Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Alternativa namn
Publikationer (10 of 21) Visa alla publikationer
Chen, X., Liu, K., Peng, S., Zhang, L., He, S., Gorbatov, O. I. & Qu, X. (2025). Enhanced mechanical properties of the surface-modified CNTs reinforced 2195 aluminum-based composite. Materials Science & Engineering: A, 922, Article ID 147623.
Öppna denna publikation i ny flik eller fönster >>Enhanced mechanical properties of the surface-modified CNTs reinforced 2195 aluminum-based composite
Visa övriga...
2025 (Engelska)Ingår i: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 922, artikel-id 147623Artikel i tidskrift (Refereegranskat) Published
Ort, förlag, år, upplaga, sidor
Elsevier Ltd, 2025
Nationell ämneskategori
Kompositmaterial och -teknik
Forskningsämne
Tillämpad fysik
Identifikatorer
urn:nbn:se:ltu:diva-111031 (URN)10.1016/j.msea.2024.147623 (DOI)2-s2.0-85210631517 (Scopus ID)
Tillgänglig från: 2024-12-11 Skapad: 2024-12-11 Senast uppdaterad: 2024-12-11
Liu, Y., Zhao, W., He, S., Lin, Z., Zhang, L., Chen, X., . . . Qu, X. (2025). First-principles study of solute segregation and its effects on the cohesion of the Fe/Y2Ti2O7 interface in ferritic ODS alloy with He. Journal of Nuclear Materials, 604, Article ID 155515.
Öppna denna publikation i ny flik eller fönster >>First-principles study of solute segregation and its effects on the cohesion of the Fe/Y2Ti2O7 interface in ferritic ODS alloy with He
Visa övriga...
2025 (Engelska)Ingår i: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 604, artikel-id 155515Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The solute segregation and its effects on the cohesion of the Fe/Y₂Ti₂O₇ interface in ferritic oxide dispersion strengthened (ODS) alloy have been investigated using first-principles calculations. The computational results indicate that W, Cr, Al, Nb, Zr, and Hf are prone to segregate to the Fe/Y₂Ti₂O₇ interface and enhance the cohesive strength of the Fe/Y₂Ti₂O₇ interface, improving its stability. He atoms exhibit a strong tendency to segregate at the Fe/Y₂Ti₂O₇ interface, leading to embrittlement of the interface. Moreover, in the case of co-existing of W, Cr, Al, Nb, Zr, and Hf with He atoms, it is found that W, Cr, and Al increase the segregation energy of He at the Fe/Y₂Ti₂O₇ interface. This promotes the diffusion of He from the Fe/Y₂Ti₂O₇ interface into the bulk of the Y₂Ti₂O₇, thereby reducing He-induced embrittlement at the Fe/Y₂Ti₂O₇ interface. Finally, the electronic structures of the Fe/Y₂Ti₂O₇ interfaces with and without solute elements, as well as the interaction between metallic solutes and He, have been discussed in detail to reveal the mechanisms of alloying reduction effect on He-segregated embrittlement at the Fe/Y₂Ti₂O₇ interface. The results obtained from this work suggest that adjusting the alloying components in ODS alloys can improve the radiation resistance of the alloy, providing theoretical guidance for the design and optimization of ferritic ODS alloys.

Ort, förlag, år, upplaga, sidor
Elsevier, 2025
Nyckelord
Ferritic ODS alloy, Fe/Y2Ti2O7 interface, Alloying elements, Segregation behavior, He trapping
Nationell ämneskategori
Metallurgi och metalliska material Den kondenserade materiens fysik Fysikalisk kemi
Forskningsämne
Tillämpad fysik
Identifikatorer
urn:nbn:se:ltu:diva-110807 (URN)10.1016/j.jnucmat.2024.155515 (DOI)001360636000001 ()2-s2.0-85209137356 (Scopus ID)
Anmärkning

Godkänd;2024;Nivå 0;2024-12-03 (signyg);

National Natural Science Foundation of China (52074032; 52101152; 52474387; 52374366; 51604240; 52103363; 52071136); Natural Science Foundation of Hunan Province (2022JJ40438; 2022JJ30564); Shenzhen Science and Technology Program (CJGJZD20230724093159002); Guangdong Basic and Applied Basic Research Foundation (2021B1515120033); Beijing Natural Science Foundation (2232084); Jiangxi Province “Double Thousand Plan” Talent Project (203075000041); National Key Research and Development Program of China (2021YFB3701900); Educational Commission of Hunan Province of China (23B0136)

Tillgänglig från: 2024-11-25 Skapad: 2024-11-25 Senast uppdaterad: 2024-12-17Bibliografiskt granskad
Liu, Y., Lin, Z., He, S., Zhang, L., Chen, X., Tan, Q., . . . Qu, X. (2024). First-principles investigation on the thermodynamic and mechanical properties of Y4Zr3O12 and Y2Ti2O7 oxides in ferritic alloy under helium environment. Journal of Materials Research and Technology, 29, 1872-1886
Öppna denna publikation i ny flik eller fönster >>First-principles investigation on the thermodynamic and mechanical properties of Y4Zr3O12 and Y2Ti2O7 oxides in ferritic alloy under helium environment
Visa övriga...
2024 (Engelska)Ingår i: Journal of Materials Research and Technology, ISSN 2238-7854, E-ISSN 2214-0697, Vol. 29, s. 1872-1886Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This study investigates the thermodynamic and mechanical properties of Y4Zr3O12 and Y2Ti2O7 oxides in ferritic alloys with and without Helium utilizing a systematic first-principles approach. Firstly, the atomic arrangement of Y and Zr atoms at cation 18f sites in δ-(Y–Zr–O) oxide is identified, while it is found that Y4Zr3O12 exhibits a more robust formation tendency than Y2Ti2O7. Furthermore, it is noted that both Y4Zr3O12 and Y2Ti2O7 oxides demonstrate a prior ability to trap Helium compared to the bcc-Fe matrix, which leads to a substantial enhancement on the stiffness of both oxides. The elastic moduli of both Y4Zr3O12 and Y2Ti2O7 oxide exhibit a gradual increase with the growing Helium concentration. As a result, the enhanced shear modulus of oxides and sustained shear modulus of the bcc-Fe matrix collectively contribute to the overall strength of ferritic alloys under Helium environments. The findings in this work propose valuable insights for guiding critical strategies in the design of high-performance oxide-dispersion-strengthened ferritic alloys, particularly for applications in Helium environments.

Ort, förlag, år, upplaga, sidor
Elsevier, 2024
Nyckelord
Ferritic alloys, First-principles calculations, Helium, Y2Ti2O7, Y4Zr3O12
Nationell ämneskategori
Materialteknik Metallurgi och metalliska material
Forskningsämne
Tillämpad fysik
Identifikatorer
urn:nbn:se:ltu:diva-104310 (URN)10.1016/j.jmrt.2024.01.192 (DOI)001178241200001 ()2-s2.0-85184072885 (Scopus ID)
Anmärkning

Godkänd;2024;Nivå 0;2024-04-08 (marisr);

Funder: State Key Laboratory of Powder Metallurgy of Central South University (52071136); Educational Commission of Hunan Province of China (23B0136); National Natural Science Foundation of China (51604240, 51974029, 52074032, 52374366); Provincial Natural Science Foundation of Hunan (2022JJ30564, 2022JJ40438); Beijing Natural Science Foundation (2232084, 52101152); Guangdong Basic and Applied Basic Research Foundation (2021B1515120033); Central South University; State Key Laboratory of Powder Metallurgy; Basic and Applied Basic Research Foundation of Guangdong Province; Natural Science Foundation of Beijing Municipality;

Full text license: CC BY-NC-ND

Tillgänglig från: 2024-02-20 Skapad: 2024-02-20 Senast uppdaterad: 2024-11-20Bibliografiskt granskad
Liu, Y., Pang, X., He, S., Zhang, L., Lin, Z., Du, P., . . . Qu, X. (2024). In-situ formation of AlN nanoparticles in NiAl-strengthened ferritic alloy with enhanced high-temperature mechanical properties via SLM fabrication. Materials Science & Engineering: A, 899, Article ID 146460.
Öppna denna publikation i ny flik eller fönster >>In-situ formation of AlN nanoparticles in NiAl-strengthened ferritic alloy with enhanced high-temperature mechanical properties via SLM fabrication
Visa övriga...
2024 (Engelska)Ingår i: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 899, artikel-id 146460Artikel i tidskrift (Refereegranskat) Published
Ort, förlag, år, upplaga, sidor
Elsevier Ltd, 2024
Nationell ämneskategori
Metallurgi och metalliska material
Forskningsämne
Tillämpad fysik
Identifikatorer
urn:nbn:se:ltu:diva-105199 (URN)10.1016/j.msea.2024.146460 (DOI)001230197300001 ()2-s2.0-85190354891 (Scopus ID)
Anmärkning

Godkänd;2024;Nivå 0;2024-04-22 (hanlid);

Funder: National Natural Science Foundation of China (52074032, 52374366, 52101152, 51604240, 52103363); Natural Science Foundation of Hunan Province (2022JJ30564, 2022JJ40438); Guangdong Basic and Applied Basic Research Foundation (2021B1515120033); Beijing Natural Science Foundation (2232084); National Key Research and Development Program of China (2021YFB3701900); Educational Commission of Hunan Province of China (23B0136)

Tillgänglig från: 2024-04-22 Skapad: 2024-04-22 Senast uppdaterad: 2024-11-20Bibliografiskt granskad
Stroev, A., Gorbatov, O. I., Gornostyrev, Y. .. & Korzhavyi, P. A. (2023). Ab-initio based modeling of precipitation in Al–(Sc,Zr) alloy. Formation and stability of a core–shell structure. Computational materials science, 218, Article ID 111912.
Öppna denna publikation i ny flik eller fönster >>Ab-initio based modeling of precipitation in Al–(Sc,Zr) alloy. Formation and stability of a core–shell structure
2023 (Engelska)Ingår i: Computational materials science, ISSN 0927-0256, E-ISSN 1879-0801, Vol. 218, artikel-id 111912Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Statistical alloy theory based on the Master Equation approach with ab initio calculated interatomic interactions is employed to investigate the growth of precipitates at the early stages of solid solution decomposition, as well as the dissolution of small precipitates during the coarsening stage, upon simulated annealing of ternary Al–Sc–Zr alloys. We show, in agreement with previous studies, that the Zr alloying to Al–Sc alloys promotes the formation of core–shell nanoparticles whose structure is found to be very sensitive to the parameters characterizing the solute diffusion rates in the alloy. We demonstrate that the core–shell structure of precipitates slows down the dissolution of small particles, thus hampering the microstructure coarsening at elevated temperatures.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023
Nyckelord
Ab initio based modeling, Aluminum-based alloys, Core–shell structure, Precipitation
Nationell ämneskategori
Metallurgi och metalliska material Fysikalisk kemi
Forskningsämne
Tillämpad fysik
Identifikatorer
urn:nbn:se:ltu:diva-94661 (URN)10.1016/j.commatsci.2022.111912 (DOI)000910752000003 ()2-s2.0-85142505328 (Scopus ID)
Anmärkning

Validerad;2022;Nivå 2;2022-12-07 (hanlid);

Funder: Russian Science Foundation (18-12-00366)

Tillgänglig från: 2022-12-07 Skapad: 2022-12-07 Senast uppdaterad: 2024-04-22Bibliografiskt granskad
Zhang, L., Wen, Y., Liu, Y., Quan, F., Han, J., Yang, S., . . . Qu, X. (2023). Cr-promoted formation of B2+L21 composite nanoprecipitates and enhanced mechanical properties in ferritic alloy. Acta Materialia, 243, Article ID 118506.
Öppna denna publikation i ny flik eller fönster >>Cr-promoted formation of B2+L21 composite nanoprecipitates and enhanced mechanical properties in ferritic alloy
Visa övriga...
2023 (Engelska)Ingår i: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 243, artikel-id 118506Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The critical role of Cr on nanoprecipitates and the mechanical property of Fe-Ni-Al-Mn ferritic steel were systematically studied in this research. The two types of nanoprecipitates in the Cr added alloy were characterized through a combination of aberration-corrected scanning transmission electron microscopy and atom probe tomography techniques. The atomic-scale structure and chemistry analysis reveal that fine globular-shaped precipitates have a B2-structure, while coarse elongated precipitates have B2+L21 composite structures. The first-principles calculations reveal that the segregation of Cr at the L21/bcc interface reduces the interface and strain energy for the nucleation of the L21-type phase. With the increasing precipitate size, the B2 structure is gradually transformed to L21 to reduce elastic strain, thereby promoting the formation of B2+L21 composite nanoprecipitate. The addition of 10 wt% Cr results in an increase of ∼275 MPa in yield strength without obvious loss of ductility. The effect of Cr on the strength mechanisms were quantitatively analyzed, revealing that the strength of the ferritic alloy mainly improved by the formation of B2+L21 composite nanoprecipitate, which is more effective than solid solution strengthening.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023
Nyckelord
Ferritic, Precipitation strengthening, Microstructure, Ni2AlMn, Chromium
Nationell ämneskategori
Metallurgi och metalliska material
Forskningsämne
Tillämpad fysik
Identifikatorer
urn:nbn:se:ltu:diva-94744 (URN)10.1016/j.actamat.2022.118506 (DOI)000899518800005 ()2-s2.0-85141890942 (Scopus ID)
Anmärkning

Godkänd;2022;Nivå 0;2022-12-13 (hanlid);

Funder: National Key R&D Program of China (2021YFB3704003); Natural Science Foundation of China (52074032, 51974029, 51604240, 52101152); Guangdong Basic and Applied Basic Research Foundation (2021B1515120033); Foshan Municipal People’s Government Science and Technology Innovation Special Fund Project (BK20BE015); 111 Project (B170003)

Tillgänglig från: 2022-12-13 Skapad: 2022-12-13 Senast uppdaterad: 2023-05-08Bibliografiskt granskad
Chen, X., Peng, S., Liu, Y., Bai, S., Zhang, L., He, S., . . . Qu, X. (2023). Ductility deterioration induced by L21 phase in ferritic alloy through Ti addition. Journal of Materials Research and Technology, 25, 3273-3284
Öppna denna publikation i ny flik eller fönster >>Ductility deterioration induced by L21 phase in ferritic alloy through Ti addition
Visa övriga...
2023 (Engelska)Ingår i: Journal of Materials Research and Technology, ISSN 2238-7854, E-ISSN 2214-0697, Vol. 25, s. 3273-3284Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Ductility deterioration induced by L21-Ni2AlTi precipitates in the aged ferritic alloys was examined systematically by using a combination of scanning transmission electron microscope (STEM), mechanical tests and first-principles thermodynamic calculations. The experimental studies revealed that the strength and hardness of the aged Fe–10Cr–5Ni–1Al–1Ti ferritic alloy containing B2–NiAl and L21-Ni2AlTi precipitates were higher than that of the aged Fe–10Cr–5Ni–1Al ferritic alloy containing NiAl precipitates, whereas the elongation-to-failure decreased dramatically from 9.3% to 0.3% indicating an obvious ductility deterioration due to the formation of L21-Ni2AlTi precipitates. This was also confirmed by the observation of fracture transition mode from dimpled failure to cleavage failure. The first-principles calculations, concerning the precipitate/matrix interface, were carried out to provide a theoretical analysis for the ductile–brittle transition by means of empirical ductility criteria ratios G/B and (C12–C44)/B as well as cleavage energy. The cleavage energy results indicated an intrinsic brittleness of the L21-Ni2AlTi phase and the L21-Ni2AlTi/BCC-Fe interface. Our analysis revealed that the intrinsic brittleness of L21-Ni2AlTi phase and L21-Ni2AlTi/BCC-Fe interface plays a vital role in determining the deformation behavior of the aged Fe–10Cr–5Ni–1Al–1Ti alloy.

Ort, förlag, år, upplaga, sidor
Elsevier Editora Ltda, 2023
Nyckelord
Cleavage energy, Ductility deterioration, First-principles calculations, L21-Ni2AlTi phase, L21-Ni2AlTi/BCC-Fe interface
Nationell ämneskategori
Metallurgi och metalliska material Den kondenserade materiens fysik
Forskningsämne
Tillämpad fysik
Identifikatorer
urn:nbn:se:ltu:diva-99297 (URN)10.1016/j.jmrt.2023.06.176 (DOI)001090501900001 ()2-s2.0-85163195492 (Scopus ID)
Anmärkning

Godkänd;2023;Nivå 0;2023-08-08 (joosat);

Funder: Natural Science Foundation of China (52074032, 51974029, 52101152, 52130407); Natural Science Foundation of Hunan Province (2022JJ30564, 2022JJ40438); Guangdong Basic and Applied Basic Research Foundation (2021B1515120033); Beijing Natural Science Foundation (2232084); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China

Licens fulltext: CC BY-NC-ND License

Tillgänglig från: 2023-08-08 Skapad: 2023-08-08 Senast uppdaterad: 2024-11-20Bibliografiskt granskad
He, S., Tan, Q., Chen, X., Liu, Y., Gorbatov, O. I. & Peng, P. (2023). First-principles study of Re-W interactions and their effects on the mechanical properties of γ/γ' interface in Ni-based single-crystal alloys. Materials Today Communications, 36, Article ID 106662.
Öppna denna publikation i ny flik eller fönster >>First-principles study of Re-W interactions and their effects on the mechanical properties of γ/γ' interface in Ni-based single-crystal alloys
Visa övriga...
2023 (Engelska)Ingår i: Materials Today Communications, ISSN 2352-4928, Vol. 36, artikel-id 106662Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The distribution of solutes and their interactions play a crucial role in determining the mechanical properties of the γ/γ′ interface in Ni-based single-crystal alloys. In this study, atomic interactions between Re and W and their alloying effects on the inter-phase cohesion of the γ/γ′ interface are investigated by first-principles calculations. Our results show that W atom exhibits a preference for partitioning into the γ phase, while the stability of the γ/γ′ interface can be enhanced due to the partitioning of W to the γ′ phase. Moreover, our results reveal that partitioned W atoms in the γ′ phase contribute to the strengthening of the γ/γ′ interface. Conversely, the dissolution of W atoms in the γ phase weakens the inter-phase cohesion. However, this detrimental effect can be mitigated by introducing of Re into the γ/γ′ interface. Partitioning of Re and W into separate phases yields minimal alterations in interaction energies, resulting in a notable enhancement of inter-phase cohesion when compared to the partitioning of Re and W within γ phase of the γ/γ′ interface. Additionally, the partitioning of solute atoms at the γ/γ′ interface leads to local lattice distortion and interfacial energy reduction, which contribute to the enhancement of inter-phase cohesion of the γ/γ′ interface. As a result, a model is proposed for interpretation of crack propagation at the γ/γ′ interface at the threshold region with the presence of tensile stress in Ni-based single-crystal alloys.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023
Nyckelord
First-principles calculations, Nickel-based single-crystal alloys, γ/γ′ interface, Inter-phase cohesion, Rhenium and tungsten
Nationell ämneskategori
Den kondenserade materiens fysik Metallurgi och metalliska material
Forskningsämne
Tillämpad fysik
Identifikatorer
urn:nbn:se:ltu:diva-99301 (URN)10.1016/j.mtcomm.2023.106662 (DOI)001148083900001 ()2-s2.0-85165339221 (Scopus ID)
Anmärkning

Godkänd;2023;Nivå 0;2023-08-08 (hanlid);

Funder: National Natural Science Foundation of China (52101152, 51604240, 52074032, 51974029, 52071136); Provincial Natural Science Foundation of Hunan (2022JJ40438); Provincial Natural Science Foundation of Hunan (2022JJ30564); State Key Laboratory of Powder Metallurgy of Central South University; Guangdong Basic and Applied Basic Research Foundation (2021B1515120033); Beijing Natural Science Foundation (2232084)

Tillgänglig från: 2023-08-08 Skapad: 2023-08-08 Senast uppdaterad: 2024-11-20Bibliografiskt granskad
He, S., Gorbatov, O. I. & Peng, P. (2023). First-principles-based statistical thermodynamic study of atomic interactions and phase stability in Ni-rich Ni-W alloys. Calphad, 82, Article ID 102591.
Öppna denna publikation i ny flik eller fönster >>First-principles-based statistical thermodynamic study of atomic interactions and phase stability in Ni-rich Ni-W alloys
2023 (Engelska)Ingår i: Calphad, ISSN 0364-5916, E-ISSN 1873-2984, Vol. 82, artikel-id 102591Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Atomic interactions and phase stability in Ni-rich Ni-W alloys have been investigated by using first-principles methods and statistical thermodynamic simulations. First-principles methods have been employed to explore lattice expansion, enthalpies of formation, atomic interactions, and ordering energies of ordered as well as random structures in Ni-rich Ni-W alloys with consideration of the corresponding temperature-dependent magnetic states. It is found that atomic interactions in Ni-rich Ni-W alloys depend on alloy composition, atomic volume, and magnetic state. Nevertheless, the magnetic state of Ni greatly affects the formation enthalpies, which leads to a diverse phase separation behavior at finite temperature in Ni-rich Ni-W alloys. By using atomic interactions that reproduce the ordering energies obtained in the direct total energy calculations, our statistical thermodynamic simulations of chemical short-range order results show that fcc-based ordered D1a, D022, and Pt2Mo phases can be observed in Ni-20 at.% W, Ni-25 at.% W, and Ni-33 at.% W alloys, respectively. Moreover, the short-range order diffuse intensity and atomic stacking for aforementioned ordered phases have been analyzed, the order–disorder transition behaviors have been also investigated in detail for the Ni-rich Ni-W alloys up to 35 at.% W with comparison of current experimental results. Both magnetic state and alloy composition have the potential to induce the formation of distinct ordered phases, offering promising avenues for designing Ni-based alloys. The methodologies we used in this study can be applied to investigate the atomic interactions as well as phase stability in other alloy systems.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023
Nyckelord
First-principles calculation, Statistical thermodynamic modeling, Atomic interactions, Nickel, Tungsten
Nationell ämneskategori
Metallurgi och metalliska material
Forskningsämne
Tillämpad fysik
Identifikatorer
urn:nbn:se:ltu:diva-99718 (URN)10.1016/j.calphad.2023.102591 (DOI)001053448000001 ()2-s2.0-85174948056 (Scopus ID)
Anmärkning

Godkänd;2023;Nivå 0;2023-08-15 (joosat);

Funder: National Natural Science Foundation of China (52101152, 52071136); Provincial Natural Science Foundation of Hunan, China (2022JJ40438)

Tillgänglig från: 2023-08-15 Skapad: 2023-08-15 Senast uppdaterad: 2024-03-12Bibliografiskt granskad
Tan, Q., He, S., Chen, X., Liu, Y., Gorbatov, O. I. & Peng, P. (2023). Hydrogen-enhanced decohesion mechanism of the Ni-Ni3X interfaces in precipitation-hardened Ni-based alloys. Journal of Alloys and Compounds, 963, Article ID 171186.
Öppna denna publikation i ny flik eller fönster >>Hydrogen-enhanced decohesion mechanism of the Ni-Ni3X interfaces in precipitation-hardened Ni-based alloys
Visa övriga...
2023 (Engelska)Ingår i: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 963, artikel-id 171186Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Ni and its alloys are susceptible to hydrogen embrittlement. In this study, we investigate the phenomenon of hydrogen-enhanced decohesion at inter-phase interfaces in precipitation-hardened Ni-based alloys using a systematic first-principles approach. We demonstrate that hydrogen atoms primarily prefer to localize at the Ni3Al phase in the Ni/Ni3Al interface, while they tend to be trapped by Ni in the Ni/Ni3Nb interface. Our findings reveal that hydrogen induces inter-phase embrittlement in both the Ni/Ni3Al and Ni/Ni3Nb interfaces. Moreover, we show that the hydrogen-enhanced decohesion at these interfaces is influenced by various factors such as hydrogen pressure, hydrogen content, temperature, and strain. Finally, we discuss in detail the hydrogen-enhanced decohesion mechanisms at the Ni/Ni3Al and Ni/Ni3Nb interfaces, including their electronic structures, energy landscape of hydrogen at trapping sites, and schematics of crack propagation.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023
Nyckelord
Hydrogen embrittlement, Hydrogen segregation, Hydrogen-enhanced decohesion mechanism (HEDE), Ni3X-type precipitates, Precipitation-hardened Ni-based alloys
Nationell ämneskategori
Metallurgi och metalliska material
Forskningsämne
Tillämpad fysik
Identifikatorer
urn:nbn:se:ltu:diva-99409 (URN)10.1016/j.jallcom.2023.171186 (DOI)001036781100001 ()2-s2.0-85164406393 (Scopus ID)
Anmärkning

Godkänd;2023;Nivå 0;2023-08-09 (hanlid);

Funder: National Natural Science Foundation of China (52101152, 51604240, 52074032, 51974029. 52071136); Provincial Natural Science Foundation of Hunan (2022JJ40438, 2022JJ30564); State Key Laboratory of Powder Metallurgy of Central South University; Guangdong Basic and Applied Basic Research Foundation (2021B1515120033); Beijing Natural Science Foundation (2232084)

Tillgänglig från: 2023-08-09 Skapad: 2023-08-09 Senast uppdaterad: 2023-08-09Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0001-8629-5193

Sök vidare i DiVA

Visa alla publikationer