level of defects occurring 
during welding, several specimens have to be evaluated. This is done either done by 
destructive mechanical testing (tensile testing, impact testing, fatigue testing, etc.), by 
destructive microscopic examination, or by non-destructive testing using ultrasound 
or X-ray methods to look inside the joint. A typical laser weld surface is shown in 
Fig. 2(a). Fig. 2(b) shows a good weld after it has been polished and etched. Fig. 

2(c), (d) shows a hot crack that has formed during resolidification of the weld. This 
type of crack can severely reduce the strength of the joint.   

Welding defects can become the origin for fracture. Under certain load 
conditions plastic deformation takes place, along with the development of a stress 
field. Sharp corners or edges and constraints can act as stress raisers where very high 
stresses occur locally. This can initiate crack formation at the microstructural level, 
e.g. between grains. From these micro-defects crack propagation takes place. If the 
stress cannot locally relax sufficiently quickly, the fracture will propagate through the 
weld and result in failure. Product design is usually based on defect free welds of 
certain shapes and throat depths. The detection of welding defects is therefore 
essential, as it is a main cause for product failure. 
 

 
 

 
 

 

Fig. 2: (a) weld surface, (b) cross section for a good joint, (c),(d) hot crack  

 

5.2.2 Modelling and simulation of laser welding defects 
 

Mathematical modelling and simulation can raise our understanding of the physical 
welding process. The development of a model can be supported by experimental 
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observation, from which theories can be developed. Matsunawa and Katayama [2] 
have developed an X-ray imaging system together with a high speed camera to 
visualize the plasma and melt pool. With these tools they have explained how some 
aspects of the liquid motion in the melt pool and the plasma affect the welding result, 
e.g. pore formation.  

The laser welding process is too complex to be fully simulated, but successful 
results in simulating parts of the process have been achieved by such researchers as 
Amara [3]. This work involved modelling the keyhole and melt pool movement that 
is affected by the flow of metal vapour in Nd:YAG laser welding. Fabbro [4,5] has 
also simulated the movement of the melt pool, metal vapour plume and keyhole 
during Nd:YAG laser welding. This work is also supported by high speed imaging of 
the weld pool motions. The work presents explanations of the keyhole behaviour and 
how the melt pool and vapour are coupled. Jin [6] modelled the keyhole in 3D by 
taking pictures of the keyhole during welding in glass and used this data to build the 
model. Thus it is clear that progress has been made, but there is still no complete 
prediction or description of the laser welding process, particularly in the context of 
welding defects. A keyhole model with melt flow and droplet ejection calculations 
[3] is shown in Fig. 3. 

 

    (a)      (b)         
 
Fig. 3: (a) Simulation of the keyhole and melt pool flow, (b) explaining droplet 

ejection [3] 

 
A model for explaining pore formation during the keyhole collapse after the end 

of a laser pulse [7] is shown in Fig. 4, explaining that recondensation of the metal 
vapour after pulse termination sucks the surrounding Ar-shielding gas into the 
keyhole which then collapses to include a cavity. During contraction the cavity 
becomes a stable spherical bubble where the surface tension pressure is in balance 
with the trapped Ar gas volume. During resolidification the slowly rising bubble 
becomes frozen into the weld as a pore. 
 

     (a)   
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(b),(c)   
 

Fig. 4: Keyhole collapse creates a bubble after termination of a laser pulse: (a) time 

sequence of X-ray images of the keyhole (side view), (b) contraction predicted by the 

model, (c) calculated mixture of metal vapour (Zn) and shielding gas (Ar) in the 

keyhole/cavity [7] 

 
 Further models enable us to calculate the metallurgical composition in the laser 
weld cross section, for example - the amount of martensite formation leading to hot 
cracking susceptibility for a particular stainless steel [8]. For calculating the local 
fraction of martensite formed, several authors developed dendritic microstructure 
diffusion models. J. F. Gould [9] thermodynamically determined the critical cooling 
rate of martensite for Advanced High Strength Steel (AHSS) using sophisticated 
multi-scale modelling, e.g. at the grain size scale in conjunction with the macro-
continuum scale. Also, the crack formation and propagation during load has been 
modelled to some extent [10],[11].  

5.2.3 High speed imaging of laser welding defects 

 
For observing the process in the simplest way a standard video camera can be used. 
However this has a very limited spatial resolution, giving poor image quality, and a 
limited frame rate and exposure time. This has the consequence that it will not be 
possible to accurately reproduce an image of laser welding. Several companies [12-
15] have therefore developed different cameras that can observe the process. The 
cameras range from being able to reproduce an area of 1280x1024 pixels from 600 to 
5000 frames per second. With lower resolution the frame rate can be as high as 
30000. The price of the equipment is also determined by the dynamic range of the 
camera, which ranges from 8bit to 12bit from these companies. Today (2009) the 
price range is from 25000 USD to 90000 USD.  

 
To observe the melt pool and keyhole clearly, a high brightness illumination is 

required whilst, at the same time, filtering out the broad bright spectrum brightness of 
the weld zone, particularly that of the plasma plume above the keyhole. Such filtering 
also succeeds for hybrid (laser+arc) welding [16], where the even stronger plasma 
radiation disturbs the observation. Such illumination can be achieved by either using 
spectrally narrow lamps, or a laser. As the laser gives a well defined wavelength it is 
simple to use with filters to get a good image quality, although it is possible to 
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achieve very good quality using halogen lamps - as was done by Fabbro et al [4], 
where they look at stabilizing the melt pool with a gas jet, as shown in Fig. 5(a),(b). 
 

 

 

Figure 5: High speed imaging of the top side of the melt pool and keyhole [4]: (a) 

weld pool waves, (b) calmed weld through an additional gas jet directed to the 

keyhole rear side. (c)Example of a set-up for X-ray high speed imaging [7] 

 
As shown in Fig. 4(a), X-ray illumination of the weld zone from the side enables 
high speed imaging of the keyhole and pore formation. A typical experimental set-up 
[7] is shown in Fig. 5(c). By the addition of tracer particles, e.g. carbides with high 
melting point, a contrast can be achieved that permits X-ray tracing of the particle 
trajectories corresponding to the flow inside the melt pool. Tin, having a low melting 
point, quickly dissolves in the weld pool and gives a contrast on the vertical weld 
pool shape during X-ray high speed imaging [2].  

5.2.4 In-process monitoring of laser welding defects 

 
Several monitoring techniques can be applied to laser welding, as shown in Fig. 1. In 
our research work we use in-process monitoring. This method of monitoring is used 
by several researchers because it gives most information about the process in a 
robust, simple manner when looking for defects, thus it also has high industrial 
potential.  
 

State-of-the-art of monitoring 

Table. 2 provides a survey of publications on in-process process monitoring of laser 
welding. 
 
Table 2: Survey on publications on in-process monitoring 
 

(c) 

(b) 

(a) 
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CO2/ cw/ kW

Nd-YAG pw mm

17 C. Bagger DK 1 3  1,5 5 0,5 1,25 2 3 13 25 27 31 +

18 A. Ghasempoor Can 1 3  8 6 5 11 17,18,20,24 27 31-34

19 H. K. Tönshoff D 1, 16 3  6 6 10 12 20, 25 27 29-30

20 H.B. Chen UK 1 3  2 5 6 0,6 1 6 11 25 27 30

21 A. Sun US 1 3  1,1 7,4 6 0,91 1,2 13 25 27 30, 34

22 Y. Kawahito Jpn 2 4  0,05 5 0,1 1 15 24 29,31-32 +

23 B.N. Bad'yanov Rus 2  1,4 6 0,5 13 25 27 29-32

24 P.G. Sanders US 1, 2 3, 4  6 1,6 5,6 14 27 30-31

25 K. Kamimuki Jpn 2  6 6,7 10 14 20,21,22,25 27 31

26 K. Kamimuki Jpn 2  3,5 6 6 10 11, 14 18, 20, 25 27 32, 34

27 D. Travis UK 2, 16  3 6 14 31, 33

28 S. Postma Ned 2  2 6 0,7 11 25 30-31 +

29 J. Petereit D 1, 2  25 26-28  29-31

30 M. Kogel-Hollacher D  11 26-28 29

31 J. Beersiek D 1, 2

32 F. Bardin UK 2  4 2,5 8, 10 14 25 27 29, 31 +

33 M. Doubenskaia F 2 3, 4  2 27 31

34 M. Doubenskaia F 2 4  3 6,7 27 31

35 M. Doubenskaia F 2 3  2 9 0,7 1 13 24 27 31

36 Ph. Bertrand F 2 3  3 6,7 11 27 31

37 V.M. Weerasinghe UK 1 3  2 6 11 27 30,32,34

38 H. Gu Can 1  1,7 6 1 11, 13 25 27 34

39 D.P. Hand UK 2 3  2 6 1 11, 13 25 27 30 +

40 S.-H. Baik Kor 2 4  1 6 1 11 27 31

41 L. Li UK 1 2 6 5 27 34

42 L. Li UK 1 3, 4  1,5 5 5,6,8,9 2 0,22 1,5  11,13,15 25 27 30

43 B. Kessler D 1, 2 3   17,19,24,25 26-28 29-33 +

44 W. Wiesemann D 1, 2   26-28 +

45 J. Shao UK 1, 2   17, 19, 25 26-28  29-34  
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TABLE LEGEND 

Laser type Material Joint     Defect Inspection 

type  

Sensor 

1=CO2  5=  Al-
alloy 

11=Butt 
joint    

17=Blow-out  
26=Pre-Process 

29=CMOS-
Camera 

 

2=Nd:YAG 6=  Low C-
steel 

12=T-
Joint 

18=Void 27=In-
Process 

30=Plasma/ph.diode 

3=Continous 
wave (cw)     

7=  
Stainless 
steel 

13=Lap 
Joint 

19=Crack Hot/C. 28=Post-
Process  

31=T / photodiode 

4=Pulsed 
wave (pw)           

8=  
Titanium 
alloy 

14=Bead 
on plate  

20=Pores  32=Laser 
reflect./p.d. 

16=Hybrid 
welding 
(MIG)  

9=  Zn-
coated 
steel 

15=Spot 
weld 

21=Undercut  33=Voltage / 
current 

     10=Inconel        22=Reinforcement 34=Acoustic 
/ mic. 

 

   23=Root drop-out   
         24=Lack of fusion   

   25=Lack of 
penetration 

   

 

Scope of published experiments 

The experiments in Tab. 2 involve both CO2 and Nd:YAG lasers in cw (continuous 
wave) and pw (pulsed) modes. Materials include mild and standard steel and different 
alloys such as Inconel, aluminium alloys and zinc coated steel. The thicknesses of 
these materials vary from 0,1mm to 10mm. Also the joint types are different, 
including Butt-, T- and Lap-joints, simplified Bead on plate welds and spot welding. 
All the defects shown in Tab. 1 were monitored with on-line sensors such as 
cameras, photodiodes and acoustic emission sensors. 
 

Monitoring techniques 

Photodiode sensor: To be able to observe a process, a sensor is needed. For laser 
welding is a high temperature process with accompanying thermal emissions so 
optical sensors are favoured, in contrast to e.g. machining, which is a vibration 
governed process where acoustic and vibration sensors are preferred.  

Sensor set-ups for laser welding typically consist of an optical fibre collecting 
process emissions and guiding them to photodiodes which converts them into a time 
dependent voltage signal, which will be amplified and digitalized by an A/D-
converter. A DSP or a computer carries out signal analysis, enabling us to create 
threshold rules that distinguish between defect and no defect welding. The thermal 
emissions from the process contain a lot of information about the process dynamics, 
like melt pool motion, which is very difficult to interpret. 
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While cameras are suitable for visualisation and for sophisticated measurement 
of e.g. the melt pool or keyhole dimensions, one or several photodiodes are powerful 
for simpler, industrial robust monitoring of the process. The signal integrates the 
emitted information from the process and this makes it more difficult to interpret, 
requiring empirical correlations with welding defects or a theoretical understanding 
of the process, which is limited today. Many researchers studied this type of sensor 
successfully [17-23]. Bagger and Olsen [17] placed a single photodiode under the 
weld zone. The system successfully controlled the power of the laser to achieve full 
penetration in sheets of variable thicknesses. Using single diodes is also used by 
Sanders [24], but they have gone a step further by using the signal to detect part 
misalignment and surface contamination. Ghasempoor et al [18] used three diodes, 
one for UV, one for IR and one for visible light. By using this setup they have 
detected lack of fusion and also, in some cases, porosity. 

The photodiode can also be combined with other sensing techniques like voltage 
and current signals in hybrid welding. Using this method Tönshoff [19] detected lack 
of fusion and porosity defects. Observation of hybrid welding by photodiodes has 
been carried out by Travis [27], showing that a simple and cheap system can be 
effectively used. Different sensor combinations were tried by Sun [21] who 
demonstrated the use of acoustic sensors for monitoring of both solid based and 
airborne sound emissions. These were combined with UV and IR sensors to detect if 
the weld had penetrated fully or not.  

If access to the process zone is difficult, fibre optics can be employed, later 
splitting the signal to different sensors. This method of measuring has been used by 
Chen [20]. A combination of a variety of sensors provided good insight in the process 
as Bad’yanov [23] has done by using IR, UV and temperature diodes together with a 
pyrometer and a CCD camera. They accomplished a suitable mathematical 
approximation of the signals and consequently lowered the signal computation 
efforts. The photodiode is successfully used in heavy industry when welding thick 
plates [18, 26]. Fig. 6(a) shows the correlation between the photodiode signal and full 
or partial weld penetration, respectively. 

Visualisation of the weld pool is performed by CMOS-cameras, requiring less 
signal interpretation, but involving image evaluation processing, which is more 
straightforward. Several authors studied the setup with photodiode and camera. 
Kawahito et al have come a long way in introducing adaptive control to laser spot 
welding [22]. Several system manufacturers have developed mature systems on the 
market, i.e. Weldwatcher [28], Fraunhofer ILT CPC [29], Precitec [30] and Prometec 
[31]. Single pictures can be isolated from the camera, correlating to different 
situations during welding. This has been studied by Bardin [32], monitoring the 
penetration depth in real time with a photodiode and analysing the pictures from the 
camera to be able to control the penetration depth.  

 
Pyrometer sensor: The process can also be monitored by employing a pyrometer, as 
used by Doubenskaia [33-35] and Bertrand [36]. They use the pyrometer to monitor 
the surface temperature for different setups like laser cladding [33], not for 
monitoring of defects but for optimisation of cladding parameters. In [34] a 
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pyrometer monitors the surface temperature profile during a laser pulse, e.g. to 
control how the melt is formed to avoid thermal decomposition of sensitive materials.  
The pyrometer can also be used to monitor weld quality during welding of zinc 
coated steels. This can be effective as the quality of these welds are connected to the 
joint gap, and the gap gives different temperatures depending on its size [35]. 
Bertrand [36] uses a pyrometer to detect fusion defects and lack of shielding gas, as 
well as variable speed and gap misalignment, see Fig. 6(b). 
 

 

           
 

Fig. 6: (a) Photodiode signal detecting full vs. partial weld penetration [26]; (b) 

pyrometer signal detecting laser weld interruptions [36] 

 
Other sensors: More unusual monitoring techniques have been studied by several 
authors [37-42].  Earlier, Weerasinghe [37] and Gu [38] used acoustic emission 
sensors to monitor the lack of penetration or the penetration depth. Li [41] compared 
two different ways of monitoring with acoustic emission sensors.  

Hand et al [39] looked at the plasma radiation reflected through the cladding 
layer of the optic fibre that guides the laser beam. They successfully detect focus 
errors and shield gas interruption during welding. A similar method of monitoring 
using the fibre delivery system is presented by Baik et al [40], however they use so-
called chromatic filtering to detect power variations and focus shifts. They measured 
the thermal radiation of the melt pool at different wavelengths and then identified 
mathematical correlations to calculate the focus shift and power variation. Another 
way of monitoring the welding process is to measure the plasma charge. Li [41,42] 
measures the charge between the nozzle and the work-piece during keyhole welding, 
enabling the detection of keyhole failure, penetration depth, weld perforation, crater 
formation, weld humping, gap and beam position shift. 

Weld defects, monitoring techniques and ways of controlling the process of 
welding have been reviewed by various authors. Kessler [43] describes pre-, in and 
post-process monitoring different defects and how to effectively monitor them using 
two different methods. Wiesemann [44] took an in-depth look at process monitoring 
for many different laser techniques. He describes what sensors to use with different 
methods. Shao and Yan [45] surveyed on-line monitoring techniques for laser 
welding, classifying the sensors into acoustic, optic and other types. 



 Introduction Rickard Olsson 22 

5.3 Digital Signal processing  

Supervision of, and fault detections in, laser welding is an area of great importance 
within both the academic world and also within manufacturing industry. The main 
parameters of interest are penetration depth, heat affected zone (HAZ), pore and 
crack formation. The measurable parameters are shown and summarized in the 
picture below.  
This section is a survey of how Digital Signal Processing algorithms have been used 
for supervision and fault detection within research and industry. It consists of three 
main sections covering; traditional time and frequency domain methods, neural nets 
and fuzzy logic and statistical modelling methods. 
 

 
Fig 7. Monitorable emissions from laser welding - Luoa [50] 

5.3.1 Time domain analysis 

Regarding signals in time, this survey is limited to measurements of emissions 
from the plasma cloud during CO2 welding and to acoustic emissions from the weld. 

 
One overall problem in welding supervision is the often poor signal to noise 

ratio. In non-stationary processes, many features overlap both in time and frequency 
domain and are therefore are inseparable in the measured signal. Signals from e.g. the 
edges of the work piece can also overlap the desired signal but will not give any 
information about the welding process itself. 

 
a. Emissions from the plasma cloud in CO2 welding. 

A common and straightforward method is to monitor the plasma temperature 
using photodiode sensors, and apply a tolerance band on the signal, based upon 
the history of several successful runs of a particular weld. Defects are then 
detected when the signal goes outside this tolerance band. 
Examples of this approach can be found in e.g. Kessler [43] and Prometec[46]. 
Also Tönsdorff[47] proposes a dynamic threshold for fault detection. Tönsdorff 
also describes the approach of identifying process parameters as a feature vector, 
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clustering these feature vectors and define boundaries between them as a way to 
separate defect welds from non defect welds. 

 

b. Acoustic emissions from the workpiece. 
Several authors have implemented feature extraction algorithms using e.g. 
matched filter approaches, or wavelet analysis of the received signal.  
 
One way to accomplish this feature extraction is to resolve the signal using 

wavelet transforms. Wavelets are orthogonal sets of time scaled and time shifted 
waveforms. These kinds of transforms have an advantage in being able to localize 
events in the time domain as opposed to Fourier or Laplace transforms. 

 
Kercel et.al. [48] investigated several methods to detect weld defects in tailored 

blanks welded with both Nd:YAG and CO2 lasers. In their work they used a separate 
pulsed laser to induce acoustic waves downstream the weld in the work piece (in this 
case tailored blanks) and the goal was to identify signal patterns for good welds and 
defective welds in the reflected signal. 

  
 

  
Fig 8 Laser induced acoustic waves. From [48] 

  
The goal here was to separate the desired signal from the noise and irrelevant signals 
and still maintain the desired information. 
As an initial technique to see if this approach would be fruitful, Kercel first resolved 
the detected signal into a set of four distinct Gabor wavelets plus additive Gaussian 
noise (without time scaling).  
(Gabor wavelets can be seen as damped sinuses) 
Another reason for choosing a fixed set of Gabor kernel functions is that this 
approach reduces the computational burden significantly compared to a full 
time/frequency wavelet analysis. 

 
Kercel found this approach promising and later used a set of 960 Daubechies 
wavelets [49] for the final tests and found that the first 8 coefficients normally 
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contained about 96-97% of the signal energy (bias) and the 900 smallest coefficients 
contained mainly noise and that information about pinhole defects could be found in 
the region between these. 

   

5.3.2 Frequency domain analysis 

In this section we cover both traditional frequency analysis (like FFTs) and also 
methods better suited for analysis in both time and frequency domain e.g. wavelet 
analysis, even though the name frequency normally refers to sinusoidal signals and 
wavelets are neither necessary nor normally sinusoidal in shape. 

A good introduction to the use of wavelets in laser welding supervision can be 
found in Zeng et.al [52]. Zeng used wavelet techniques to decompose the signal into 
different sub-bands before training a neural net. 

5.3.3 CO2 welding using audible signals 

Both Hongping and Duley [53] and Zeng [52] have found that the spectrum 
from emitted sound contains information in the 10Hz - 20 kHz range during welding 
of mild steel. 

They used an intensity modulated beam and found that good welds showed more 
discrete spectral components with harmonics of the modulation frequency compared 
to defective welds which gave a more smeared spectra. The same tendency could also 
be seen in spectra from welding with unmodulated beams, i.e. a more discrete 
spectrum from good welds. These oscillations were explained as coming from the 
material itself. Is has also been found that the spectra from keyhole welding contains 
more high frequency components than   conduction welding. Oscillations in the range 
of several hundreds kHz was found originating from the keyhole itself – which can be 
seen as acting like an “organ-pipe”. 

Hongping [51] also showed that if the emitted acoustic spectra from a CO2 weld 
were divided into 20 distinct bands of 1 kHz each, it was possible to discriminate 
between overheated, fully penetrated and partially penetrated welds by using Fisher 
discrimination analysis [64] 

 

5.3.4 Neural nets and fuzzy logic 

Studies of the feasibility of neural nets, as tools for fault detection and classification, 
have been carried out by several authors like e.g. Bollig et al [55] and Jeng et.al. [56].  
In general the nets used have been of standard MLP (Multi Layer Perception) types 
trained by back propagation (BP) algorithms. 
Luoa [50] decomposed the audio signal into 7 wavelet components where these 
components were used to train both a three-layer net as well as a simpler single- layer 
net, both trained with BP. 

The conclusion was that a properly chosen and trained net could discriminate 
between a good weld and an error like a gap, but also that the task of choosing the 
proper net type and training algorithms and sets is an important but tedious task 
(which is a known fact in neural net theory). 
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Kwon et. al. [57] managed to discriminate between good and defective CO2 welds 
with a success rate of 93% using a three-layer MPL.  
Sun et.al. [58] used the FFTs from audible sound (AE) emissions, Ultra violet (UV) 
and audible sound (AS) from CO2 weldings as inputs for feature extraction. Four 
methods were investigated and compared: 

• Singular Value Decomposition (SVD).  
• Class Mean Scatter (CMS) 
• Decision fusion with SVD 
• Decision fusion with CMS 
For PCA and SVD see e.g.  Oja [59] or Fausett [60]. A good introduction to 

neural nets can be found in Haykin [61] 
  

5.3.5 Statistical signal processing methods 

In Statistical Signal Processing the received signal is modelled as an output from a 
system where some of the systems state variables can be physical properties, hidden 
factors, measurable or immeasurable quantities. Within this field fall methods like 
Kalman filtering, change detection, optimal filtering, (Maximum Marginalized 
Likelihood) MML and (Maximum Generalized Likelihood) MGL estimation. 

System identification 

Bollig et. al. [55] have shown a way to build a ‘one step ahead’ predictor for 
estimating penetration depth. 
For this they modelled the welding process as a NARX-model (Non-linear Auto 
Regressive, eXogenous input) using speed v and laser power p as inputs, the plasma 
intensity I as the controlled variable together forming a regression vector φ and 
finally penetrations depth D as an immeasurable state variable. The regression 
vectors from time i were used to train a MLP with 10-neurons in the hidden layer.  
Later they also implemented a 25 step ahead predictor. 

 
Kaierle et.al. [62] modelled the welding process as a dynamic system using system 
identification methods to control weld depth using input power as the controlled 
variable and the front of the weld pools as the observed variable. 

ICA and BSS methods for source separation. 

Not much work has been carried out in this area, except for one interesting approach 
made by the colour research group at Joensuu University regarding the separation and 
identification of independent signal components from colour spectra measurements 
from CO2 welding using Independent Component Analysis (ICA) [59] and Principal 
Component Analysis (PCA) [61].  

Change detection 

The name change detection in this case refers to methods for identifying a change in 
for instance the mean or variance of a signal and the most probable time of event for 
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this change. A good introduction to this field can be found in Gustafsson [63] and 
Kay [64]. 
In this paper we are looking at attempts to detect statistical changes like a change in 
the mean or variance in signals normally heavily disturbed by noise, mostly of which 
is of Gaussian or Poisson kind. 
 
The references for this section are listed in Section 9 
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5.4 Conclusions 

 
The detection or suppression of laser welding defects is essential for successful 
welding applications. A series of different welding defects can be distinguished. 
Their physical origin is often only partially understood. According to the survey 
presented here, high speed imaging and mathematical modelling are powerful 
methods for improved understanding. Nevertheless, as a result of the complexity of 
the process, only parts of the underlying mechanisms have so far been revealed. Also 
mathematical modelling of the resulting fracture mechanisms has been conducted.  

In-process monitoring of electromagnetic or acoustic emissions by different 
sensors enables access to information on the process dynamics related to the 
generation of welding defects. Cameras provide images of the top weld pool and 
keyhole geometry, while photodiode sensors and pyrometers provide more abstract, 
but industrially more powerful monitoring. Today mainly empirical correlations 
between sensor signals and defects have led to suitable industrial applications, and 
there is still a strong need for better understanding of the process-signal correlation 
and in turn for more systematic monitoring.  

 
Regarding the signal processing part: The general impression is that in the 

articles little is said about why a particular method is chosen and what the goal was 
and how well the method chosen fulfilled these goals.  A suggestion for future 
research is to focus on the statistics of the measured signals and after that, system 
identification or neural nets can be more properly trained from the start.  
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6. Summary of the papers 

 
In this section the abstract and conclusions of the six papers of the thesis are 
presented. 
 

Paper I 

 

Title 
State of the art of monitoring and imaging of laser welding defects. 
 
Abstract 
Several weld defects such as lack of fusion, blow-out holes, porosity, cracks and 
undercut can occur during laser welding. These defects can be crucial for product 
failure. Due to its complexity, the laser welding process and the origin of its defects 
are only partially understood. Both experimental observation and numerical 
simulation is difficult. Generally accepted knowledge of welding defects together 
with high speed imaging, X-ray transmission, and mathematical modelling have 
generated some understanding. However, experimental observation suffers from 
problems such as the small size of the process zone, its highly dynamic nature and the 
hot environment. In addition, the physical process is too complex for complete 
simulations. 

As well as avoiding welding defects through process understanding, detection is 
of importance in industrial production. Monitoring can be divided into pre-, in- and 
post-process inspection, and between on- and off-line. Off-line post inspection is 
often expensive. Nowadays in-process monitoring is provided by photodiodes or 
cameras, but owing to the lack of fundamental process understanding, it is limited to 
empirical correlations between the appearance of a defect and signal changes. 

The present review provides a survey on laser welding defects, on their 
experimental observation, on their theoretical treatment by modelling or simulation 
and on their detection by process monitoring. Despite wide ranging research efforts, 
the understanding and detection of laser welding defects is still very limited and 
unsatisfactory, and this hinders industrial implementation.  Further research will be 
needed to fully control this critical welding process and in turn to guarantee reliable 
production and safe product function. 
This survey is also considers methods for laser welding supervision from a Digital 
Signal Processing point of view. Both traditional 1-dimensional time or frequency 
domain methods as well more recent statistical and neural net approaches are 
covered. 
 
Conclusions 
The detection or suppression of laser welding defects is essential for successful 
welding applications. A series of different welding defects can be distinguished. 
Their physical origin is often only partially understood. According to the survey 
presented here, high speed imaging and mathematical modelling are powerful 
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methods for improved understanding. Nevertheless, as a result of the complexity of 
the process, only parts of the underlying mechanisms have so far been revealed. Also 
mathematical modelling of the resulting fracture mechanisms has been conducted.  

In-process monitoring of electromagnetic or acoustic emissions by different 
sensors enables access to information on the process dynamics related to the 
generation of welding defects. Cameras provide images of the top weld pool and 
keyhole geometry, while photodiode sensors and pyrometers provide more abstract, 
but industrially more powerful monitoring. Today mainly empirical correlations 
between sensor signals and defects have led to suitable industrial applications, and 
there is still a strong need for better understanding of the process-signal correlation 
and in turn for more systematic monitoring.  

 
Regarding the signal processing part: The general impression is that in the articles 
little is said about why a particular method is chosen and what the goal was and how 
well the method chosen fulfilled these goals.  A suggestion for future research is to 
focus on the statistics of the measured signals and after that, system identification or 
neural nets can be more properly trained from the start. 
 
 

Paper II 

 

Title 
Advances in pulsed laser weld monitoring by the statistical analysis of reflected light. 

Abstract 

This paper describes two new techniques for monitoring the quality of laser welds by 
statistical analysis of the reflected light signal from the weld surface. The first 
technique involves an algorithm which analyses the variance of the peak values of the 
reflected signal as a measure of the stability of the surface during pulsed Nd:YAG 
laser welding in the heat conduction mode. Kalman filtering is used to separate a 
useful signal from the background noise. A good correlation between weld disruption 
and signal fluctuation has been identified. This technique could be used in tandem 
with the present practice of simply using the peak values of the reflected (or emitted) 
light as an indicator of weld quality. The second technique investigated involves an 
assessment of the temporal shape of the power distribution of individual reflected 
pulses in comparison with an average of the results from a high quality weld. Once 
again, a high correlation between a poor signal match and inferior quality welding 
was discovered, which may pave the way towards a new generation of optical weld 
monitoring devices. 
 
Conclusions 
Kalman filtering is a superior method to cut-off filtering for extracting data from 
noisy signals. 
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Signal variance data can be used in conjunction with raw signal data to improve the 
sensitivity and robustness of laser welding monitoring devices. 
Reflected pulse shape comparisons involving polynomial best fits are a very 
promising tool for on-line process monitoring for pulsed laser welding. 
 
 

Paper III 

 

Title 
Challenges to the Interpretation of the Electromagnetic Feedback from Laser 
Welding 
 

Abstract 

This paper considers the point that it is not possible to interpret individual weld 
perturbations from the raw electromagnetic feedback collected from laser weld zones. 
The presentation of electromagnetic data as a 3D cloud is presented as a new, useful 
tool in the analysis of this feedback. For example, it is shown that there is a very low 
correlation between the plasma or thermal signals and the reflected light signal from 
the weld zone, and that a strong correlation exists between the plasma and thermal 
signals. It is also demonstrated that data points from a weld perturbation form a 
different 3D cluster to those from the stable welding process. A strategy for future on 
line data analysis is presented in the use of a suitably shaped data cloud envelope. 
The rates of data fit to the various segments of such an envelope could be correlated 
with specific weld anomalies.     
 

Conclusions 
 
 

• It is not possible to interpret individual weld perturbations from the raw 
electromagnetic data collected from laser weld zones. 

 
• The presentation of electromagnetic data as a 3D cloud provides a new, useful 

tool in the analysis of feedback from laser weld zones. 
 

• There is a very low correlation between the plasma or thermal signals and the 
reflected light signal from the weld zone. 

 
• There is a strong correlation between the plasma and thermal signals from the 

weld zone. 
 

• Data points from a weld perturbation (blow out) form a different 3D cluster to 
those from the stable welding process. 
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• A strategy for future on line data analysis is the use of a suitable data cloud 
envelope or multi-layered envelopes. The rates of data fit to the various 
segments of such envelopes could be correlated with specific weld anomalies.     

 

 

 

 

Paper IV 

 

Title 
Ripple formation on the surface of laser spot welds 
 

Abstract 
During laser spot welding of titanium surface ripples were found to originate from 
melt pool oscillations. The combination of oscillation in the melt pool and a fast 
solidification froze the oscillations as ripples on the surface. The solution to the 
problem was to delay the solidification until the oscillations were dampened out. By 
pulse shaping, ripple free weld spots were created.  
Conclusions 

 
In the latter stages of the laser-melt interaction during pulsed laser spot welding, the 
central portion of the weld is depressed as a result of localised boiling which exerts a 
pressure on the melt. As the laser pulse ends, the boiling ceases, and the pressure is 
removed. The melt then begins to return to its equilibrium geometry under the 
influence of surface tension, but the vertical momentum of the melt carries it past this 
equilibrium position. The surface then experiences damped simple harmonic motion. 
Ripples on the surface of the solid welds are created by rapid solidification of a 
surface which was undergoing damped simple harmonic motion. By delaying the 
solidification until the harmonic motion is completely dampened, surface ripples can 
be avoided. 
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7. Conclusions 

This work has shown that it is possible by to detect deviations from stable weld 
behaviour by monitoring e.g. reflected laser light from the process, and in certain 
cases discriminate between different defects like gaps and unstable welds using a 
simple 1D-sensor and DSP-algorithms. 
The use of high speed imaging has on one hand led to deeper insight into the 
dynamics and behaviour of welding processes and on the other hand where this 
imaging has been used in conjunction with simultaneous measurements and DSP-
algorithms made it possible to directly couple actual weld behaviour to patterns in the 
received signals.   
 
 

8. Future work 

Interdisciplinary collaboration between Laser Physics, Metallurgy and Digital Signal 
Processing has shown itself to be prosperous in this work, so continuing this kind of 
cooperation is recommended to move the knowledge base and the possibilities 
forward towards more robust and intelligent supervision techniques. 
Also a thorough investigation on different metals of the algorithms presented here 
would be of great interest to test the validity of the presented, in conjunction with 
using different laser sources and wavelengths. 
For a more complete understanding of the factors determining weld quality and the 
interaction between weld pool behaviour, radiated optical emissions and signal shape, 
more work on the mathematical modelling of the laser to metal interaction and 
radiation to sensor/signal behaviour is needed.  
Other factors that have showed good potential are to incorporate analysis of the 
emitted weldpool spectrum into supervision algorithms and to use e.g. PCA or 
multidimensional wavelets to decompose the weldpool surface into distinct 
orthogonal sub functions. 
In the DSP field there are also numerous approaches of interest that can be applied.  
Because the received signal form a sensor often is disturbed by, or mixed  with, 
information from other signal sources, a setup a multisensor environment with 
several sensors mounted physically apart enabling the use of ICA (Independent 
Component Analysis), BSS (Blind Source Separation) would be of interest. Also to 
continue the work already done by several groups to apply various Neural Networks 
and Fuzzy logic methods is a way forward. 
Finally, of course one must mention Image processing where lots of information 
about the process is possible to extract. 
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Abstract 

This paper describes two new techniques for monitoring the quality of 
laser welds by statistical analysis of the reflected light signal from the 
weld surface. The first technique involves an algorithm which analyses 
the variance of the peak values of the reflected signal as a measure of the 
stability of the surface during pulsed Nd:YAG laser welding in the heat 
conduction mode. Kalman filtering is used to separate a useful signal 
from the background noise. A good correlation between weld disruption 
and signal fluctuation has been identified. This technique could be used 
in tandem with the present practice of simply using the peak values of 
the reflected (or emitted) light as an indicator of weld quality. The 
second technique investigated involves an assessment of the temporal 
shape of the power distribution of individual reflected pulses in 
comparison with an average of the results from a high quality weld. 
Once again, a high correlation between a poor signal match and inferior 
quality welding was discovered, which may pave the way towards a new 
generation of optical weld monitoring devices.

1. Introduction 

Several workers have attempted to use the light emitted and reflected from the laser 
welding process to predict the quality of the weld produced e.g. refs [1–4]. However, 
feedback systems in this field are always hampered by the high signal to noise ratios 
involved. Informative electromagnetic signals from the weld zone often overlap, both 
spatially and in their frequency range, with high levels of noise which carries no 
useful information. A thorough survey of commonly used monitoring methods can be 
found in [5].  

The simplest and most common method of weld monitoring is to apply a tolerance 
band to a chosen electromagnetic signal (e.g. the plasma temperature or the reflected 
laser light from the weld zone), based on historic data of a repeated welding process. 
Defects are then associated with the signals which exceed this tolerance band. This 
approach is commonly applied to the monitoring of CO2 laser welding in commercial 
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devices [1,2] and in research [3]. Generally, a dynamic threshold for fault detection, 
which adjusts its value to gradual changes in signal level is employed, see fig. 1.  In 
this paper the reflected signal from the weld pool to the sensor will be referred to as 
the ‘R’signal.  Kaierle [4] describes another approach; the monitored values from 
different parameters are grouped together as vectors and these ‘feature vectors’ are 
then allocated threshold values. 

  

 
 

 

Figure 1. The usual method of weld monitoring would involve a threshold value for the observed signal. 

Dynamic thresholds, which self-adjust with time (e.g. solid line) are often more 
effective than static thresholds (e.g. dotted line). 

However, in certain cases, the simple application of a tolerance band may not supply 
sufficient feedback about disruptions to the process. In this paper two different 
approaches to processing the data collected from a laser welding process are 
investigated.  In the first, the variance of the peak values of the reflected light gives 
an extra dimension to the feedback from the signal received from the weld pool, and 
could be used in tandem with existing techniques to improve welding process control. 
The second technique involves the comparison of the temporal shape of the power 
profile of reflected pulses compared to an average ‘high quality weld’ reflected pulse.  
The results show great promise for the improvement of the performance of the next 
generation of laser welding monitors. 

These two new statistical analysis techniques will now be discussed separately.  

 

2. Analysis of the variance of the peak values of reflected pulses. 

2.1 Description of the technique 

For this research a new strategy was employed to overcome the problems associated 
with the high signal to noise ratio and at the same time introduce a computationally 
moderate approach enabling real time implementation. Rather than simply analysing 
the electromagnetic signals coming from the weld pool, the variance of those signals 
was analysed as follows; 
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A) Reflection data was collected from the weld zone using a pin diode at a sampling 
rate of 8 kHz this gave the raw data of the type shown in figure 2. The data shown 
here represents the power signal from one laser pulse reflected from the weld zone. A 
Kalman filter [6-9] was used to remove a lot of the noise from the signal, see fig. 3. 

There are two reasons for the choice of Kalman filtering in preference to low pass 
filtering;  

Kalman filters are the optimal linear estimator of a signal of a varying process whose 
measurements are disturbed by noise.  

The signal from the reflected light exhibits such sharp peaks and edges it contains a 
considerable proportion of high frequency information. LP-filtering tends to smooth 
the peaks and thus disturb the measured signal shape.  

 
 
 

 

Figure 2. An example of the raw reflection data collected from a weld zone.  

 

 
Figure 3. An example of Kalman filtered (noise reduced) reflection data collected 
from a weld zone.  
 
B) The raw data was transformed by the CUSUM algorithm (see appendix 2), into 
simple peak power data – as shown in figure 4. 
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Figure 4. The raw data was simplified into peak values only. 

 
C) The variance between the data peaks was calculated as each new peak (figure 4) 
was plotted. This gave clear information about perturbations in the welding process – 
see figure 5. 

 
 

 

Figure 5. The variance of the peak values presented in figure 4. 

 

The variance values of the type shown in figure 5 give valuable information about the 
stability of the process and this principle could be used in the design of the next 
generation of laser welding monitoring systems.  

 

2.2 Experimental procedure 

Three welds were prepared. In each case sheets of 0.14mm thick Inconel were 
mounted side by side and welded with an edge joint. For the first two welds the 
geometrical arrangement was that shown in figure 6 – the laser was aligned along the 
centre of the join line.  
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In the case of the first weld the welding parameters were set to give a stable welding 
process and a high quality weld – throughout this paper this will be referred to as the 
‘stable’ weld.  

The second weld was carried out under process parameters chosen to produce an 
unstable welding process and this weld will henceforth be referred to as the ‘unstable’ 
weld.  

In order to test the statistical tools being used a third weld was produced which 
involved two faults in the weld geometry; a. The weld line was set at an angle to the 
interface of the two sheets and started on the edge of only one sheet and b. the two 
sheets were clamped together for the initial part of the weld but became gradually 
separated as the weld progressed. This complex geometry ensured that the weld 
would begin with one fault (misalignment to one side of the intended joint) and then 
become a stable, acceptable weld for a short time before ending with a different fault 
(weld failure through poor workpiece fit-up). This weld arrangement is shown in 
figure 7 and the resulting weld will be referred to as the ‘faulty’ weld during the 
course of this paper. The process parameters for all three welds are presented in table 
1.   

 

 

Figure 6 A schematic of the edge welding geometry for the ‘stable’ and ‘unstable’ 
welds. 
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Figure 7 A schematic of the edge welding geometry for the ‘faulty’ weld. The weld begins on one workpiece 

only and then recovers its correct position before failing as a result of the gap 
between the workpieces. 

 

Table 1 The process parameters for the three welds. 

Weld 
name 

Average  
Power 
(W) 

Pulse 
Frequency 
(Hz) 

Pulse  
Length 
(ms) 

Pulse peak 
Energy (J) 

Welding 
Speed 
(m/min) 

Stable 70 50 1ms 1.6 0.3 
Unstable 70 50 1ms 1.6 0.2 
Faulty 70 50 1ms 1.6 0.3 

 

The weld pool was illuminated by a Cavitar Cavilux Smart illumination system using 
a wavelength of 809nm and a peak power of several hundred Watts, in 1us pulses 
synchronized with the high speed camera. The process was filmed at 4000 fps with 
the Motion Pro X3 Camera.   

Measurement data was converted into MatLab format for off line analysis and 
algorithm development. A real time implementation was made in LabView for 
simultaneous presentation of video and measurement data.  

The sensor system consisted of Precitec LWM, Sensors for Plasma (P), Temperature 
(T) and Reflection (R) – with a sampling rate of 8 kHz. 

 

3 Results and Discussion 

Figure 8 is taken from the high speed imaging of the welding process. The photo 
shows the production of the stable, high quality weld. Figure 9 presents the reflection 
data collected during the production of this weld, together with a graph showing the 
variance of the peak values of the reflection data. With a laser pulse frequency of 
50Hz and a sampling rate of 8 kHz. The pulses are very clear and well defined – and 
these reflection data graphs can be discussed with reference to either the pulse 
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number or the sample number. It is clear from figure 9 that there is only a minor 
amount of variance in the reflection signal peaks in the case of this stable welding 
process 

 

 

Figure 8 A view of the stable weld 

 

 

Figure 9. Data and Matlab calculations for the stable weld; 9a. Reflection data, 9b. 
Variance of reflection data peak amplitudes.  

Figures 10 and 11 present similar data as figures 8 and 9 but, in this case for the 
unstable weld. In these results it is clear that the peak variance plot, figure 11b, 
involves larger values – indicating that the reflection signal, and the welding process 
which produced it, are unstable. The initial peak of the variance graph needs some 
explanation, as it is simply the result of the unusually high reflection signal from the 
first laser pulse. This pulse, see fig 11a, is larger than the others because the first 
pulse is the only one to encounter metal which is cold and therefore highly reflective. 
Subsequent laser pulses interact with liquid or recently solidified melt which has a 
lower reflectivity. The variance signal is calculated on a moving six point average 
and so no variance signal is provided until six pulses have been monitored. This first 
variance value is high simply because it includes the unusually energetic first pulse 
reflection.    

In general however, the fluctuations in the reflected signal are a function of the 
fluctuations in the shape of the reflecting surface of the weld. The changes in melt 
surface geometry shown in the snapshots of figure 10 tend to give a reduced 
reflection signal but, occasionally, the disturbed melt surface provides a more 
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effective reflector than a stable weld (as happened here in the third pulse from the end 
of the measurement). In some cases the surface of a poor quality weld might result in 
repeated high reflection values. In this situation a monitoring device based on a 
simple threshold might be misled into providing feedback that the process was 
continuing successfully.  It is for this reason that a system designed around the 
variance of the signals might give additional, useful feedback.  

 

Figure 10. An unstable weld after: (a) 0.167s Sample #1000; (b) 0.300s Sample 
#2000; (c) 0.467s Sample #3000; (d) 0.603s Sample #4800 

 

 

Figure 11.Data and Matlab calculations for an unstable weld; (a) Reflection data, (b) 
Variance of reflection data peak amplitudes.  
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Figure 12 is a snapshot taken from the high speed video of the production of the 
faulty weld just as the weld begins to encounter the gap between the two workpieces. 
Figure 13 gives the variance of the peak reflection values. 

 

 

Figure 12  The start of the ‘faulty’ weld. 

 

Figure 13. Data and Matlab calculations for the ‘faulty’ weld; (a) Reflection data, (b) 
Variance of reflection data peak amplitudes.  

 

Figure 13 tells the complex story of the reflection data from the faulty weld which 
can be interpreted in the following way; 

a. The first reflection, off the cold metal, has a high peak value. 

b. The following dozen or so pulse reflections indicate a stable welding process with 
a much reduced peak value compared to the stable weld. This reduction in signal is 
due to the different geometry of the weld surface which is concentrated on one side of 
the join – one workpiece is experiencing only partial melting and thus the reflecting 
surface of the weld is reduced compared with the stable weld. 

c. The reflected signal rises as the weld gradually involves the full width of both 
workpieces – in this zone the weld produced is similar to the stable weld. 

d. From about sample 4000 the signal becomes very unstable as the weld geometry 
changes to accommodate the widening of the gap between the two workpieces. 
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e. Between samples 5000 and 6000 the reflected signal decreases to a very low value 
and remains low because the laser beam is no longer welding – it is simply passing 
into the gap between the two workpieces. 

These results show that peak variance analysis can give information which is difficult 
to interpret in certain complex situations. However, in most cases welds can be 
classified as either stable or unstable, and it is suggested that peak variance analysis 
be included in the design of future weld monitoring equipment to achieve a more 
robust and sensitive feedback system.  

 

4. Analysis of the temporal shape of the reflected pulses. 

The following analysis utilises the same welds and data sets as the previous section 
but analyses the temporal power profile of the individual pulses rather than their peak 
values. Figures 14 – 16 present a new view of the original reflected pulses data set for 
the ‘good’, ‘unstable’ and ‘diverging  workpiece’ welds. In each case the power 
profiles of the reflected pulses are presented using the x-(time) and z-(power) axes. 
The y-axis used to separate the pulses and display them as a sequence. It is clear from 
this basic data set that there are large differences in the repeatability of the pulse 
profiles for the stable and unstable welds.  

  

 

Figure 14. The basic data set for the ‘good’ weld. The power history for each 
reflected pulse is shown and the pulses are stacked next to each other as a sequence. 
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Figure 15. The basic data set for the ‘unstable’ weld. The power history for each 
reflected pulse is shown and the pulses are stacked next to each other as a sequence. 

 
 
 

 

Figure 16. The basic data set for the ‘faulty’ weld. The power history for each 
reflected pulse is shown and the pulses are stacked next to each other as a sequence. 

In order to establish a method of qualitative comparison between the data sets 
presented in figures 14 – 16 it is convenient to reduce the quantitative differences 
between the peak profiles by normalizing them all to the same maximum height. 
Comparisons between and within data sets can then be carried out without the extra 
complication of scaling factors. Figure 17 presents the same information as figure 14 
with all the peaks normalised for height in this way.  
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Figure 17. The basic data set for the stable weld – as in figure 14, but with all the 
pulses given the same maximum height. 

With the data in this ‘normalised height’ form it is a simple matter to calculate the 
curve fit of a fourth order polynomial to the average pulse shape. This gives us a 
mathematical description of the average power profile of a reflected pulse from a 
satisfactory welding process. This polynomial fit is presented in figure 18.  

 

 

Figure 18.The polynomial fit of the average values of the temporal power profile of a 
reflected pulse from a satisfactory welding process.  

 

If the polynomial curve in Fig 17 is denoted p(t)  then 
2 3 4

0 1 2 3 4( )p t a a t a t a t a t= + + + +  

In the case of these results; 
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3 4
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3 4

0.4042, 0.6815, 0.3012,

0.0404, 0.0021

I.e

( ) 0.4042 0.6815 0.3012

0.0404 0.0021

a a a

a a

p t t t

t t

= = − =

= − =

= + +

− +

 

We can now compare the polynomial best fit for every pulse from each of our three 
welding situations to this mathematical template for a ‘good’ weld reflected pulse by 
looking at the values of the coefficients a1, a2, a3, and a4. Figures 19 and 20 present 
the height normalised results for the unstable and faulty welds, and figure 20 
compares the values of the polynomial coefficients for all the pulses with the 
template in figure 18. 

 

Figure 19. The basic data set for the ‘unstable’ weld – as in figure 15, but with all the 
pulses given the same maximum height. 

 

Figure 20. The basic data set for the ‘faulty’ weld – as in figure 16, but with all the 
pulses given  

the same maximum height. 
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Figure 21 gives the expected result that the individual pulses have similar coefficients 
to the average pulse until the welding process ends after 21 pulses. Between pulses 21 
and 30 the movement of the workpiece had stopped so the final pulses were fired into 
molten material  

 

 

 

Figure 21 The values of the polynomial coefficients a1, a2, a3, and a4 for each pulse of 
the ‘stable’ weld.  

Figure 22 shows that the instability of this weld is very clearly demonstrated in the 
variance of the polynomial coefficients and by the difference between the values 
involved and those of the stable weld average. 
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Figure 22 The values of the polynomial coefficients a1, a2, a3, and a4 for each pulse of 
the ‘unstable’ weld 

Figure 23 The values of the polynomial coefficients a1, a2, a3, and a4 for each pulse of 
the ‘faulty’ weld 

The polynomial coefficients in figure 23 reveal the complex history of the faulty weld 
much more clearly than the peak variance method discussed earlier in this paper. Put 
simply, it can be seen that the weld goes from ’stable – unsatisfactory’ to 
’satisfactory’ to ’unstable – unsatisfactory’, which is an accurate description of the 
situation. 

Figures 21–23 make it clear that this polynomial comparison – which could be easily 
incorporated into a computer based, on line monitoring system, has the capacity to 
identify process anomalies even in complex situations. The authors recommend that 
this avenue be investigated by future developers of laser processing monitoring 
equipment.  

 

5. Conclusions 

Kalman filtering is a superior method to cut-off filtering for extracting data from 
noisy signals. 

Signal variance data can be used in conjunction with raw signal data to improve the 
sensitivity and robustness of laser welding monitoring devices. 

Reflected pulse shape comparisons involving polynomial best fits are a very 
promising tool for on-line process monitoring for pulsed laser welding.  
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Appendix 1. Kalman filtering 

The Kalman filter is named after R.E. Kalman who, in 1960, presented a paper [9] 
describing a recursive solution to the problem of discrete data linear filtering of a 
time varying process with measurements disturbed by noise. 

The Kalman filter is an algorithm rather than an actual filter. Mathematically it is the 
optimal solution for the linear-quadratic problem i.e. estimating a systems “state” 
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whether it may be observable or not using measurement data and minimizing the 
quadratic error of estimation error covariance.  

The filter has found a widespread use from telecommunication to image processing, 
control theory and military applications such as target tracking etc.  A good 
introduction to the subject can be found in [7] and a more thorough derivation in [6]. 
MatLab applications are treated in [8].  

The observed reflection signal y(t) in our experiment was modelled as a sum of the 
reflection signal s(t)  (reflected laser light) plus white noise n(t) with covariance R. 
I.e. the received signal can be written as  

    

( ) ( ) ( )y t s t n t= +         (1) 

  

The received signal was modelled in discrete time as an nth order Auto Regressive 
(AR)-process [6] i.e.: 

 

1 1 2 2 1k k k n k ny a y a y a y− − − −= + +++       (2) 

plus a piecewise linear trend between consecutive samples represented at time instant 
k as b1+b2k. When combining these two into one we can write the received signal yk 

as: 
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      (3) 

 

 

i.e. in matrix formulation: k kY CX=       (4) 

Using arcov off line in MatLab to estimate the AR coefficients identified that a model 
order of 2 was sufficient. 

I.e. the process can be modelled with two coefficients as a first order degree 
polynomial  
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    1 1 2 2k k ky a y a y− −= +    (5) 

1 2 and b b  could now be estimated for each iteration and subtracted from the measured 

values k
y . 

 

Using Kalman formulation we had: 

 

The internal state of the process:   X   (6) 

The state transition matrix A:  
0

0 0 0

.. ..

0 .. 1 1

0 .. 0 1

nxn

A I
 
 
 
 

=  
 
 
 
 

  (7) 

 

Kalman gain    Kk   (8)  

 

Covariance of the estimation error: ˆ
k k

y y−  Pk   (9) 

  

Covariance of the measurement noise: R  (10) 

 

The Kalman equations are given in their iterative form as follows; 

(11) 

(12) 

(13) 

(14) 

where yk is the observed (measured value) and ˆ
ky  is the estimated value (used in later 

calculations). 

 

Appendix 2. The CUSUM algorithm 

To detect the leading and trailing edges of the reflected laser light signal the 
CUmulative SUM (CUSUM) - algorithm has been used. The CUSUM algorithm is 
defined as follows [6]: 

Assume that we want to detect a change in mean of magnitude.  of the signal ( ) s kν  

1

/ ( )
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We first form an objective function ( )g k :    

( ) max( ( 1) ( ) ,0);alarm if ( )g k g k s k g k hν= − + − >   (15) 

where the alarm level  h is a design parameter and  is an offsetν .To detect negative 
changes we simply use min instead and negate both  and h ν . If we now 
use ˆ  as ( ) thenky s k , when the alarm is triggered, the actual reflection value ˆ

ky  ˆ
ky is picked 

from the most probable time of change into ( )peak k . As a rule of thumb [6] the value 
is taken at the point 

 / (0.5 )k h υ− −     (16) 

i.e. 

 ˆ( ) ( / (0.5 ))peak k y k h υ= − −    (17) 

and remains constant until the next peak is detected. 

For every sample instant ,  the variance var( ) was calculated in a straight forward k k  

manner as: 

 
21

5
5

 var( ) ( ( ) ) ; 6.. .   
k

j k

k peak j m k N
= −

= − =∑   (18) 

(Note that ( )peak k  is a vector of length N but piecewise constant between each peak) 

N is the number of samples and m the overall mean of the peaks, i.e. the average peak 
value. The number 6 was chosen as a compromise the get a reasonably fast response.  

In a real world application it would of course be possible to use e.g. an electronic 
trigger signal from the laser to identify the rising edge of the signal and e.g. a leaky 
capacitor solution to detect the peak. An advantage of using CUSUM is that this 
algorithm is robust to noise and gives a statistically significant indication of an actual 
change in the measured signal.  
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Abstract 
This paper considers the point that it is not possible to interpret individual weld 
perturbations from the raw electromagnetic feedback collected from laser weld zones. 
The presentation of electromagnetic data as a 3D cloud is presented as a new, useful 
tool in the analysis of this feedback. For example, it is shown that there is a very low 
correlation between the plasma or thermal signals and the reflected light signal from 
the weld zone, and that a strong correlation exists between the plasma and thermal 
signals. It is also demonstrated that data points from a weld perturbation form a 
different 3D cluster to those from the stable welding process. A strategy for future on 
line data analysis is presented in the use of a suitably shaped data cloud envelope. 
The rates of data fit to the various segments of such an envelope could be correlated 
with specific weld anomalies.     
 
 

Introduction 

 
The practice of industrial laser welding often involves continuous monitoring in order 
to optimise productivity. A common feedback technique involves the use of 
photodiodes to  
monitor the electromagnetic emissions from the weld zone. These emissions can be 
divided into three wavelength ranges associated with reflected laser light, thermal 
radiation from the weld zone and the higher temperature radiation from the plasma or 
gas cloud above the weld. Figure 1 describes the optical arrangement of sensors 
which have individual sensitivities to reflected light (R), thermal radiation (T) and 
plasma radiation (P). 
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Figure 1. The arrangement of the Reflected light (R), Thermal radiation (T) and 

Plasma radiation (P) sensors, which monitor the electromagnetic radiation from 

the laser welding process. 
 
 
The signals generated by the photodiodes are continuously compared to a “golden 
template” of signals historically associated with good quality welds for the specific 
application involved. Excessive deviation from the ‘good weld’ signal envelope 
triggers an alarm, which may be used to halt the welding process. 
 
This type of monitoring has been developed by purely empirical means with minimal 
theoretical back-up [1,2]. The work presented in this paper forms part of the early 
stages of a full analysis of this method of weld monitoring. The eventual outcome of 
this branch of research should be an improved understanding of the correlation 
between the signals generated within the weld zone and the defects produced in the 
welds. 
 
The three sensor configuration shown in figure 1 is an adaptation of an original two 
sensor set-up used to monitor welding carried out with CO2 lasers. The original CO2 
laser welding monitors employed only a thermal (infra-red) sensor sensitive over the 
range of wavelengths from 1300nm to 1800nm and a plasma (ultra-violet) sensor, 
sensitive to wavelengths below 600nm. The UV range of the plasma sensor is 
particularly appropriate for CO2 laser welding because the metal vapour boiling off 
from the weld zone absorbs a substantial proportion of the incident laser light and 
becomes heated to an ionised plasma state. The stability and intensity of the UV light 
generated by this plasma can be indicator of weld quality during CO2 laser welding.  
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During Nd:YAG welding the plume of vapour above the weld zone is transparent to 
the laser beam and does not become heated to a plasma state. This hot vapour radiates 
as a black body radiator, emitting light over a continuous spectrum  
 
Welding of Zn-coated steel is also well known for its instability and proneness for 
blow outs due to excessive gas pressure. Welding of Zn-coated steel has been 
thoroughly investigated by e.g. Norman et.al.[3], Fabbro et.al. [4] and Heyden et.al. 
[5]. 
A thorough survey on the state of the art of process monitoring of laser welding can 
be found in [6].   
The reflected light sensor involves a photodiode with a behind a narrow bandpass 
filter around the laser wavelength and the level of reflected light detected is 
dependant on the weld pool geometry. Often this R-sensor signal will have a higher 
variance for bad welds then for good welds because an unstable welding process 
leads to an extremely variable weld pool surface. 
 
Fig 2 is a schematic graph of the observed wavelengths and the light emitted during 
Nd:YAG welding. 
 
 

 

 
Figure 2 A schematic of the wavebands of the three monitoring sensors (Plasma, 

Reflected and Thermal). 

 

 

 
Statistical signal processing work has been carried out by a number of workers 
including Fennander et.al. [7], who looked at Laser hybrid welding using data from 
high speed imaging fed to a Kalman filter for droplet tracking in conjunction with 
Principal Component Analysis (PCA) and vector machines for the classification of 
data. In this case the PCA was used to interpret and simplify the time based 2D-data 
from the cameras. 
 
A similar approach was also used by Jäger [8], who introduced the concept of “Eigen 
–meltpools”. i.e. mutually orthogonal surface shapes corresponding to the first four 
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eigenvalues–eigenvectors for a typical welding situation. Jäger et al also describe 
both the advantages and drawbacks involved in using Independent Component 
Analysis (ICA) [9] for surface classification. One of their findings was that ICA 
showed no significant improvement over PCA and their conclusion was therefore that 
second order statistics (e.g. PCA) are sufficient for surface description and 
classification. 
 
For conventional arc welding Mirapeix et al. [10] used PCA to interpret spectral data 
from the weld pool temperature signal. The PCA components were later fed to a 
trained Artificial Neural Net (ANN) for defect classification. In their work they 
showed that the following defects could be detected using this technique; 

• slight lack of penetration 
• lack of penetration 
• low welding current  
• inert gas flow reduction  

 
Experimental work and discussion 

In this paper we used the commercial monitoring system Weldwatcher from Precitec, 
and synchronised the measurements to a high speed camera (Photron SA1). 
 
The experimental setup used was: 

• Material:  2 x 0.8 mm thick zinc coated steel. 
• Laser source: 3kW Haas 3006L Lamp pumped Nd:YAG  
• Power  2.5kW CW   
• Optics:  600um step index fibre with 250 mm collimator and f=200mm 
• Feed rate:  5m/min. 

 
Two welds were produced under the same processing conditions but the fit up 
geometry of the welds were different – as shown in figure 3. It is well know that, 
when laser lap welding zinc coated steel, the best results are usually achieved if a 
clear path is provided for the escape of the zinc vapour boiling off the surfaces of the 
sheets which are in contact [3,4,5]. In the welds produced for this experiment, this 
clear path was provided in one case (as shown in figure 3a), but the other weld 
involved close contact between the sheets and no escape route for the vapour. This 
latter arrangement had the expected consequence of a liquid eruption or ‘blow out’ of 
the weld. Both welds were approximately 180mm long and took 2 seconds to 
complete. The welds will be identified throughout the rest of this paper as the ‘good’ 
weld and the ‘blow out weld’. The sampling rate of the sensors was 20 kHz and the 
blow out took place approximately halfway through the weld and lasted 
approximately 1.5ms. This paper will compare the data from both welds, 
concentrating on the differences caused by the blowouts. 
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Fig 3a Experimental situation for the good weld 

 
Fig 3b Experimental situation for the blow out weld 

 
Figure 4 presents the raw data from the three sensors for the good weld and the blow 
out weld. There appears to be a close correlation between the temperature and plasma 
signals in both cases. It is also clear that the signals are less stable in the case of the 
blow out weld although there is a considerable level of noise in both sets of signals. 
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Figure 4a. 

 
Figure 4b. 

Figure 4. Raw data from the three sensors for; a.The good weld and b.The blow out 
weld. 
 
It is, of course, very difficult to interpret the data if it is presented in its raw form – 
although data readings of this type can be used in conjunction with simple threshold 
values. Extra information can be gathered from the data if it is presented as a three 
dimensional cloud – as in figure 4. In this case the three data points from every 
individual time instant are presented as a single point inside a three dimensional 
graph. For example, if, sometime during the first second of welding, we take our 
15,024th reading of the T, R and P signals – the values might be 2.4, 1.2 and 4.5 
respectively. We then plot the point 2.4, 1.2, 4.5 on our x,y,z graph – the time 
element of the information is hidden in this type of display, but we can see the 
general correlation of the whole data set. In figure 5 we can see that there is some 
correlation between the data points whilst the welding is taking place – and we can 
also see that the start up and ending phases of the welding process produce sets of 
data points which are clearly separate from the main cloud. The welding process is, in 
effect, disrupted during the start up and ending phases and these ‘disturbed’ welding 
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periods provide distinct, coherent groups of data points. This means that it might be 
possible to identify specific weld perturbations such as blow outs (see figure 6) or 
keyhole collapse, by their data point signatures in the three dimensional space of such 
a graph. Even at this early stage of these results it is interesting to note that the data 
signature start up phase of the blow out weld is completely different from, and far 
less cohesive than, that of the good weld – indicating an inherent instability as a 
result of vapour pressure building up beneath the weld pool.  
 

 
Figure 5a. Good weld 

 
Figure 5b. Blow out weld 

 
Figure 5 shows data clouds taken from the information presented in figure 4.  
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Figure 6. A weld experiencing a ‘blow out’ – trapped zinc vapour blows a hole in 

the weld pool as it escapes - leading to the ejection of a considerable amount of 

liquid. 

 
Although the differences between the start up and ending phases of the weld are 
interesting, we are really working towards an on line monitor of the main part of the 
welding process. Figure 7 presents the data clouds of figure 4 with the start up and 
ending phases removed.   
In these figures the overall mean has been subtracted from all the data values to 
generate a zero mean data cloud. This is to enable correct PCA calculations for the 
resulting eigenvectors shown in subsequent figures. 
 

 
Figure 7a. 
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Figure 7b. 

Figure 7. The good weld (7a) and blow out weld (7b) data clouds after the start 

and end phases of the welding process have been removed. In these figures the 

overall mean has been subtracted from all the data values to generate a zero 

mean data cloud. 
 
Figure 7 reveals that there are clear similarities and differences between the two data 
clouds. The overall cloud shapes and their orientations in the 3D space are similar – 
but there are considerably more outlying points in the case of the unstable weld. 
 
If we look at the overall shape and orientation of the clouds first, we can extract some 
information from the three side views of the 3D data field – as shown in figures 8,9 
and 10.   

 
Figure 8a. 
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Figure 8b. 

Figure 8. The reflection/temperature relationship of the data clouds for a. the 

stable and b. the unstable welds. 

 
 

 
Figure 9a. 
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Figure 9b. 
 

Figure 9. The reflection/plasma relationship of the data clouds for a. the good 

and b. the blow out welds. 
 
Figures 7 and 9 reveal that there is a very low correlation between the plasma or 
thermal signals and the reflected light signal. This low correlation can be explained 
by the fact that the strength of the reflected signal from the weld zone will largely be 
dependant on the surface geometry of the melt rather than the temperature of the melt 
or the vapour cloud. 
 

 
Figure 10a. 

 

 
Figure 10b. 

Figure 10. The plasma/temperature relationship of the data clouds for a. the 

good and b. the blow out welds. 

 
Figure 10 shows that there is a strong correlation between the plasma and thermal 
signals from the weld zone. This strong correlation could be expected because the 
rate of vapour generation is governed by the weld pool temperature. Increased weld 
pool heating will result in increased boiling and so the two thermal signals are linked. 
 
Picking the largest eigenvalues and corresponding eigenvectors from the PCA 
analysis of the data clouds we can identify the direction vector pointing in the 
direction of maximum variation  dirVect for the good weld as:  
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0.60
       (  )

0.79

Thermal
dirVect in direction

Plasma

   
=    
   

  (1) 

and for the blow out weld as: 
 

 
0.65

       (  )
0.67

Thermal
dirVect in direction

Plasma

   
=    
   

  (2) 

 
Much of difference between the coefficients can be attributed to the “tail” seen in figs 
7a, 8a and 9a which affects the principal component vector. Otherwise it is clear that 
the core 3D geometry of the clouds for both welds is similar. 
 
We can now consider the detailed shape of the blow out weld data in a search for a 
correlation between weld perturbations and specific data clusters in the 3D cloud. 
Although the time-based information relevant to each data point is not displayed in 
the data cloud, it is possible to identify each point from the basic data set. Using the 
time base given by the high speed video film, it is therefore possible to label the 
points in the data cloud which are associated with the blow out – these are presented 
in figure 11 as light points.  
 

 
 
Figure 11 the data cloud for the blow out weld with the data points associated 

with the blow out identified as light points and the stable periods of this weld 

identified by the dark points. 

 
From the process monitoring point of view, it is encouraging that the data points for 
the blow out event are not evenly spaced within the data cloud – there is a clear 
tendency for them to cluster in one sector of the overall cloud. The blow out data is 
associated with a quadrant of the 3D space where all three signal levels are low but 
the plasma signal is larger than average for the thermal and reflected signals 
involved. This could be related to the increased vapour evolution during blow out. 
The zinc vapour will join the iron vapour – the level of which may also be increased 
as a result of increased melt surface area – because the weld zone is much more 
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undulating than normal and airborne droplets are present in the area. The low 
reflection signal associated with blow outs is also traceable to a physical 
phenomenon. The reflectivity of the weld decreases with increased melt surface 
curvature, because a flat weld would be the most effective reflector of the laser light, 
and the weld surface is considerably more curved when blow outs are taking place. In 
order to investigate the various shapes of the data clouds for the ‘stable’ and ‘blow 
out’ parts of the weld, the two are presented separately in figures 12 and 13. 

 
Figure 12. The data cloud from figure 11 with the ’blow out’ data removed. This 

is the shape of the data cloud for the stable part of this weld. 

 

 
 

Figure 13. The data cloud for the ‘blow out data only. 
 
Figures 13 and 14 demonstrate that the two sets of data both form coherent clouds, 
but give no indication of the overlap between the two. To assess the level of overlap, 
figure 14 presents two cross sectional slices of the data cloud taken across the 
‘thermal’ axis. When the 3D space is rotated so that we view it from the end with the 
plasma/reflection axes, as in figure 15, we can see the intermingling of the ‘blow out’ 
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and ‘stable welding’ data points. From the images in figure 15, two things are clear; 
a. the relative proportions of ‘blow out’ and ‘stable weld’ data points change as we 
move down the long axis of the data cloud, and b. the distribution of the ‘blow out’ 
data points is not uniform across the cloud cross section (for example, the upper left 
quadrant of the larger cross section contains relatively few ‘blow out’ data points). 

 
Figure 14. Taking two cross-sections of the data cloud. 

 
Figure 15. Four cross-sections of the data cloud. 
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The asymmetric distribution of the blow out data point cloud within the stable weld 
cloud presents us with a possible future strategy for feedback analysis. This would 
involve the construction of a suitably dimensioned ellipsoid shell divided into eight 
segments – as described in figure 16. As data points are acquired from the process 
they could be converted to their 3D format and would fill the various quadrants of the 
shell. The relative rates of arrival of the data points into the segments would be an 
indicator of the state of the welding process and could be compared to the rates for a 
stable weld. Additionally, the extension of the segments outside the shell to the limits 
of the 3D ‘box’ could give another clearly defined eight zones for data collection and 
rate comparison. This principle will be the subject of future work by the present 
authors. 
 

 
 

 
Figure 16. A strategy for on line data analysis could involve a standard cloud divided into 

eight or more sectors. 
 

Conclusions 
 

• It is not possible to interpret individual weld perturbations from the raw 
electromagnetic data collected from laser weld zones. 

• The presentation of electromagnetic data as a 3D cloud provides a new, useful 
tool in the analysis of feedback from laser weld zones. 

• There is a very low correlation between the plasma or thermal signals and the 
reflected light signal from the weld zone. 

• There is a strong correlation between the plasma and thermal signals from the 
weld zone. 

• Data points from a weld perturbation (blow out) form a different 3D cluster to 
those from the stable welding process. 
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• A strategy for future on line data analysis is the use of a suitable data cloud 
envelope or multi-layered envelopes. The rates of data fit to the various 
segments of such envelopes could be correlated with specific weld anomalies.     
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Abstract 

During laser spot welding of titanium surface ripples were found to 
originate from melt pool oscillations. The combination of oscillation in 
the melt pool and a fast solidification froze the oscillations as ripples on 
the surface. The solution to the problem was to delay the solidification 
until the oscillations were dampened out. By pulse shaping, ripple free 
weld spots were created.  
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1. Introduction 

Microscopic examination of laser spot welds frequently reveals surface ripples such 
as those shown in figure 1. Ripples of this sort could be unacceptable in some 
production environments because of their effect on the fatigue life or the visual 
appearance of the weld.  

Both numerical simulation and experimental research has shown oscillation [1, 2] of 
the melt pool during laser welding. High speed imaging of laser-induced wave 
formation in a liquid Sn- or Zn-pool [3] illustrates these oscillations in the absence of 
a solid-liquid boundary redirecting the flow. Numerical simulation of the 
resolidification process during spot welding [4,5] has provided an understanding of 
the cooling behaviour with respect to time, particularly its dependence of pulse 
duration and beam radius. Computation of the recoil pressure from laser-induced 
evaporation during initiation of keyhole laser welding [1,6] has modelled the melt 
pool flow, particularly the radial acceleration of the melt perpendicular to the solid-
liquid interface. In pulsed Nd:YAG spot welding ripples have been found to originate 
from the oscillations [1,2] of the weld pool. When the weld pool solidifies fast [4,5] 
the oscillations are frozen to become ripples on the surface. 

  

Note that the present phenomenon takes place in a certain power density window 
high enough to achieve the boiling point but at interaction times which are too low to 
allow keyhole drilling.  

  

This paper describes an experimental program which investigates the process of the 
ripple formation and suggests a strategy to minimise the effect. The phenomenology 
of ripple formation has been examined by high speed photography under high 
intensity illumination and the strategy for ripple minimisation involves suitable 
power modulation of the laser pulse. 

 

2. Experimental set-up  

The experiment involved pulsed Nd:YAG welding of titanium. The Laser used was a 
ROFIN-SINAR P500. The laser pulse was 1,5 ms long with a repetition rate of 5Hz 
and 30% of the available peak power (3 J/pulse). The welded part was moved 
between pulses to produce a weld seam. The feed rate was adjusted to give 50% 
overlap of the pulses. The shielding gas employed was Argon. To observe the 
welding a Redlake X3 high speed camera at 8000 frames per second was used with 
and a Cavilux illumination laser at a power of 500 Watts. Figure 2 is a magnified 
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view of the finished weld considered in this experimental program, showing the 
overlap geometry and the surface ripples on the individual spot welds. 

 

3. Results and Discussion 

Examination of high speed filming shows that the oscillation frequency of the melt 
pool is approximately 3kHz and the time from turning off the laser to completely 
solid surface is 3ms.  

 

3.1 High speed photography of ripple formation. 

Figure 3a-g presents a series of still photographs from high speed filming of the 
creation of a single pulse spot weld.  

 

From this series of photographs it can be inferred that the progression of events 
which results in a set of concentric ripples on a single pulse spot weld is as follows; 

The laser pulse starts its interaction with the material and begins to melt the surface. 

The weld pool grows in volume and diameter as the laser continues to irradiate the 
surface. A depression forms in the middle of the weld pool as a result of localised 
boiling – which exerts a pressure on the melt.  

The laser pulse ends and boiling ceases. Surface tension forces the melt to attempt to 
spring back from a concave geometry to a convex one. 

The momentum of the melt in the direction perpendicular to its surface makes the 
melt surface overshoot its equilibrium position. The melt surface assumes damped 
simple harmonic motion around its equilibrium position, and this generates surface 
ripples. 

The melt solidifies before this action has died down and the ripples are frozen into the 
surface topology of the weld. 

 

3.2 Pulse shape modulation to suppress ripple formation. 

A series of experiments was carried out to establish the most effective pulse shape to 
minimise ripples in the eventual weld topology. The overall strategy was to extend 
the molten life of the melt so that the ripples could die away before solidification took 
place. Productivity was not affected by this technique because the original pulse 
frequency of 5Hz was maintained – the post weld heating was accommodated in the 
gap between the pulses. The original 1.5ms rectangular power profile of the pulse 
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was extended at a lower power level as shown in figure 4. Successful welds with 
minimum surface rippling were produced at an extended pulse lifetime of 4ms, and 
an increase of pulse power to 7 J/pulse 

 

Figure 5 demonstrates that the majority of the surface ripple effect has been 
suppressed although there is some evidence of minor rippling at the edge of the 
solidified melt where cooling and solidification rates are at their highest.  

 

4. Conclusions 

In the latter stages of the laser-melt interaction during pulsed laser spot welding, the 
central portion of the weld is depressed as a result of localised boiling which exerts a 
pressure on the melt. As the laser pulse ends, the boiling ceases, and the pressure is 
removed. The melt then begins to return to its equilibrium geometry under the 
influence of surface tension, but the vertical momentum of the melt carries it past this 
equilibrium position. The surface then experiences damped simple harmonic motion. 
Ripples on the surface of the solid welds are created by rapid solidification of a 
surface which was undergoing damped simple harmonic motion. By delaying the 
solidification until the harmonic motion is completely dampened, surface ripples can 
be avoided.  
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Figures 

 

Figure 1. The rippled topography of typical pulsed laser weld in titanium. 

 

Figure 2. The overlap geometry of the spot welds investigated. 
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Figure 3a Here we see the previous, solidified spot weld 

 

Figure 3b As the pulse irradiates the position of the next spot weld the material 

begins to melt. 

 

Figure 3c Melting continues and is eventually accompanied by boiling. The 

recoil pressure of the boiling action causes the top of the melt to become 

flattened or dimpled. And the melt is pushed laterally away from the centre [5]. 
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Figure 3d As the laser pulse ends, boiling ceases and the melt tries to assume a 

hemispherical geometry under the influence of surface tension. 

 

Figure 3e The sudden upward movement of the melt surface initiates damped 

simple harmonic motion. This motion can be seen as the glare of the illumination 
changes shape.   

 

Figure 3f  The melt pool solidifies from its base upwards and from the edges 

inwards, too quickly for the ripples to die away. 
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Figure 3g The ripples are frozen in place on the surface of the weld. 

 

 

 

Figure 4. Pulse shaping minimizes the ripples 

 

 

Figure 5. Pulse with less ripples 




