Endre søk
Link to record
Permanent link

Direct link
Alternativa namn
Publikasjoner (10 av 123) Visa alla publikasjoner
Souza Rossi, H., Mitra, K., Åhlund, C. & Cotanis, I. (2024). A Demonstration of ALTRUIST for Conducting QoE Subjective Tests in Immersive Systems. In: 2024 IEEE 21st Consumer Communications & Networking Conference (CCNC): . Paper presented at 21st IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, January 6-9, 2024 (pp. 1120-1121). IEEE
Åpne denne publikasjonen i ny fane eller vindu >>A Demonstration of ALTRUIST for Conducting QoE Subjective Tests in Immersive Systems
2024 (engelsk)Inngår i: 2024 IEEE 21st Consumer Communications & Networking Conference (CCNC), IEEE, 2024, s. 1120-1121Konferansepaper, Oral presentation with published abstract (Fagfellevurdert)
sted, utgiver, år, opplag, sider
IEEE, 2024
Serie
Consumer Communications and Networking Conference, CCNC IEEE
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-104678 (URN)10.1109/CCNC51664.2024.10454751 (DOI)001192142600265 ()2-s2.0-85189198497 (Scopus ID)
Konferanse
21st IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, January 6-9, 2024
Merknad

ISBN for host publication: 979-8-3503-0457-2

Tilgjengelig fra: 2024-03-19 Laget: 2024-03-19 Sist oppdatert: 2024-11-20bibliografisk kontrollert
Vasquez Torres, M., Shahid, Z., Mitra, K., Saguna, S. & Åhlund, C. (2024). A Transfer Learning Approach to Create Energy Forecasting Models for Building Fleets. In: 2024 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm): . Paper presented at 2024 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), September 17-20, 2024, Oslo, Norway (pp. 438-444). IEEE
Åpne denne publikasjonen i ny fane eller vindu >>A Transfer Learning Approach to Create Energy Forecasting Models for Building Fleets
Vise andre…
2024 (engelsk)Inngår i: 2024 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), IEEE, 2024, s. 438-444Konferansepaper, Publicerat paper (Fagfellevurdert)
sted, utgiver, år, opplag, sider
IEEE, 2024
Serie
IEEE International Conference on Smart Grid Communications, ISSN 2373-6836, E-ISSN 2474-2902
Emneord
Building fleet, Energy consumption, Transfer learning, LSTM, DTW, Hierarchical clustering, Time series forecasting
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-110870 (URN)10.1109/SmartGridComm60555.2024.10738094 (DOI)
Konferanse
2024 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), September 17-20, 2024, Oslo, Norway
Merknad

ISBN for host publication: 979-8-3503-1855-5;

Funder: European Commission (grant number 610619-EPP-1-2019-1-FREPPKA1-JMD-MOB), (EMJMD GENIAL Project);

Tilgjengelig fra: 2024-11-28 Laget: 2024-11-28 Sist oppdatert: 2024-11-28bibliografisk kontrollert
Mololoth, V. K., Saguna, S. & Åhlund, C. (2024). Consensus algorithm for energy applications: Case study on P2P energy trading scenario. In: Rajiv Ranjan; Karan Mitra; Prem Prakash Jayaraman; Albert Y. Zomaya (Ed.), Managing Internet of Things Applications across Edge and Cloud Data Centres: (pp. 277-287). Institution of Engineering and Technology
Åpne denne publikasjonen i ny fane eller vindu >>Consensus algorithm for energy applications: Case study on P2P energy trading scenario
2024 (engelsk)Inngår i: Managing Internet of Things Applications across Edge and Cloud Data Centres / [ed] Rajiv Ranjan; Karan Mitra; Prem Prakash Jayaraman; Albert Y. Zomaya, Institution of Engineering and Technology , 2024, s. 277-287Kapittel i bok, del av antologi (Annet vitenskapelig)
sted, utgiver, år, opplag, sider
Institution of Engineering and Technology, 2024
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-108686 (URN)10.1049/PBPC027E_ch12 (DOI)2-s2.0-85197680472 (Scopus ID)
Merknad

ISBN for host publication: 978-1-78561-779-9; 978-1-78561-780-5

Tilgjengelig fra: 2024-08-22 Laget: 2024-08-22 Sist oppdatert: 2024-11-13bibliografisk kontrollert
Shahid, Z., Saguna, S., Åhlund, C. & Mitra, K. (2024). Federated Learning for Unsupervised Anomaly Detection in ADLs of Elderly in Single-resident Smart Homes. In: SAC '24: Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing: . Paper presented at The 39th ACM/SIGAPP Symposium on Applied Computing (SAC ’24), April 8–12, 2024, Avila, Spain. (pp. 533-535). New York, NY, USA,: ACM Special Interest Group on Applied Computing
Åpne denne publikasjonen i ny fane eller vindu >>Federated Learning for Unsupervised Anomaly Detection in ADLs of Elderly in Single-resident Smart Homes
2024 (engelsk)Inngår i: SAC '24: Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing, New York, NY, USA,: ACM Special Interest Group on Applied Computing , 2024, s. 533-535Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

One of the main concerns regarding the facilitation of the elderly well-being monitoring system is to preserve the participants’ privacy, enable the older adults to live longer independently, and support caregivers. Human Activity Recognition (HAR) in smart homes allows us to foresee the residents’ needs by identifying changes in behaviour that might link to possible health conditions. We propose a Federated learning (FL) model within the health monitoring application to generalize for diverse participant populations and to achieve comparable performance without disclosing the raw data to the traditional centralized approach, which raises privacy issues. In this study, we evaluate an unsupervised variational autoencoder (VAE) in centralized, individualized, compared to federated learning settings to learn the features of normal patterns of daily activities and build an anomaly detector based on reconstructed error resulting as outcomes by the trained model. Further, we validated our proposed approach on real-world datasets collected over three years from six single-resident elderly households. The individual and centralized-based learning models were used as a baseline to compare with FL. Our results show that the personalized FedAvg models achieve RMSE of about 1%, while the Global FL models achieve RMSE of approximately. 4%. The centralized model achieves RMSE of about 0.5%, and the RMSE of individual models based on local training ranges between 1% to 6%. The FL models are relatively comparable to the centralized baseline model.

sted, utgiver, år, opplag, sider
New York, NY, USA,: ACM Special Interest Group on Applied Computing, 2024
Emneord
Applied computing, Health informatics, Computing methodologies, Neural networks, Anomaly detection
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-103826 (URN)10.1145/3605098.3636163 (DOI)001236958200079 ()2-s2.0-85197662033 (Scopus ID)
Konferanse
The 39th ACM/SIGAPP Symposium on Applied Computing (SAC ’24), April 8–12, 2024, Avila, Spain.
Merknad

ISBN for host publication: (979-8-4007-0243-3)

Tilgjengelig fra: 2024-01-18 Laget: 2024-01-18 Sist oppdatert: 2024-10-08bibliografisk kontrollert
Shahid, Z. K., Saguna, S. & Åhlund, C. (2024). Multi-Armed Bandits for Sleep Recognition of Elderly Living in Single-Resident Smart Homes. IEEE Internet of Things Journal, 11(3), 4414-4429
Åpne denne publikasjonen i ny fane eller vindu >>Multi-Armed Bandits for Sleep Recognition of Elderly Living in Single-Resident Smart Homes
2024 (engelsk)Inngår i: IEEE Internet of Things Journal, ISSN 2327-4662, Vol. 11, nr 3, s. 4414-4429Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Sleep is an essential activity that affects an individual’s health and ability to perform Activities of Daily Living (ADL). Inadequate sleep reduces cognitive capacity and leads to health-related issues such as cardiovascular diseases. Sleep disorders are more prevalent in older adults. Therefore, it is essential to recognize sleep patterns and support older adults and their caregivers. In our study, we collect data in real-world unconstrained and non-intrusive environments. This paper presents a novel sleep activity recognition method using motion sensors for recognizing nighttime and daytime sleep, which can further enable the development of insightful healthcare applications. The research objectives are to evaluate the application of using Multi-Armed Bandit methods to (i) learn normal sleep patterns, (ii) evaluate sleep quality, and (iii) detect anomalies in sleep activity for 11 elderly participants living in single-resident smart homes. We evaluate the performance of Thompson Sampling, Random Selection, and Upper Confidence Bound MAB methods. Thompson Sampling outperformed the other two methods. Our findings show most elderly participants slept between 6 and 8 hours with 85% sleep efficiency and up to 3 awakenings per night.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2024
Emneord
Anomaly detection, Elderly healthcare, Internet of Things, Medical services, Motion detection, Multi-Armed bandits, Older adults, Reinforcement learning, Sensors, Sleep, Sleep patterns, Smart homes
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-99666 (URN)10.1109/JIOT.2023.3300015 (DOI)001166992300055 ()2-s2.0-85166780685 (Scopus ID)
Prosjekter
FraViVo—Framtidens Välfärdsteknik med Internet of Things
Forskningsfinansiär
Vinnova, 2020-04096
Merknad

Validerad;2024;Nivå 2;2024-03-18 (hanlid);

Full text license: CC BY-NC-ND

Tilgjengelig fra: 2023-08-15 Laget: 2023-08-15 Sist oppdatert: 2024-11-20bibliografisk kontrollert
Souza Rossi, H., Mitra, K., Åhlund, C., Cotanis, I., Örgen, N. & Johansson, P. (2024). Objective QoE Models for Cloud-Based First Person Shooter Game over Mobile Networks. In: 2024 IEEE 21st Consumer Communications & Networking Conference (CCNC): . Paper presented at 21st IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, January 6-9, 2024 (pp. 550-553). IEEE
Åpne denne publikasjonen i ny fane eller vindu >>Objective QoE Models for Cloud-Based First Person Shooter Game over Mobile Networks
Vise andre…
2024 (engelsk)Inngår i: 2024 IEEE 21st Consumer Communications & Networking Conference (CCNC), IEEE, 2024, s. 550-553Konferansepaper, Publicerat paper (Fagfellevurdert)
sted, utgiver, år, opplag, sider
IEEE, 2024
Serie
Consumer Communications and Networking Conference, CCNC IEEE
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-104680 (URN)10.1109/CCNC51664.2024.10454666 (DOI)001192142600088 ()2-s2.0-85189199208 (Scopus ID)
Konferanse
21st IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, January 6-9, 2024
Merknad

ISBN for host publication: 979-8-3503-0457-2

Tilgjengelig fra: 2024-03-19 Laget: 2024-03-19 Sist oppdatert: 2025-02-18bibliografisk kontrollert
Souza Rossi, H., Mitra, K., Åhlund, C. & Cotanis, I. (2024). QoE Models for Virtual Reality Cloud-based First Person Shooter Game over Mobile Networks. In: 2024 20th International Conference on Network and Service Management (CNSM) (CNSM 2024): . Paper presented at 2024 20th International Conference on Network and Service Management (CNSM)(CNSM 2024).
Åpne denne publikasjonen i ny fane eller vindu >>QoE Models for Virtual Reality Cloud-based First Person Shooter Game over Mobile Networks
2024 (engelsk)Inngår i: 2024 20th International Conference on Network and Service Management (CNSM) (CNSM 2024), 2024Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Virtual reality cloud-based gaming (VRCG) services are becoming widely available on virtual reality (VR) devices delivered over computer networks.VRCG brings users worldwide an extensive catalog of games to play anywhere and anytime. Delivering these gaming services in existing broadband mobile networks is challenging due to their stochastic nature and the user perceived Quality of Experience (QoE)' sensitivity towards them. More research is needed regarding developing effective methods to measure the impact of network QoS factors on users' QoE in the VRCG context. Therefore, this paper proposes, develops, and validates three novel regression models trained on a real dataset collected via subjective tests (N=30); the dataset contains subjective users' QoE ratings regarding VR shooters affected by network conditions (N=28), such as round-trip time (RTT), random jitter (RJ), and packet loss (PL). Our findings reveal that due to the nonlinear relationship of (RTT and RJ) tested together, nonlinear(mean absolute error (MAE)=0.14) and polynomial (MAE=0.15) regression models have the best performance; yet, simple linear regression model(MAE=0.19) is also suitable to predict QoE for VRCG. Further, we found that the model's most important feature is RTT, followed by (RTT, RJ). Finally, our models' prediction of QoE for real-world traffic measurements suggests that mobile network traffic (4G, 5G non-standalone, 5G standalone) provides a 2.5 \(\leq MOS\_{QoE} \leq\) 3.0 experience for VRCG, while 4.2 \(\leqMOS\_{QoE} \leq\) 4.4  for wired connections, suggesting the need for improvements in the current commercial 5G network deployments to deliverVRCG.

Emneord
QoE, Cloud-based streaming, Virtual Reality, Metaverse, Games
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-109768 (URN)10.23919/CNSM62983.2024.10814458 (DOI)2-s2.0-85216565259 (Scopus ID)
Konferanse
2024 20th International Conference on Network and Service Management (CNSM)(CNSM 2024)
Tilgjengelig fra: 2024-09-08 Laget: 2024-09-08 Sist oppdatert: 2025-02-27
Shahid, Z. K., Saguna, S. & Åhlund, C. (2024). Recognizing Seasonal Sleep Patterns of Elderly in Smart Homes Using Clustering. In: 2024 IEEE 21st Consumer Communications & Networking Conference (CCNC): . Paper presented at 21st IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, January 6-9, 2024 (pp. 490-498). IEEE
Åpne denne publikasjonen i ny fane eller vindu >>Recognizing Seasonal Sleep Patterns of Elderly in Smart Homes Using Clustering
2024 (engelsk)Inngår i: 2024 IEEE 21st Consumer Communications & Networking Conference (CCNC), IEEE, 2024, s. 490-498Konferansepaper, Publicerat paper (Fagfellevurdert)
sted, utgiver, år, opplag, sider
IEEE, 2024
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-103827 (URN)10.1109/CCNC51664.2024.10454817 (DOI)001192142600079 ()2-s2.0-85189207183 (Scopus ID)
Konferanse
21st IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, January 6-9, 2024
Merknad

ISBN for host publication: 979-8-3503-0457-2;

Tilgjengelig fra: 2024-01-18 Laget: 2024-01-18 Sist oppdatert: 2025-02-20bibliografisk kontrollert
Souza Rossi, H., Mitra, K., Larsson, S., Åhlund, C. & Cotanis, I. (2024). Subjective QoE Assessment for Virtual Reality Cloud-based First-Person Shooter Game. In: Matthew Valenti; David Reed; Melissa Torres (Ed.), ICC 2024 - IEEE International Conference on Communications: . Paper presented at IEEE International Conference on Communications (ICC 2024), June 9-13, 2024, Denver, USA (pp. 4698-4703). IEEE
Åpne denne publikasjonen i ny fane eller vindu >>Subjective QoE Assessment for Virtual Reality Cloud-based First-Person Shooter Game
Vise andre…
2024 (engelsk)Inngår i: ICC 2024 - IEEE International Conference on Communications / [ed] Matthew Valenti; David Reed; Melissa Torres, IEEE, 2024, s. 4698-4703Konferansepaper, Publicerat paper (Fagfellevurdert)
sted, utgiver, år, opplag, sider
IEEE, 2024
Serie
IEEE International Conference on Communications, E-ISSN 1938-1883
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-108929 (URN)10.1109/ICC51166.2024.10622467 (DOI)2-s2.0-85202845299 (Scopus ID)978-1-7281-9054-9 (ISBN)
Konferanse
IEEE International Conference on Communications (ICC 2024), June 9-13, 2024, Denver, USA
Tilgjengelig fra: 2024-08-23 Laget: 2024-08-23 Sist oppdatert: 2025-02-18bibliografisk kontrollert
Kim, J. C., Saguna, S. & Åhlund, C. (2024). The Effects of Augmented Reality Companion on User Engagement in Energy Management Mobile App. Applied Sciences, 14(7), Article ID 2621.
Åpne denne publikasjonen i ny fane eller vindu >>The Effects of Augmented Reality Companion on User Engagement in Energy Management Mobile App
2024 (engelsk)Inngår i: Applied Sciences, E-ISSN 2076-3417, Vol. 14, nr 7, artikkel-id 2621Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

As the impact of global warming on climate change becomes noticeable, the importance of energy efficiency for reducing greenhouse gas emissions grows immense. To this end, a platform, solution, and mobile apps are developed as part of the European Union’s Horizon 2020 research and innovation program to support energy optimization in residences. However, to ensure long-term energy optimization, it is crucial to keep users engaged with the apps. Since augmented reality (AR) and a virtual animal companion positively influenced user engagement, we designed an AR companion that represented the user’s residence states; thereby making the user aware of indoor information. We conducted user evaluations to determine the effect of the AR companion on user engagement and perceived usability in the context of energy management. We identified that the user interface (UI) with AR (ARUI) barely affected user engagement and perceived usability compared to the traditional UI without AR (TUI); however, we found that the ARUI positively affected one of the user engagement aspects. Our results show AR companion integration’s potential benefits and effects on energy management mobile apps. Furthermore, our findings provide insights into UI design elements for developers considering multiple interaction modalities with AR.

sted, utgiver, år, opplag, sider
MDPI, 2024
Emneord
user interface, user evaluation, user engagement, perceived usability, augmented reality, Internet of Things, energy management
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-104850 (URN)10.3390/app14072671 (DOI)001201100700001 ()2-s2.0-85192566624 (Scopus ID)
Forskningsfinansiär
EU, Horizon 2020, 893079
Merknad

Validerad;2024;Nivå 2;2024-03-22 (signyg);

Full text license: CC BY

Tilgjengelig fra: 2024-03-22 Laget: 2024-03-22 Sist oppdatert: 2024-10-18bibliografisk kontrollert
Organisasjoner
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0002-8681-9572