Ändra sökning
Länk till posten
Permanent länk

Direktlänk
BETA
Publikationer (10 of 41) Visa alla publikationer
Alzubaidi, A., Solaiman, E., Patel, P. & Mitra, K. (2019). Blockchain-Based SLA Management in the Context of IoT. IT Professional Magazine, 21(4), 33-40
Öppna denna publikation i ny flik eller fönster >>Blockchain-Based SLA Management in the Context of IoT
2019 (Engelska)Ingår i: IT Professional Magazine, ISSN 1520-9202, E-ISSN 1941-045X, Vol. 21, nr 4, s. 33-40Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In pursuit of effective service level agreement (SLA) monitoring and enforcement in the context of Internet of Things (IoT) applications, this article regards SLA management as a distrusted process that should not be handled by a single authority. Here, we aim to justify our view on the matter and propose a conceptual blockchain-based framework to cope with some limitations associated with traditional SLA management approaches.

Ort, förlag, år, upplaga, sidor
IEEE, 2019
Nyckelord
Internet of Things, Monitoring, Cloud computing, Ecosystems, Blockchain, Task analysis, Contracts
Nationell ämneskategori
Medieteknik
Forskningsämne
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-75585 (URN)10.1109/MITP.2019.2909216 (DOI)000476789400006 ()2-s2.0-85069776772 (Scopus ID)
Anmärkning

Validerad;2019;Nivå 2;2019-08-19 (johcin)

Tillgänglig från: 2019-08-19 Skapad: 2019-08-19 Senast uppdaterad: 2019-08-19Bibliografiskt granskad
Li, J., Zhang, K., Yang, X., Wei, P., Wang, J., Mitra, K. & Ranjan, R. (2019). Category Preferred Canopy-K-means based Collaborative Filtering algorithm. Future generations computer systems, 93, 1046-1054
Öppna denna publikation i ny flik eller fönster >>Category Preferred Canopy-K-means based Collaborative Filtering algorithm
Visa övriga...
2019 (Engelska)Ingår i: Future generations computer systems, ISSN 0167-739X, E-ISSN 1872-7115, Vol. 93, s. 1046-1054Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

It is the era of information explosion and overload. The recommender systems can help people quickly get the expected information when facing the enormous data flood. Therefore, researchers in both industry and academia are also paying more attention to this area. The Collaborative Filtering Algorithm (CF) is one of the most widely used algorithms in recommender systems. However, it has difficulty in dealing with the problems of sparsity and scalability of data. This paper presents Category Preferred Canopy-K-means based Collaborative Filtering Algorithm (CPCKCF) to solve the challenges of sparsity and scalability of data. In particular, CPCKCF proposes the definition of the User-Item Category Preferred Ratio (UICPR), and use it to compute the UICPR matrix. The results can be applied to cluster the user data and find the nearest users to obtain prediction ratings. Our experimentation results performed using the MovieLens dataset demonstrates that compared with traditional user-based Collaborative Filtering algorithm, the proposed CPCKCF algorithm proposed in this paper improved computational efficiency and recommendation accuracy by 2.81%.

Ort, förlag, år, upplaga, sidor
Elsevier, 2019
Nationell ämneskategori
Medieteknik
Forskningsämne
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-68939 (URN)10.1016/j.future.2018.04.025 (DOI)000459365800085 ()2-s2.0-85049085827 (Scopus ID)
Anmärkning

Validerad;2019;Nivå 2;2019-03-27 (inah)

Tillgänglig från: 2018-05-28 Skapad: 2018-05-28 Senast uppdaterad: 2019-03-27Bibliografiskt granskad
Alhamazani, K., Ranjan, R., Jayaraman, P., Mitra, K., Liu, C., Rabhi, F., . . . Wang, L. (2019). Cross-Layer Multi-Cloud Real-Time Application QoS Monitoring and Benchmarking As-a-Service Framework (ed.). I E E E Transactions on Cloud Computing, 7(1), 48-61
Öppna denna publikation i ny flik eller fönster >>Cross-Layer Multi-Cloud Real-Time Application QoS Monitoring and Benchmarking As-a-Service Framework
Visa övriga...
2019 (Engelska)Ingår i: I E E E Transactions on Cloud Computing, ISSN 2168-7161, Vol. 7, nr 1, s. 48-61Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Cloud computing provides on-demand access to affordable hardware (e.g., multi-core CPUs, GPUs, disks, and networking equipment) and software (e.g., databases, application servers and data processing frameworks) platforms with features such as elasticity, pay-per-use, low upfront investment and low time to market. This has led to the proliferation of business critical applications that leverage various cloud platforms. Such applications hosted on single/multiple cloud provider platforms have diverse characteristics requiring extensive monitoring and benchmarking mechanisms to ensure run-time Quality of Service (QoS) (e.g., latency and throughput). This paper proposes, develops and validates CLAMBS—Cross-Layer Multi Cloud Application Monitoring and Benchmarking as-a-Service for efficient QoS monitoring and benchmarking of cloud applications hosted on multi-clouds environments. The major highlight of CLAMBS is its capability of monitoring and benchmarking individual application components such as databases and web servers, distributed across cloud layers (*-aaS), spread among multiple cloud providers. We validate CLAMBS using prototype implementation and extensive experimentation and show that CLAMBS efficiently monitors and benchmarks application components on multi-cloud platforms including Amazon EC2 and Microsoft Azure.  

Ort, förlag, år, upplaga, sidor
Los Alamitos: IEEE, 2019
Nyckelord
Cloud Computing, Benchmarking, Cloud Monitoring, Information technology - Systems engineering, Informationsteknik, Systemteknik
Nationell ämneskategori
Medieteknik
Forskningsämne
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-5655 (URN)10.1109/TCC.2015.2441715 (DOI)000460668300005 ()2-s2.0-85029735760 (Scopus ID)3d0653ee-adf9-462f-a6bc-f5dcec1c3dc3 (Lokalt ID)3d0653ee-adf9-462f-a6bc-f5dcec1c3dc3 (Arkivnummer)3d0653ee-adf9-462f-a6bc-f5dcec1c3dc3 (OAI)
Anmärkning

Validerad;2019;Nivå 2;2019-03-18 (oliekm)

Tillgänglig från: 2016-09-29 Skapad: 2016-09-29 Senast uppdaterad: 2019-04-12Bibliografiskt granskad
Noor, A., Mitra, K., Solaiman, E., Souza, A., Jha, D. N., Demirbaga, U., . . . Ranjan, R. (2019). Cyber-physical application monitoring across multiple clouds. Computers & electrical engineering, 77, 314-324
Öppna denna publikation i ny flik eller fönster >>Cyber-physical application monitoring across multiple clouds
Visa övriga...
2019 (Engelska)Ingår i: Computers & electrical engineering, ISSN 0045-7906, E-ISSN 1879-0755, Vol. 77, s. 314-324Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Cyber-physical systems (CPS) integrate cyber-infrastructure comprising computers and networks with physical processes. The cyber components monitor, control, and coordinate the physical processes typically via actuators. As CPS are characterized by reliability, availability, and performance, they are expected to have a tremendous impact not only on industrial systems but also in our daily lives. We have started to witness the emergence of cloud-based CPS. However, cloud systems are prone to stochastic conditions that may lead to quality of service degradation. In this paper, we propose M2CPA - a novel framework for multi-virtualization, and multi-cloud monitoring in cloud-based cyber-physical systems. M2CPA monitors the performance of application components running inside multiple virtualization platforms deployed on multiple clouds. M2CPA is validated through extensive experimental analysis using a real testbed comprising multiple public clouds and multi-virtualization technologies.

Ort, förlag, år, upplaga, sidor
Elsevier, 2019
Nyckelord
Cyber-physical system, Monitoring, Linear road benchmark, QoS, Virtualization, Cloud computing
Nationell ämneskategori
Medieteknik
Forskningsämne
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-75203 (URN)10.1016/j.compeleceng.2019.06.007 (DOI)2-s2.0-85067390602 (Scopus ID)
Anmärkning

Validerad;2019;Nivå 2;2019-07-03 (svasva)

Tillgänglig från: 2019-07-03 Skapad: 2019-07-03 Senast uppdaterad: 2019-07-03Bibliografiskt granskad
Yang, C.-T., Chen, S.-T., Liu, J.-C., Yang, Y.-Y., Mitra, K. & Ranjan, R. (2019). Implementation of a real-time network traffic monitoring service with network functions virtualization. Future generations computer systems, 93, 687-701
Öppna denna publikation i ny flik eller fönster >>Implementation of a real-time network traffic monitoring service with network functions virtualization
Visa övriga...
2019 (Engelska)Ingår i: Future generations computer systems, ISSN 0167-739X, E-ISSN 1872-7115, Vol. 93, s. 687-701Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The Network Functions Virtualization (NFV) extends the functionality provided by Software-Defined Networking (SDN). It is a virtualization technology that aims to replace the functionality provided by traditional networking hardware using software solutions. Thereby, enabling cheaper and efficient network deployment and management. The use of NFV and SDN is anticipated to enhance the performance of Infrastructure-as-a-Service (IaaS) clouds. However, due to the presence of a large number of network devices in IaaS clouds offering a plethora of networked services, there is need to develop a traffic monitoring system for the efficient network. This paper proposes and validates an extensible SDN and NFV-enabled network traffic monitoring system. Using extensive experiments, we show that the proposed system can closely match the performance of traditional networks at cheaper costs and by adding more flexibility to network management tasks.

Ort, förlag, år, upplaga, sidor
Elsevier, 2019
Nyckelord
Software-defined networking, Network functions virtualization, OpenFlow, Virtualized switch, Network traffic monitoring
Nationell ämneskategori
Medieteknik
Forskningsämne
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-71009 (URN)10.1016/j.future.2018.08.050 (DOI)000459365800054 ()2-s2.0-85056861664 (Scopus ID)
Anmärkning

Validerad;2018;Nivå 2;2018-12-03 (svasva)

Tillgänglig från: 2018-09-27 Skapad: 2018-09-27 Senast uppdaterad: 2019-03-27Bibliografiskt granskad
Palm, E., Mitra, K., Saguna, S. & Åhlund, C. (2017). A Bayesian system for cloud performance diagnosis and prediction. In: Proceedings of the International Conference on Cloud Computing Technology and Science, CloudCom: . Paper presented at 8th IEEE International Conference on Cloud Computing Technology and Science, CloudCom 2016, Luxembourg, 12-15 December 2016 (pp. 371-374). Piscataway, NJ: IEEE Computer Society, Article ID 7830706.
Öppna denna publikation i ny flik eller fönster >>A Bayesian system for cloud performance diagnosis and prediction
2017 (Engelska)Ingår i: Proceedings of the International Conference on Cloud Computing Technology and Science, CloudCom, Piscataway, NJ: IEEE Computer Society, 2017, s. 371-374, artikel-id 7830706Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The stochastic nature of the cloud systems makes cloud quality of service (QoS) performance diagnosis and prediction a challenging task. A plethora of factors including virtual machine types, data centre regions, CPU types, time-of-the-day, and day-of-the-week contribute to the variability of the cloud QoS. The state-of-the-art methods for cloud performance diagnosis do not capture and model complex and uncertain inter-dependencies between these factors for efficient cloud QoS diagnosis and prediction. This paper presents ALPINE, a proof-of-concept system based on Bayesian networks. Using a real-life dataset, we demonstrate that ALPINE can be utilised for efficient cloud QoS diagnosis and prediction under stochastic cloud conditions

Ort, förlag, år, upplaga, sidor
Piscataway, NJ: IEEE Computer Society, 2017
Serie
International Conference on Cloud Computing Technology and Science, ISSN 2330-2194
Nationell ämneskategori
Medieteknik
Forskningsämne
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-62202 (URN)10.1109/CloudCom.2016.0065 (DOI)000398536300049 ()2-s2.0-85013025438 (Scopus ID)9781509014453 (ISBN)
Konferens
8th IEEE International Conference on Cloud Computing Technology and Science, CloudCom 2016, Luxembourg, 12-15 December 2016
Tillgänglig från: 2017-02-28 Skapad: 2017-02-28 Senast uppdaterad: 2019-04-03Bibliografiskt granskad
Mitra, K., Saguna, S., Åhlund, C. & Ranjan, R. (2017). ALPINE: A Bayesian System For Cloud Performance Diagnosis And Prediction. In: 2017 IEEE International Conference on Services Computing (SCC): . Paper presented at 14th IEEE International Conference on Services Computing (SCC), Honolulu, HI, USA, 25-30 June 2017 (pp. 281-288). Piscataway, NJ: IEEE, Article ID 8034996.
Öppna denna publikation i ny flik eller fönster >>ALPINE: A Bayesian System For Cloud Performance Diagnosis And Prediction
2017 (Engelska)Ingår i: 2017 IEEE International Conference on Services Computing (SCC), Piscataway, NJ: IEEE, 2017, s. 281-288, artikel-id 8034996Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Cloud performance diagnosis and prediction is a challenging problem due to the stochastic nature of the cloud systems. Cloud performance is affected by a large set of factors such as virtual machine types, regions, workloads, wide area network delay and bandwidth. Therefore, necessitating the determination of complex relationships between these factors. The current research in this area does not address the challenge of modeling the uncertain and complex relationships between these factors. Further, the challenge of cloud performance prediction under uncertainty has not garnered sufficient attention. This paper proposes, develops and validates ALPINE, a Bayesian system for cloud performance diagnosis and prediction. ALPINE incorporates Bayesian networks to model uncertain and complex relationships between several factors mentioned above. It handles missing, scarce and sparse data to diagnose and predict stochastic cloud performance efficiently. We validate our proposed system using extensive real data and show that it predicts cloud performance with high accuracy of 91.93%.

Ort, förlag, år, upplaga, sidor
Piscataway, NJ: IEEE, 2017
Nyckelord
Bayesian Network, Cloud Computing, Diagnosis, Quality of Service, Prediction
Nationell ämneskategori
Data- och informationsvetenskap Datavetenskap (datalogi) Annan data- och informationsvetenskap Datorsystem
Forskningsämne
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-64458 (URN)10.1109/SCC.2017.43 (DOI)000425931600036 ()2-s2.0-85032332116 (Scopus ID)978-1-5386-2005-2 (ISBN)
Konferens
14th IEEE International Conference on Services Computing (SCC), Honolulu, HI, USA, 25-30 June 2017
Tillgänglig från: 2017-06-25 Skapad: 2017-06-25 Senast uppdaterad: 2018-06-28Bibliografiskt granskad
Belyakhina, T., Zaslavsky, A., Mitra, K., Saguna, S. & Jayaraman, P. P. (2017). DisCPAQ: Distributed Context Acquisition and Reasoning for Personalized Indoor Air Quality Monitoring in IoT-Based Systems. In: Galinina O., Andreev S., Balandin S., Koucheryavy Y. (Ed.), Internet of Things, Smart Spaces, and Next Generation Networks and Systems: 17th International Conference, NEW2AN 2017, 10th Conference, ruSMART 2017, Third Workshop NsCC 2017, St. Petersburg, Russia, August 28–30, 2017, Proceedings. Paper presented at 17th International Conference on Next Generation Teletraffic and Wired/Wireless Advanced Networks and Systems, NEW2AN 2017, 10th Conference on Internet of Things and Smart Spaces, ruSMART 2017 and 3rd International Workshop on Nano-scale Computing and Communications, NsCC 2017, St. Petersburg, Russia, August 28–30, 2017 (pp. 75-86). Cham: Springer
Öppna denna publikation i ny flik eller fönster >>DisCPAQ: Distributed Context Acquisition and Reasoning for Personalized Indoor Air Quality Monitoring in IoT-Based Systems
Visa övriga...
2017 (Engelska)Ingår i: Internet of Things, Smart Spaces, and Next Generation Networks and Systems: 17th International Conference, NEW2AN 2017, 10th Conference, ruSMART 2017, Third Workshop NsCC 2017, St. Petersburg, Russia, August 28–30, 2017, Proceedings / [ed] Galinina O., Andreev S., Balandin S., Koucheryavy Y., Cham: Springer, 2017, s. 75-86Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The rapidly emerging Internet of Things supports many diverse applications including environmental monitoring. Air quality, both indoors and outdoors, proved to be a significant comfort and health factor for people. This paper proposes a smart context-aware system for indoor air quality monitoring and prediction called DisCPAQ. The system uses data streams from air quality measurement sensors to provide real-time personalised air quality service to users through a mobile app. The proposed system is agnostic to sensor infrastructure. The paper proposes a context model based on Context Spaces Theory, presents the architecture of the system and identifies challenges in developing large scale IoT applications. DisCPAQ implementation, evaluation and lessons learned are all discussed in the paper.

Ort, förlag, år, upplaga, sidor
Cham: Springer, 2017
Serie
Lecture Notes in Computer Science, ISSN 0302-9743 ; 10531
Nationell ämneskategori
Medieteknik
Forskningsämne
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-66097 (URN)10.1007/978-3-319-67380-6_7 (DOI)2-s2.0-85031425522 (Scopus ID)978-3-319-67379-0 (ISBN)978-3-319-67380-6 (ISBN)
Konferens
17th International Conference on Next Generation Teletraffic and Wired/Wireless Advanced Networks and Systems, NEW2AN 2017, 10th Conference on Internet of Things and Smart Spaces, ruSMART 2017 and 3rd International Workshop on Nano-scale Computing and Communications, NsCC 2017, St. Petersburg, Russia, August 28–30, 2017
Tillgänglig från: 2017-10-12 Skapad: 2017-10-12 Senast uppdaterad: 2019-04-03Bibliografiskt granskad
Zhalgasbekova, A., Zaslavsky, A., Mitra, K., Saguna, S. & Jayaraman, P. P. (2017). Opportunistic Data Collection for IoT-Based Indoor Air Quality Monitoring. In: Galinina O., Andreev S., Balandin S., Koucheryavy Y. (Ed.), Internet of Things, Smart Spaces, and Next Generation Networks and Systems: 17th International Conference, NEW2AN 2017, 10th Conference, ruSMART 2017, Third Workshop NsCC 2017, St. Petersburg, Russia, August 28–30, 2017, Proceedings. Paper presented at 17th International Conference on Next Generation Teletraffic and Wired/Wireless Advanced Networks and Systems, NEW2AN 2017, 10th Conference on Internet of Things and Smart Spaces, ruSMART 2017 and 3rd International Workshop on Nano-scale Computing and Communications, NsCC 2017, St. Petersburg, Russia, August 28–30, 2017 (pp. 53-65). Cham: Springer
Öppna denna publikation i ny flik eller fönster >>Opportunistic Data Collection for IoT-Based Indoor Air Quality Monitoring
Visa övriga...
2017 (Engelska)Ingår i: Internet of Things, Smart Spaces, and Next Generation Networks and Systems: 17th International Conference, NEW2AN 2017, 10th Conference, ruSMART 2017, Third Workshop NsCC 2017, St. Petersburg, Russia, August 28–30, 2017, Proceedings / [ed] Galinina O., Andreev S., Balandin S., Koucheryavy Y., Cham: Springer, 2017, s. 53-65Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Opportunistic sensing advance methods of IoT data collection using the mobility of data mules, the proximity of transmitting sensor devices and cost efficiency to decide when, where, how and at what cost collect IoT data and deliver it to a sink. This paper proposes, develops, implements and evaluates the algorithm called CollMule which builds on and extends the 3D kNN approach to discover, negotiate, collect and deliver the sensed data in an energy- and cost-efficient manner. The developed CollMule software prototype uses Android platform to handle indoor air quality data from heterogeneous IoT devices. The CollMule evaluation is based on performing rate, power consumption and CPU usage of single algorithm cycle. The outcomes of these experiments prove the feasibility of CollMule use on mobile smart devices.

Ort, förlag, år, upplaga, sidor
Cham: Springer, 2017
Serie
Lecture Notes in Computer Science, ISSN 0302-9743 ; 10531
Nationell ämneskategori
Medieteknik
Forskningsämne
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-66098 (URN)10.1007/978-3-319-67380-6_5 (DOI)2-s2.0-85031411967 (Scopus ID)978-3-319-67379-0 (ISBN)978-3-319-67380-6 (ISBN)
Konferens
17th International Conference on Next Generation Teletraffic and Wired/Wireless Advanced Networks and Systems, NEW2AN 2017, 10th Conference on Internet of Things and Smart Spaces, ruSMART 2017 and 3rd International Workshop on Nano-scale Computing and Communications, NsCC 2017, St. Petersburg, Russia, August 28–30, 2017
Tillgänglig från: 2017-10-12 Skapad: 2017-10-12 Senast uppdaterad: 2019-04-03Bibliografiskt granskad
Ranjan, R., Wang, L., Prakash Jayaraman, P., Mitra, K. & Georgakopoulos, D. (2017). Special issue on Big Data and Cloud of Things (CoT). Software, practice & experience, 47(3), 345-347
Öppna denna publikation i ny flik eller fönster >>Special issue on Big Data and Cloud of Things (CoT)
Visa övriga...
2017 (Engelska)Ingår i: Software, practice & experience, ISSN 0038-0644, E-ISSN 1097-024X, Vol. 47, nr 3, s. 345-347Artikel i tidskrift, Editorial material (Refereegranskat) Published
Nationell ämneskategori
Medieteknik
Forskningsämne
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-61505 (URN)10.1002/spe.2475 (DOI)000394957500001 ()2-s2.0-85011798146 (Scopus ID)
Tillgänglig från: 2017-01-18 Skapad: 2017-01-18 Senast uppdaterad: 2018-09-14Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0003-3489-7429

Sök vidare i DiVA

Visa alla publikationer