Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Alternativa namn
Publikationer (10 of 397) Visa alla publikationer
Saadat, N., Dias, O. T., Jaffer, S., Tjong, J., Oksman, K. & Sain, M. (2024). Anisotropically layered 2D-3D biocarbon-carbon functionality in sustainable high-performance composite for bipolar plates in fuel cell. Renewable energy, 224, Article ID 120155.
Öppna denna publikation i ny flik eller fönster >>Anisotropically layered 2D-3D biocarbon-carbon functionality in sustainable high-performance composite for bipolar plates in fuel cell
Visa övriga...
2024 (Engelska)Ingår i: Renewable energy, ISSN 0960-1481, E-ISSN 1879-0682, Vol. 224, artikel-id 120155Artikel i tidskrift (Refereegranskat) Published
Ort, förlag, år, upplaga, sidor
Elsevier, 2024
Nationell ämneskategori
Energiteknik Kompositmaterial och -teknik
Forskningsämne
Trä och bionanokompositer
Identifikatorer
urn:nbn:se:ltu:diva-104494 (URN)10.1016/j.renene.2024.120155 (DOI)2-s2.0-85185587703 (Scopus ID)
Anmärkning

Validerad;2024;Nivå 2;2024-03-06 (hanlid);

Tillgänglig från: 2024-03-06 Skapad: 2024-03-06 Senast uppdaterad: 2024-03-06Bibliografiskt granskad
Pratiwi, F. W., Thomas, R. T., Karzarjeddi, M., Sarpola, M., Miinalainen, I., Makieieva, O., . . . Liimatainen, H. (2024). Scalable Purification, Storage, and Release of Plant-Derived Nanovesicles for Local Therapy Using Nanostructured All-Cellulose Composite Membranes. Biomacromolecules, 25(9), 5847-5859
Öppna denna publikation i ny flik eller fönster >>Scalable Purification, Storage, and Release of Plant-Derived Nanovesicles for Local Therapy Using Nanostructured All-Cellulose Composite Membranes
Visa övriga...
2024 (Engelska)Ingår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 25, nr 9, s. 5847-5859Artikel i tidskrift (Refereegranskat) Published
Ort, förlag, år, upplaga, sidor
American Chemical Society, 2024
Nationell ämneskategori
Annan industriell bioteknik
Forskningsämne
Trä och bionanokompositer
Identifikatorer
urn:nbn:se:ltu:diva-109815 (URN)10.1021/acs.biomac.4c00535 (DOI)2-s2.0-85202467435 (Scopus ID)
Anmärkning

Validerad;2024;Nivå 2;2024-09-11 (joosat);

Funder: Tandem Forest Value (grant no.TFV2018-0010); Kvantum Institute BioEVEngine project (University of Oulu); Academy of Finland project ACNF (325276);

Tillgänglig från: 2024-09-11 Skapad: 2024-09-11 Senast uppdaterad: 2024-09-11Bibliografiskt granskad
Saadat, N., Jaffer, S., Tjong, J., Oksman, K. & Sain, M. (2023). Enhancing performance of advanced fuel cell design with functional energy materials and process. Journal of Materials Research and Technology, 26, 1723-1735
Öppna denna publikation i ny flik eller fönster >>Enhancing performance of advanced fuel cell design with functional energy materials and process
Visa övriga...
2023 (Engelska)Ingår i: Journal of Materials Research and Technology, ISSN 2238-7854, E-ISSN 2214-0697, Vol. 26, s. 1723-1735Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Efficiency enhancement of hydrogen based electric powertrain is becoming highly relevant for medium to heavy duty transportation due to advantages of eminent electrochemical cell design and advances in infrastructure accessibility. Herein, a facile and highly effective fabrication process has been reported for the first time to demonstrate an outstanding mechanical strength and electrical conductivity simultaneously in the carbon rich composite designed to enhance the fuel cell performance. Improvement of composites with different advanced reinforced materials such as carbon veil, recycled carbon fiber as well as functional additives such as carbon black, multiwalled nanotube, etc. Was investigated through a holistic approach of optimized parameters. Advanced composite plates have been designed to be mechanically flexible, electrically conductive and cost effective; this newly designed composite for bipolar plate supersedes by far the US Department of Energy (DOE) target for fuel cell bipolar plate with a flexural strength of over 64 MPa and exceeding electrical conductivity of 200 S/cm. Notably, tuned process parameters as well as novel architecture of materials such as continuous carbon fiber and carbon veil can facilitate the fabrication of a light-weight high-performance carbon polymer composite for a wide range of applications including battery electrodes, supercapacitors, fuel cells and solar cell.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023
Nyckelord
Fuel cell, Renewable energy, Bipolar plates, Functional carbon materials, Unidirectional carbon fiber reinforcement, Electro-mechanical properties
Nationell ämneskategori
Materialkemi
Forskningsämne
Trä och bionanokompositer
Identifikatorer
urn:nbn:se:ltu:diva-99782 (URN)10.1016/j.jmrt.2023.07.272 (DOI)001068244000001 ()2-s2.0-85168241844 (Scopus ID)
Anmärkning

Validerad;2023;Nivå 2;2023-08-15 (joosat);

Licens fulltext: CC BY License

Tillgänglig från: 2023-08-15 Skapad: 2023-08-15 Senast uppdaterad: 2024-09-02Bibliografiskt granskad
Eskilson, O., Zattarin, E., Berglund, L., Oksman, K., Hanna, K., Rakar, J., . . . Aili, D. (2023). Nanocellulose composite wound dressings for real-time pH wound monitoring. Materials Today Bio, 19, Article ID 100574.
Öppna denna publikation i ny flik eller fönster >>Nanocellulose composite wound dressings for real-time pH wound monitoring
Visa övriga...
2023 (Engelska)Ingår i: Materials Today Bio, E-ISSN 2590-0064, Vol. 19, artikel-id 100574Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The skin is the largest organ of the human body. Wounds disrupt the functions of the skin and can have catastrophic consequences for an individual resulting in significant morbidity and mortality. Wound infections are common and can substantially delay healing and can result in non-healing wounds and sepsis. Early diagnosis and treatment of infection reduce risk of complications and support wound healing. Methods for monitoring of wound pH can facilitate early detection of infection. Here we show a novel strategy for integrating pH sensing capabilities in state-of-the-art hydrogel-based wound dressings fabricated from bacterial nanocellulose (BC). A high surface area material was developed by self-assembly of mesoporous silica nanoparticles (MSNs) in BC. By encapsulating a pH-responsive dye in the MSNs, wound dressings for continuous pH sensing with spatiotemporal resolution were developed. The pH responsive BC-based nanocomposites demonstrated excellent wound dressing properties, with respect to conformability, mechanical properties, and water vapor transmission rate. In addition to facilitating rapid colorimetric assessment of wound pH, this strategy for generating functional BC-MSN nanocomposites can be further be adapted for encapsulation and release of bioactive compounds for treatment of hard-to-heal wounds, enabling development of novel wound care materials.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023
Nyckelord
Bacterial nanocellulose, Infection, Mesoporous silica nanoparticles, pH sensor, Wound dressing
Nationell ämneskategori
Biomaterialvetenskap
Forskningsämne
Trä och bionanokompositer
Identifikatorer
urn:nbn:se:ltu:diva-95784 (URN)10.1016/j.mtbio.2023.100574 (DOI)000944392500001 ()2-s2.0-85148095686 (Scopus ID)
Forskningsfinansiär
Vinnova, 2016-05156Vetenskapsrådet, 2021-04427Stiftelsen för strategisk forskning (SSF), FFL15-0026; RMX18-0039 (HEALiX)Bio4EnergyKnut och Alice Wallenbergs Stiftelse, KAW 2016.0231
Anmärkning

Validerad;2023;Nivå 2;2023-03-03 (hanlid);

Funder: Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (SFO-Mat-LiU no. 2009–00971)

Tillgänglig från: 2023-03-03 Skapad: 2023-03-03 Senast uppdaterad: 2024-03-07Bibliografiskt granskad
Baş, Y., Berglund, L., Niittylä, T., Zattarin, E., Aili, D., Sotra, Z., . . . Oksman, K. (2023). Preparation and Characterization of Softwood and Hardwood Nanofibril Hydrogels: Toward Wound Dressing Applications. Biomacromolecules, 24(12), 5605-5619
Öppna denna publikation i ny flik eller fönster >>Preparation and Characterization of Softwood and Hardwood Nanofibril Hydrogels: Toward Wound Dressing Applications
Visa övriga...
2023 (Engelska)Ingår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 24, nr 12, s. 5605-5619Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Hydrogels of cellulose nanofibrils (CNFs) are promising wound dressing candidates due to their biocompatibility, high water absorption, and transparency. Herein, two different commercially available wood species, softwood and hardwood, were subjected to TEMPO-mediated oxidation to proceed with delignification and oxidation in a one-pot process, and thereafter, nanofibrils were isolated using a high-pressure microfluidizer. Furthermore, transparent nanofibril hydrogel networks were prepared by vacuum filtration. Nanofibril properties and network performance correlated with oxidation were investigated and compared with commercially available TEMPO-oxidized pulp nanofibrils and their networks. Softwood nanofibril hydrogel networks exhibited the best mechanical properties, and in vitro toxicological risk assessment showed no detrimental effect for any of the studied hydrogels on human fibroblast or keratinocyte cells. This study demonstrates a straightforward processing route for direct oxidation of different wood species to obtain nanofibril hydrogels for potential use as wound dressings, with softwood having the most potential.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2023
Nationell ämneskategori
Pappers-, massa- och fiberteknik Biomaterialvetenskap
Forskningsämne
Trä och bionanokompositer
Identifikatorer
urn:nbn:se:ltu:diva-102500 (URN)10.1021/acs.biomac.3c00596 (DOI)37950687 (PubMedID)2-s2.0-85178085245 (Scopus ID)
Projekt
HEALiX
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF), RMX18-0039
Anmärkning

Validerad;2024;Nivå 2;2024-03-27 (hanlid);

Full text license: CC BY 4.0

Tillgänglig från: 2023-11-17 Skapad: 2023-11-17 Senast uppdaterad: 2024-03-27Bibliografiskt granskad
Völtz, L. R., Berglund, L. & Oksman, K. (2023). Resource-efficient manufacturing process of composite materials: Fibrillation of recycled textiles and compounding with thermoplastic polymer. Composites. Part A, Applied science and manufacturing, 175, Article ID 107773.
Öppna denna publikation i ny flik eller fönster >>Resource-efficient manufacturing process of composite materials: Fibrillation of recycled textiles and compounding with thermoplastic polymer
2023 (Engelska)Ingår i: Composites. Part A, Applied science and manufacturing, ISSN 1359-835X, E-ISSN 1878-5840, Vol. 175, artikel-id 107773Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This study aimed to develop a manufacturing process for recycled textile long fiber thermoplastics (RT-LFT) and thereby contribute to circular economy. Three different post-consumer textiles (cotton denim and plain weave, and silk plain weave) were cut into strips and fed directly into a co-rotating twin-screw extruder in which the textile was fibrillated and compounded with polypropylene (PP). The fibrillation of the textile, fiber dispersion, and interaction with the matrix polymer were studied, and the thermal and mechanical properties of the composites were evaluated. For example, cotton denim composites containing 30 wt% fiber content resulted in 26% increase in yield strength and a 72% increase in modulus when compared with that of PP. The RT-LFT process is a straightforward method for transforming used textiles into composites like cups and bottoms, offering advantages such as reduced manufacturing costs, add value for waste material, and lower carbon emissions.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023
Nationell ämneskategori
Textil-, gummi- och polymermaterial Biomaterial
Forskningsämne
Trä och bionanokompositer
Identifikatorer
urn:nbn:se:ltu:diva-101416 (URN)10.1016/j.compositesa.2023.107773 (DOI)001083680100001 ()2-s2.0-85171795421 (Scopus ID)
Forskningsfinansiär
Knut och Alice Wallenbergs Stiftelse, KAW 2018.0451Stora Enso
Anmärkning

Validerad;2023;Nivå 2;2023-09-22 (joosat);

CC BY 4.0 License

Tillgänglig från: 2023-09-22 Skapad: 2023-09-22 Senast uppdaterad: 2024-03-23Bibliografiskt granskad
Berglund, L., Squinca, P., Baş, Y., Zattarin, E., Aili, D., Rakar, J., . . . Oksman, K. (2023). Self-Assembly of Nanocellulose Hydrogels Mimicking Bacterial Cellulose for Wound Dressing Applications. Biomacromolecules, 24(5), 2264-2277
Öppna denna publikation i ny flik eller fönster >>Self-Assembly of Nanocellulose Hydrogels Mimicking Bacterial Cellulose for Wound Dressing Applications
Visa övriga...
2023 (Engelska)Ingår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 24, nr 5, s. 2264-2277Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The self-assembly of nanocellulose in the form of cellulose nanofibers (CNFs) can be accomplished via hydrogen-bonding assistance into completely bio-based hydrogels. This study aimed to use the intrinsic properties of CNFs, such as their ability to form strong networks and high absorption capacity and exploit them in the sustainable development of effective wound dressing materials. First, TEMPO-oxidized CNFs were separated directly from wood (W-CNFs) and compared with CNFs separated from wood pulp (P-CNFs). Second, two approaches were evaluated for hydrogel self-assembly from W-CNFs, where water was removed from the suspensions via evaporation through suspension casting (SC) or vacuum-assisted filtration (VF). Third, the W-CNF-VF hydrogel was compared to commercial bacterial cellulose (BC). The study demonstrates that the self-assembly via VF of nanocellulose hydrogels from wood was the most promising material as wound dressing and displayed comparable properties to that of BC and strength to that of soft tissue.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2023
Nationell ämneskategori
Biomaterial Polymerkemi
Forskningsämne
Trä och bionanokompositer
Identifikatorer
urn:nbn:se:ltu:diva-97161 (URN)10.1021/acs.biomac.3c00152 (DOI)000982712700001 ()37097826 (PubMedID)2-s2.0-85156249513 (Scopus ID)
Forskningsfinansiär
Luleå tekniska universitetStiftelsen för strategisk forskning (SSF), RMX18-0039Bio4EnergyKempestiftelserna
Anmärkning

Validerad;2023;Nivå 2;2023-05-17 (hanlid);

Licens full text: CC-BY: This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. Credit must be given to the creator.

Tillgänglig från: 2023-05-17 Skapad: 2023-05-17 Senast uppdaterad: 2024-03-07Bibliografiskt granskad
Patel, M. K., Hansson, F., Pitkänen, O., Geng, S. & Oksman, K. (2022). Biopolymer Blends of Poly(lactic acid) and Poly(hydroxybutyrate) and Their Functionalization with Glycerol Triacetate and Chitin Nanocrystals for Food Packaging Applications. ACS Applied Polymer Materials, 4(9), 6592-6601
Öppna denna publikation i ny flik eller fönster >>Biopolymer Blends of Poly(lactic acid) and Poly(hydroxybutyrate) and Their Functionalization with Glycerol Triacetate and Chitin Nanocrystals for Food Packaging Applications
Visa övriga...
2022 (Engelska)Ingår i: ACS Applied Polymer Materials, E-ISSN 2637-6105, Vol. 4, nr 9, s. 6592-6601Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Polylactic acid (PLA) is a biopolymer that has potential for use in food packaging applications; however, its low crystallinity and poor gas barrier properties limit its use. This study aimed to increase the understanding of the structure property relation of biopolymer blends and their nanocomposites. The crystallinity of the final materials and their effect on barrier properties was studied. Two strategies were performed: first, different concentrations of poly(hydroxybutyrate) (PHB; 10, 25, and 50 wt %) were compounded with PLA to facilitate the PHB spherulite development, and then, for further increase of the overall crystallinity, glycerol triacetate (GTA) functionalized chitin nano crystals (ChNCs) were added. The PLA:PHB blend with 25 wt % PHB showed the formation of many very small PHB spherulites with the highest PHB crystallinity among the examined compositions and was selected as the matrix for the ChNC nanocomposites. Then, ChNCs with different concentrations (0.5, 1, and 2 wt %) were added to the 75:25 PLA:PHB blend using the liquid-assisted extrusion process in the presence of GTA. The addition of the ChNCs resulted in an improvement in the crystallization rate and degree of PHB crystallinity as well as mechanical properties. The nanocomposite with the highest crystallinity resulted in greatly decreased oxygen (O) and carbon dioxide (CO2) permeability and increased the overall mechanical properties compared to the blend with GTA. This study shows that the addition ChNCs in PLA:PHB can be a possible way to reach suitable gas barrier properties for food packaging films.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2022
Nyckelord
poly(lactic acid), poly(hydroxybutyrate), chitin nanocrystals, nanocomposites, crystallization, morphology, microscopy, barrier properties
Nationell ämneskategori
Textil-, gummi- och polymermaterial
Forskningsämne
Trä och bionanokompositer
Identifikatorer
urn:nbn:se:ltu:diva-92788 (URN)10.1021/acsapm.2c00967 (DOI)000841650400001 ()36119407 (PubMedID)2-s2.0-85136738465 (Scopus ID)
Forskningsfinansiär
Bio4Energy, 792261EU, Horisont 2020, 792261Kempestiftelserna
Anmärkning

Validerad;2022;Nivå 2;2022-09-12 (hanlid);

Funder: Wallenberg Wood Science Center (WWSC)

Tillgänglig från: 2022-09-12 Skapad: 2022-09-12 Senast uppdaterad: 2023-10-14Bibliografiskt granskad
Jonasson, S., Bünder, A., Berglund, L., Niittylä, T. & Oksman, K. (2022). Characteristics of Cellulose Nanofibrils from Transgenic Trees with Reduced Expression of Cellulose Synthase Interacting 1. Nanomaterials, 12(19), Article ID 3448.
Öppna denna publikation i ny flik eller fönster >>Characteristics of Cellulose Nanofibrils from Transgenic Trees with Reduced Expression of Cellulose Synthase Interacting 1
Visa övriga...
2022 (Engelska)Ingår i: Nanomaterials, E-ISSN 2079-4991, Vol. 12, nr 19, artikel-id 3448Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Cellulose nanofibrils can be derived from the native load-bearing cellulose microfibrils in wood. These microfibrils are synthesized by a cellulose synthase enzyme complex that resides in the plasma membrane of developing wood cells. It was previously shown that transgenic hybrid aspen trees with reduced expression of CSI1 have different wood mechanics and cellulose microfibril properties. We hypothesized that these changes in the native cellulose may affect the quality of the corresponding nanofibrils. To test this hypothesis, wood from wild-type and transgenic trees with reduced expression of CSI1 was subjected to oxidative nanofibril isolation. The transgenic wood-extracted nanofibrils exhibited a significantly lower suspension viscosity and estimated surface area than the wild-type nanofibrils. Furthermore, the nanofibril networks manufactured from the transgenics exhibited high stiffness, as well as reduced water uptake, tensile strength, strain-to-break, and degree of polymerization. Presumably, the difference in wood properties caused by the decreased expression of CSI1 resulted in nanofibrils with distinctive qualities. The observed changes in the physicochemical properties suggest that the differences were caused by changes in the apparent nanofibril aspect ratio and surface accessibility. This study demonstrates the possibility of influencing wood-derived nanofibril quality through the genetic engineering of trees.

Ort, förlag, år, upplaga, sidor
MDPI, 2022
Nyckelord
transgenic wood, cellulose nanofibrils, fibrillation, network properties
Nationell ämneskategori
Pappers-, massa- och fiberteknik Trävetenskap
Forskningsämne
Trä och bionanokompositer
Identifikatorer
urn:nbn:se:ltu:diva-86760 (URN)10.3390/nano12193448 (DOI)000868080700001 ()36234576 (PubMedID)2-s2.0-85139818366 (Scopus ID)
Projekt
NanowoodHEALiX
Forskningsfinansiär
Forskningsrådet Formas, 942-2016-10Bio4EnergyStiftelsen för strategisk forskning (SSF)Kempestiftelserna
Anmärkning

Validerad;2022;Nivå 2;2022-11-01 (hanlid);

This article is a revised version of a paper that has previously appeared as a manuscript in a thesis 

Tillgänglig från: 2021-08-19 Skapad: 2021-08-19 Senast uppdaterad: 2024-03-23Bibliografiskt granskad
Pakharenko, V., Dias, O. A., Mukherjee, S., Konar, S., Singh, C. V., Oksman, K. & Sain, M. (2022). Chemical and molecular structure transformations in atomistic conformation of cellulose nanofibers under thermal environment. npj Materials Degradation, 6, Article ID 16.
Öppna denna publikation i ny flik eller fönster >>Chemical and molecular structure transformations in atomistic conformation of cellulose nanofibers under thermal environment
Visa övriga...
2022 (Engelska)Ingår i: npj Materials Degradation, E-ISSN 2397-2106, Vol. 6, artikel-id 16Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The structural changes of the glucopyranose chain and the chemical compositional response of cellulose nanofibers (CNFs) under thermal exposure (at 190 °C for 5 h) have remained a significant gap in the understanding of the long-term performance of nanocellulose. Herein, CNF films with different chemical compositions were investigated to confirm the structural transformation of glucopyranose (coupling constant of OH groups changed up to 50%) by nuclear magnetic resonance (NMR) analysis. Remarkably, the glucopyranose rings underwent partial dehydration during the thermal exposure resulting in enol formation. This study confirms the chain mobility that could lead to the conformational and dimensional changes of the CNFs during thermal exposure. The broad range of conformations was defined by the dihedral angles that varied from ±27° to ±139° after thermal exposure. Investigation into the mechanism involving chemical transformation of the substrates during heating is important for the fabrication of the next generation of flexible electrical materials.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2022
Nationell ämneskategori
Biomaterial
Forskningsämne
Trä och bionanokompositer
Identifikatorer
urn:nbn:se:ltu:diva-89687 (URN)10.1038/s41529-022-00224-6 (DOI)000761386800001 ()2-s2.0-85125516166 (Scopus ID)
Anmärkning

Validerad;2022;Nivå 2;2022-03-16 (hanlid)

Tillgänglig från: 2022-03-16 Skapad: 2022-03-16 Senast uppdaterad: 2023-09-05Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0003-4762-2854

Sök vidare i DiVA

Visa alla publikationer