Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Publikationer (10 of 96) Visa alla publikationer
Vanhatalo, E., Bergquist, B., Arasteh-Khouy, I. & Larsson, D. (2024). Causal Effects of Railway Track Maintenance—An Experimental Case Study of Tamping. In: International Congress and Workshop on Industrial AI and eMaintenance 2023: . Paper presented at 7th International Congress and Workshop on Industrial AI and eMaintenance, IAI 2023, Luleå, Sweden, June 13-15, 2023. Springer Science and Business Media Deutschland GmbH
Öppna denna publikation i ny flik eller fönster >>Causal Effects of Railway Track Maintenance—An Experimental Case Study of Tamping
2024 (Engelska)Ingår i: International Congress and Workshop on Industrial AI and eMaintenance 2023, Springer Science and Business Media Deutschland GmbH , 2024Konferensbidrag, Publicerat paper (Övrigt vetenskapligt)
Ort, förlag, år, upplaga, sidor
Springer Science and Business Media Deutschland GmbH, 2024
Serie
Lecture Notes in Mechanical Engineering, ISSN 2195-4356, E-ISSN 2195-4364
Nationell ämneskategori
Tillförlitlighets- och kvalitetsteknik Infrastrukturteknik
Forskningsämne
Kvalitetsteknik och logistik; Drift och underhållsteknik
Identifikatorer
urn:nbn:se:ltu:diva-103886 (URN)10.1007/978-3-031-39619-9_6 (DOI)2-s2.0-85181981977 (Scopus ID)
Konferens
7th International Congress and Workshop on Industrial AI and eMaintenance, IAI 2023, Luleå, Sweden, June 13-15, 2023
Forskningsfinansiär
Trafikverket
Tillgänglig från: 2024-01-23 Skapad: 2024-01-23 Senast uppdaterad: 2024-01-23Bibliografiskt granskad
Munir, T., Hu, X., Kauppila, O. & Bergquist, B. (2023). Effect of measurement uncertainty on combined quality control charts. Computers & industrial engineering, 175, Article ID 108900.
Öppna denna publikation i ny flik eller fönster >>Effect of measurement uncertainty on combined quality control charts
2023 (Engelska)Ingår i: Computers & industrial engineering, ISSN 0360-8352, E-ISSN 1879-0550, Vol. 175, artikel-id 108900Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The accuracy of the measurement system is vital for reliable process monitoring using statistical process control charts. The applied chart’s effectiveness depends on the measurement system's performance. Measurement uncertainty can lead to incorrect decisions like unnecessary stops or failure to intervene. In this paper, we investigated the effect of measurement errors on the performance of four well-established combined charts for monitoring the mean of normally distributed processes: Shewhart-CUSUM, Shewhart-Crosier’s CUSUM, Shewhart-EWMA and Shewhart-GWMA charts. To deal with measurement errors we considered the additive measurement error model. Detailed run length profiles of these charts are studied in terms of average run length (ARL), extra quadratic loss, relative ARL, and performance comparison index through Monte Carlo simulations under different sizes of measurement errors. It was found that measurement errors significantly reduce the power of the combined charts. Thus, multiple measurements scheme is incorporated as a remedy to this effect. The Shewhart-Crosier’s CUSUM performed best of four charts, while the Shewhart-EWMA chart did worst. To demonstrate the effect of measurement uncertainty and highlight implications further, a simulated dataset with a shift in the process mean is considered.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023
Nyckelord
Measurement Uncertainty, Statistical Process Control, Combined Control Chart, Multiple Measurements, Reliability Monitoring, Monte Carlo Simulation
Nationell ämneskategori
Tillförlitlighets- och kvalitetsteknik
Forskningsämne
Kvalitetsteknik och logistik
Identifikatorer
urn:nbn:se:ltu:diva-94965 (URN)10.1016/j.cie.2022.108900 (DOI)000911590700001 ()2-s2.0-85144313751 (Scopus ID)
Anmärkning

Validerad;2023;Nivå 2;2023-01-01 (joosat);

Licens full text: CC BY License;

Funder: Foundation of Nanjing University of Posts and Telecommunications (NY222176); The Excellent Innovation Teams of Philosophy and Social Science in Jiangsu Province (2017ZSTD022); Key Research Base of Philosophy and Social Sciences in Jiangsu

 

Tillgänglig från: 2022-12-21 Skapad: 2022-12-21 Senast uppdaterad: 2023-04-21Bibliografiskt granskad
Kulahci, M., Bergquist, B. & Söderholm, P. (2022). Autonomous Anomaly Detection and Handling of Spatiotemporal Railway Data. In: Ramin Karim; Alireza Ahmadi; Iman Soleimanmeigouni; Ravdeep Kour; Raj Rao (Ed.), International Congress and Workshop on Industrial AI 2021: . Paper presented at International Congress and Workshop on Industrial AI (IAI 2021), Luleå, Sweden, October 5-7, 2021 (pp. 65-72). Springer, 1
Öppna denna publikation i ny flik eller fönster >>Autonomous Anomaly Detection and Handling of Spatiotemporal Railway Data
2022 (Engelska)Ingår i: International Congress and Workshop on Industrial AI 2021 / [ed] Ramin Karim; Alireza Ahmadi; Iman Soleimanmeigouni; Ravdeep Kour; Raj Rao, Springer, 2022, Vol. 1, s. 65-72Konferensbidrag, Publicerat paper (Refereegranskat)
Ort, förlag, år, upplaga, sidor
Springer, 2022
Serie
Lecture Notes in Mechanical Engineering, ISSN 2195-4356, E-ISSN 2195-4364
Nyckelord
Data cleansing, Data filtering, Outlier detection, Prognostics, Time series analysis
Nationell ämneskategori
Annan samhällsbyggnadsteknik
Forskningsämne
Kvalitetsteknik och logistik
Identifikatorer
urn:nbn:se:ltu:diva-89297 (URN)10.1007/978-3-030-93639-6_6 (DOI)000777604600006 ()2-s2.0-85125261833 (Scopus ID)
Konferens
International Congress and Workshop on Industrial AI (IAI 2021), Luleå, Sweden, October 5-7, 2021
Anmärkning

ISBN för värdpublikation: 978-3-030-93638-9, 978-3-030-93639-6

Tillgänglig från: 2022-02-15 Skapad: 2022-02-15 Senast uppdaterad: 2022-07-05Bibliografiskt granskad
Sedghi, M., Bergquist, B., Vanhatalo, E. & Migdalas, A. (2022). Data‐driven maintenance planning and scheduling based on predicted railway track condition. Quality and Reliability Engineering International, 38(7), 3689-3709
Öppna denna publikation i ny flik eller fönster >>Data‐driven maintenance planning and scheduling based on predicted railway track condition
2022 (Engelska)Ingår i: Quality and Reliability Engineering International, ISSN 0748-8017, E-ISSN 1099-1638, Vol. 38, nr 7, s. 3689-3709Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Timely planning and scheduling of railway infrastructure maintenance interventions are crucial for increased safety, improved availability, and reduced cost. We propose a data-driven decision-support framework integrating track condition predictions with tactical maintenance planning and operational scheduling. The framework acknowledges prediction uncertainties by using a Wiener process-based prediction model at the tactical level. We also develop planning and scheduling algorithms at the operational level. One algorithm focuses on cost-optimisation, and one algorithm considers the multi-component characteristics of the railway track by grouping track segments near each other for one maintenance activity. The proposed framework's performance is evaluated using track geometry measurement data from a 34 km railway section in northern Sweden, focusing on the tamping maintenance action. We analyse maintenance costs and demonstrate potential efficiency increases by applying the decision-support framework.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2022
Nyckelord
decision-making framework, multi-component system, planning and scheduling, predictive maintenance, railway track, Wiener process
Nationell ämneskategori
Datorteknik Produktionsteknik, arbetsvetenskap och ergonomi Annan maskinteknik
Forskningsämne
Kvalitetsteknik och logistik
Identifikatorer
urn:nbn:se:ltu:diva-92182 (URN)10.1002/qre.3166 (DOI)000826112600001 ()2-s2.0-85134349665 (Scopus ID)
Forskningsfinansiär
Trafikverket
Anmärkning

Validerad;2022;Nivå 2;2022-11-28 (joosat);

Funder: Swedish Strategic Innovation Programme InfraSweden2030 (2016–04757); Luleå Railway Research Centre (JVTC); Predge AB

Tillgänglig från: 2022-07-18 Skapad: 2022-07-18 Senast uppdaterad: 2023-09-05Bibliografiskt granskad
Sedghi, M., Kauppila, O., Bergquist, B., Vanhatalo, E. & Kulahci, M. (2021). A Taxonomy of Railway Track Maintenance Planning and Scheduling: A Review and Research Trends. Reliability Engineering & System Safety, 215, Article ID 107827.
Öppna denna publikation i ny flik eller fönster >>A Taxonomy of Railway Track Maintenance Planning and Scheduling: A Review and Research Trends
Visa övriga...
2021 (Engelska)Ingår i: Reliability Engineering & System Safety, ISSN 0951-8320, E-ISSN 1879-0836, Vol. 215, artikel-id 107827Artikel, forskningsöversikt (Refereegranskat) Published
Abstract [en]

Railway track maintenance and renewal are vital for railway safety, train punctuality, and travel comfort. Therefore, having cost-effective maintenance is critical in managing railway infrastructure assets. There has been a considerable amount of research performed on mathematical and decision support models for improving the application of railway track maintenance planning and scheduling. This article reviews the literature in decision support models for railway track maintenance planning and scheduling and transforms the results into a problem taxonomy. Furthermore, the article discusses current approaches in optimising maintenance planning and scheduling, research trends, and possible gaps in the related decision-making models.

Ort, förlag, år, upplaga, sidor
Elsevier, 2021
Nyckelord
Maintenance management, planning, scheduling, decision support models, railway track
Nationell ämneskategori
Tillförlitlighets- och kvalitetsteknik
Forskningsämne
Kvalitetsteknik och logistik
Identifikatorer
urn:nbn:se:ltu:diva-85191 (URN)10.1016/j.ress.2021.107827 (DOI)000690283800033 ()2-s2.0-85107785564 (Scopus ID)
Forskningsfinansiär
TrafikverketJärnvägstekniskt Centrum (JVTC)
Anmärkning

Validerad;2021;Nivå 2;2021-06-22 (beamah)

Tillgänglig från: 2021-06-10 Skapad: 2021-06-10 Senast uppdaterad: 2023-09-05Bibliografiskt granskad
Bergquist, B. & Vanhatalo, E. (2020). In-situ measurement in the iron ore pellet distribution chain using active RFID technology. Powder Technology, 361, 791-802
Öppna denna publikation i ny flik eller fönster >>In-situ measurement in the iron ore pellet distribution chain using active RFID technology
2020 (Engelska)Ingår i: Powder Technology, ISSN 0032-5910, E-ISSN 1873-328X, Vol. 361, s. 791-802Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The active radio frequency identification (RFID) technique is used for in-situ measurement of acceleration and temperature in the distribution chain of iron ore pellets. The results of this paper are based on two experiments, in which active RFID transponders were released into train wagons or product bins. RFID exciters and readers were installed downstream in a harbour storage silo to retrieve data from the active transponders. Acceleration peaks and temperatures were recorded. The results imply that in-situ data can aid the understanding of induced stresses along the distribution chain to, for example, reduce pellet breakage and dusting. In-situ data can also increase understanding of product mixing behaviour and product residence times in silos. Better knowledge of stresses, product mixing and residence times are beneficial to process and product quality improvement, to better understand the transportation process, and to reduce environmental impacts due to dusting.

Ort, förlag, år, upplaga, sidor
Elsevier, 2020
Nyckelord
Mining industry, RFID tags, Temperature sensors, Accelerometers, Flow production systems, Supply chain management
Nationell ämneskategori
Tillförlitlighets- och kvalitetsteknik
Forskningsämne
Kvalitetsteknik och logistik
Identifikatorer
urn:nbn:se:ltu:diva-76886 (URN)10.1016/j.powtec.2019.11.042 (DOI)000518704900080 ()2-s2.0-85076579100 (Scopus ID)
Anmärkning

Validerad;2020;Nivå 2;2020-02-27 (alebob)

Tillgänglig från: 2019-11-27 Skapad: 2019-11-27 Senast uppdaterad: 2022-02-24Bibliografiskt granskad
Capaci, F., Vanhatalo, E., Palazoglu, A., Bergquist, B. & Kulahci, M. (2020). On Monitoring Industrial Processes under Feedback Control. Quality and Reliability Engineering International, 36(8), 2720-2737
Öppna denna publikation i ny flik eller fönster >>On Monitoring Industrial Processes under Feedback Control
Visa övriga...
2020 (Engelska)Ingår i: Quality and Reliability Engineering International, ISSN 0748-8017, E-ISSN 1099-1638, Vol. 36, nr 8, s. 2720-2737Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The concurrent use of statistical process control and engineering process con-trol involves monitoring manipulated and controlled variables. One multivari-ate control chart may handle the statistical monitoring of all variables, butobserving the manipulated and controlled variables in separate control chartsmay improve understanding of how disturbances and the controller perfor-mance affect the process. In this article, we illustrate how step and ramp dis-turbances manifest themselves in a single-input–single-output system bystudying their resulting signatures in the controlled and manipulated variables.The system is controlled by variations of the widely used proportional-integral-derivative(PID) control scheme. Implications for applying control charts forthese scenarios are discussed.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2020
Nyckelord
control charts, disturbance signatures, engineering process control (EPC), proportional-integral-derivative (PID), statistical process control (SPC)
Nationell ämneskategori
Tillförlitlighets- och kvalitetsteknik
Forskningsämne
Kvalitetsteknik och logistik
Identifikatorer
urn:nbn:se:ltu:diva-74657 (URN)10.1002/qre.2676 (DOI)000544343400001 ()2-s2.0-85087166819 (Scopus ID)
Anmärkning

Validerad;2020;Nivå 2;2020-11-09 (johcin)

Tillgänglig från: 2019-06-18 Skapad: 2019-06-18 Senast uppdaterad: 2024-03-27Bibliografiskt granskad
Fundin, A., Lilja, J., Lagrosen, Y. & Bergquist, B. (2020). Quality 2030: quality management for the future. Total Quality Management and Business Excellence
Öppna denna publikation i ny flik eller fönster >>Quality 2030: quality management for the future
2020 (Engelska)Ingår i: Total Quality Management and Business Excellence, ISSN 1478-3363, E-ISSN 1478-3371Artikel i tidskrift (Refereegranskat) Epub ahead of print
Abstract [en]

Quality management (QM) has shown an impressive ability to update and evolve. The purpose of this paper is to highlight themes that have been identified as vital and important for research projects within QM during the coming decade. The paper is also an attempt to initiate research for the emerging 2030 agenda for QM, here referred to as ‘Quality 2030’. This article is based on extensive data gathered during a workshop process conducted in two main steps: (1) a collaborative brainstorming workshop with 22 researchers and practitioners (spring 2019) and (2) an appreciative inquiry summit with 20 researchers and practitioners (autumn 2019). The process produced five collectively elaborated and designed future research themes for QM: (a) systems perspectives applied, (b) stability in change, (c) models for smart self-organising, (d) integrating sustainable development, and (e) higher purpose as QM booster. The process also identified a positive core of QM, defined as core values and aspects in the field and practice that need to be preserved and nurtured in the future.

Ort, förlag, år, upplaga, sidor
Taylor & Francis, 2020
Nyckelord
quality management, Agenda 2030, sustainable development, complex systems, higher purpose, self-organisation, systems theory, Quality 5.0
Nationell ämneskategori
Tillförlitlighets- och kvalitetsteknik
Forskningsämne
Kvalitetsteknik och logistik
Identifikatorer
urn:nbn:se:ltu:diva-82133 (URN)10.1080/14783363.2020.1863778 (DOI)000603783100001 ()2-s2.0-85098597032 (Scopus ID)
Tillgänglig från: 2020-12-30 Skapad: 2020-12-30 Senast uppdaterad: 2021-01-15
Lundkvist, P., Bergquist, B. & Vanhatalo, E. (2020). Statistical methods – still ignored? The testimony of Swedish alumni. Total Quality Management and Business Excellence, 31(3-4), 245-262
Öppna denna publikation i ny flik eller fönster >>Statistical methods – still ignored? The testimony of Swedish alumni
2020 (Engelska)Ingår i: Total Quality Management and Business Excellence, ISSN 1478-3363, E-ISSN 1478-3371, Vol. 31, nr 3-4, s. 245-262Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Researchers have promoted statistical improvement methods as essential for product and process improvement for decades. However, studies show that their use has been moderate at best. This study aims to assess the use of statistical process control (SPC), process capability analysis, and design of experiments (DoE) over time. The study also highlights important barriers for the wider use of these methods in Sweden as a follow-up study of a similar Swedish study performed in 2005 and of two Basque-based studies performed in 2009 and 2010. While the survey includes open-ended questions, the results are mainly descriptive and confirm results of previous studies. This study shows that the use of the methods has become more frequent compared to the 2005 study. Larger organisations (>250 employees) use the methods more frequently than smaller organisations, and the methods are more widely utilised in the industry than in the service sector. SPC is the most commonly used of the three methods while DoE is least used. Finally, the greatest barriers to increasing the use of statistical methods were: insufficient resources regarding time and money, low commitment of middle and senior managers, inadequate statistical knowledge, and lack of methods to guide the user through experimentations.

Ort, förlag, år, upplaga, sidor
Taylor & Francis, 2020
Nyckelord
statistical process control, capability analysis, design of experiments, implementation barriers, statistical thinking, longitudinal study, Swedish organizations
Nationell ämneskategori
Tillförlitlighets- och kvalitetsteknik
Forskningsämne
Kvalitetsteknik och logistik
Identifikatorer
urn:nbn:se:ltu:diva-67189 (URN)10.1080/14783363.2018.1426449 (DOI)000505886200002 ()2-s2.0-85041139894 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, 340-2013-5108
Anmärkning

Validerad;2020;Nivå 2;2020-01-27 (johcin)

Tillgänglig från: 2018-01-08 Skapad: 2018-01-08 Senast uppdaterad: 2023-01-20Bibliografiskt granskad
Bergquist, B., Söderholm, P., Kauppila, O. & Vanhatalo, E. (2019). Cleaning of Railway Track Measurement Data forBetter Maintenance Decisions. In: Miguel Castano Arranz; Ramin Karim (Ed.), Proceedings of the 5th International Workshop and Congress on eMaintenance: eMaintenance: Trends in Technologies & methodologies, challenges, possibilites and applications. Paper presented at 5th International Workshop and Congress on eMaintenance, Stockholm, Sweden, May 14-15, 2019 (pp. 9-15). Luleå University of Technology
Öppna denna publikation i ny flik eller fönster >>Cleaning of Railway Track Measurement Data forBetter Maintenance Decisions
2019 (Engelska)Ingår i: Proceedings of the 5th International Workshop and Congress on eMaintenance: eMaintenance: Trends in Technologies & methodologies, challenges, possibilites and applications / [ed] Miguel Castano Arranz; Ramin Karim, Luleå University of Technology, 2019, s. 9-15Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Data of sufficient quality, quantity and validity constitute a sometimes overlooked basis for eMaintenance. Missing data, heterogeneous data types, calibration problems, or non-standard distributions are common issues of operation and maintenance data. Railway track geometry data used for maintenance planning exhibit all the above issues. They also have unique features stemming from their collection by measurement cars running along the railway network. As the track is a linear asset, measured geometry data need to be precisely located to be useful. However, since the sensors on the measurement car are moving along the track, the observations’ geographical sampling positions come with uncertainty. Another issue is that different seasons and othertime restrictions (e.g. related to the timetable) prohibit regular sampling. Hence, prognostics related to remaining useful life (RUL) are challenging since most forecasting methods require a fixed sampling frequency.

This paper discusses methods for data cleaning, data condensation and data extraction from large datasets collected by measurement cars. We discuss missing data replacement, dealing with autocorrelation or cross-correlation, and consequences of not fulfilling methodological pre-conditions such as estimating probabilities of failures using data that do not follow the assumed distributions or data that are dependent. We also discuss outlier detection, dealing with data coming from multiple distributions, of unknown calibrations and other issues seen in railway track geometry data. We also discuss the consequences of not addressing or mishandling quality issues of such data. 

Ort, förlag, år, upplaga, sidor
Luleå University of Technology, 2019
Nyckelord
Track geometry, big data, railway, data quality, diagnostics, prognostics, maintenance, Sweden
Nationell ämneskategori
Tillförlitlighets- och kvalitetsteknik
Forskningsämne
Kvalitetsteknik och logistik
Identifikatorer
urn:nbn:se:ltu:diva-75427 (URN)
Konferens
5th International Workshop and Congress on eMaintenance, Stockholm, Sweden, May 14-15, 2019
Forskningsfinansiär
VinnovaTrafikverket
Anmärkning

ISBN för värdpublikation: 978-91-7790-475-5

Tillgänglig från: 2019-08-07 Skapad: 2019-08-07 Senast uppdaterad: 2024-01-12Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0003-3911-8009

Sök vidare i DiVA

Visa alla publikationer