Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Publikationer (10 of 56) Visa alla publikationer
Nahar, N., Andersson, K., Schelén, O. & Saguna, S. (2024). A Survey on Zero Trust Architecture: Applications and Challenges of 6G Networks. IEEE Access, 12, 94753-94764
Öppna denna publikation i ny flik eller fönster >>A Survey on Zero Trust Architecture: Applications and Challenges of 6G Networks
2024 (Engelska)Ingår i: IEEE Access, E-ISSN 2169-3536, Vol. 12, s. 94753-94764Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

As sixth-generation (6G) cellular networks emerge, promising unparalleled connectivity and capabilities, yet it amplifies concerns regarding security vulnerabilities. These networks include a broader array of devices and sensors compared to earlier generations, increasing the potential for attackers to exploit weaknesses. Existing security frameworks contribute to safeguarding enterprises against external threats that originate beyond the network perimeter. These frameworks operate under the assumption that all entities inside the defined perimeters are reliable, and their primary objective is to authorize access to resources based on assigned roles and permissions. However, this strategy could be more effective today since attacks might originate from any source, including within the network perimeter. To address this issue, a zero-trust architecture (ZTA) could be a potential solution that assumes neither users nor devices can be inherently trusted, and it consistently evaluates potential risks to decide whether to allow access to resources. This article will explore the zero-trust approach and its significance in contemporary network security. We describe the role of authentication and access control in ZTA and present an in-depth discussion of state-of-the-art authentication and access control techniques in different scenarios. This article examines the applicability of the zero-trust concept in 6G networks and analyzes the associated challenges and opportunities. This article also examines case studies demonstrating the practical application of the zero trust paradigm in 6G or comparable networks. It explores the research scope and tries to identify relevant research gaps in this area.

Ort, förlag, år, upplaga, sidor
IEEE, 2024
Nyckelord
6G mobile communication, 6G networks, Authentication, Computer architecture, Multi-factor authentication, Network security, Perimeter-based security, Security, Surveys, Zero Trust, Zero-trust architecture
Nationell ämneskategori
Kommunikationssystem Systemvetenskap, informationssystem och informatik Telekommunikation
Forskningsämne
Cybersäkerhet; Cyberfysiska system; Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-108410 (URN)10.1109/ACCESS.2024.3425350 (DOI)001272140400001 ()2-s2.0-85198311694 (Scopus ID)
Forskningsfinansiär
Interreg Aurora, 20357901
Anmärkning

Validerad;2024;Nivå 2;2024-07-25 (signyg);

Fulltext license: CC BY-NC-ND

Tillgänglig från: 2024-07-25 Skapad: 2024-07-25 Senast uppdaterad: 2024-11-20Bibliografiskt granskad
Vasquez Torres, M., Shahid, Z., Mitra, K., Saguna, S. & Åhlund, C. (2024). A Transfer Learning Approach to Create Energy Forecasting Models for Building Fleets. In: 2024 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm): . Paper presented at 2024 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), September 17-20, 2024, Oslo, Norway (pp. 438-444). IEEE
Öppna denna publikation i ny flik eller fönster >>A Transfer Learning Approach to Create Energy Forecasting Models for Building Fleets
Visa övriga...
2024 (Engelska)Ingår i: 2024 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), IEEE, 2024, s. 438-444Konferensbidrag, Publicerat paper (Refereegranskat)
Ort, förlag, år, upplaga, sidor
IEEE, 2024
Serie
IEEE International Conference on Smart Grid Communications, ISSN 2373-6836, E-ISSN 2474-2902
Nyckelord
Building fleet, Energy consumption, Transfer learning, LSTM, DTW, Hierarchical clustering, Time series forecasting
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-110870 (URN)10.1109/SmartGridComm60555.2024.10738094 (DOI)
Konferens
2024 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), September 17-20, 2024, Oslo, Norway
Anmärkning

ISBN for host publication: 979-8-3503-1855-5;

Funder: European Commission (grant number 610619-EPP-1-2019-1-FREPPKA1-JMD-MOB), (EMJMD GENIAL Project);

Tillgänglig från: 2024-11-28 Skapad: 2024-11-28 Senast uppdaterad: 2024-11-28Bibliografiskt granskad
Mololoth, V. K., Saguna, S. & Åhlund, C. (2024). Consensus algorithm for energy applications: Case study on P2P energy trading scenario. In: Rajiv Ranjan; Karan Mitra; Prem Prakash Jayaraman; Albert Y. Zomaya (Ed.), Managing Internet of Things Applications across Edge and Cloud Data Centres: (pp. 277-287). Institution of Engineering and Technology
Öppna denna publikation i ny flik eller fönster >>Consensus algorithm for energy applications: Case study on P2P energy trading scenario
2024 (Engelska)Ingår i: Managing Internet of Things Applications across Edge and Cloud Data Centres / [ed] Rajiv Ranjan; Karan Mitra; Prem Prakash Jayaraman; Albert Y. Zomaya, Institution of Engineering and Technology , 2024, s. 277-287Kapitel i bok, del av antologi (Övrigt vetenskapligt)
Ort, förlag, år, upplaga, sidor
Institution of Engineering and Technology, 2024
Nationell ämneskategori
Energiteknik
Forskningsämne
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-108686 (URN)10.1049/PBPC027E_ch12 (DOI)2-s2.0-85197680472 (Scopus ID)
Anmärkning

ISBN for host publication: 978-1-78561-779-9; 978-1-78561-780-5

Tillgänglig från: 2024-08-22 Skapad: 2024-08-22 Senast uppdaterad: 2024-11-13Bibliografiskt granskad
Shahid, Z., Saguna, S., Åhlund, C. & Mitra, K. (2024). Federated Learning for Unsupervised Anomaly Detection in ADLs of Elderly in Single-resident Smart Homes. In: SAC '24: Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing: . Paper presented at The 39th ACM/SIGAPP Symposium on Applied Computing (SAC ’24), April 8–12, 2024, Avila, Spain. (pp. 533-535). New York, NY, USA,: ACM Special Interest Group on Applied Computing
Öppna denna publikation i ny flik eller fönster >>Federated Learning for Unsupervised Anomaly Detection in ADLs of Elderly in Single-resident Smart Homes
2024 (Engelska)Ingår i: SAC '24: Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing, New York, NY, USA,: ACM Special Interest Group on Applied Computing , 2024, s. 533-535Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

One of the main concerns regarding the facilitation of the elderly well-being monitoring system is to preserve the participants’ privacy, enable the older adults to live longer independently, and support caregivers. Human Activity Recognition (HAR) in smart homes allows us to foresee the residents’ needs by identifying changes in behaviour that might link to possible health conditions. We propose a Federated learning (FL) model within the health monitoring application to generalize for diverse participant populations and to achieve comparable performance without disclosing the raw data to the traditional centralized approach, which raises privacy issues. In this study, we evaluate an unsupervised variational autoencoder (VAE) in centralized, individualized, compared to federated learning settings to learn the features of normal patterns of daily activities and build an anomaly detector based on reconstructed error resulting as outcomes by the trained model. Further, we validated our proposed approach on real-world datasets collected over three years from six single-resident elderly households. The individual and centralized-based learning models were used as a baseline to compare with FL. Our results show that the personalized FedAvg models achieve RMSE of about 1%, while the Global FL models achieve RMSE of approximately. 4%. The centralized model achieves RMSE of about 0.5%, and the RMSE of individual models based on local training ranges between 1% to 6%. The FL models are relatively comparable to the centralized baseline model.

Ort, förlag, år, upplaga, sidor
New York, NY, USA,: ACM Special Interest Group on Applied Computing, 2024
Nyckelord
Applied computing, Health informatics, Computing methodologies, Neural networks, Anomaly detection
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-103826 (URN)10.1145/3605098.3636163 (DOI)001236958200079 ()2-s2.0-85197662033 (Scopus ID)
Konferens
The 39th ACM/SIGAPP Symposium on Applied Computing (SAC ’24), April 8–12, 2024, Avila, Spain.
Anmärkning

ISBN for host publication: (979-8-4007-0243-3)

Tillgänglig från: 2024-01-18 Skapad: 2024-01-18 Senast uppdaterad: 2024-10-08Bibliografiskt granskad
Shahid, Z. K., Saguna, S. & Åhlund, C. (2024). Multi-Armed Bandits for Sleep Recognition of Elderly Living in Single-Resident Smart Homes. IEEE Internet of Things Journal, 11(3), 4414-4429
Öppna denna publikation i ny flik eller fönster >>Multi-Armed Bandits for Sleep Recognition of Elderly Living in Single-Resident Smart Homes
2024 (Engelska)Ingår i: IEEE Internet of Things Journal, ISSN 2327-4662, Vol. 11, nr 3, s. 4414-4429Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Sleep is an essential activity that affects an individual’s health and ability to perform Activities of Daily Living (ADL). Inadequate sleep reduces cognitive capacity and leads to health-related issues such as cardiovascular diseases. Sleep disorders are more prevalent in older adults. Therefore, it is essential to recognize sleep patterns and support older adults and their caregivers. In our study, we collect data in real-world unconstrained and non-intrusive environments. This paper presents a novel sleep activity recognition method using motion sensors for recognizing nighttime and daytime sleep, which can further enable the development of insightful healthcare applications. The research objectives are to evaluate the application of using Multi-Armed Bandit methods to (i) learn normal sleep patterns, (ii) evaluate sleep quality, and (iii) detect anomalies in sleep activity for 11 elderly participants living in single-resident smart homes. We evaluate the performance of Thompson Sampling, Random Selection, and Upper Confidence Bound MAB methods. Thompson Sampling outperformed the other two methods. Our findings show most elderly participants slept between 6 and 8 hours with 85% sleep efficiency and up to 3 awakenings per night.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2024
Nyckelord
Anomaly detection, Elderly healthcare, Internet of Things, Medical services, Motion detection, Multi-Armed bandits, Older adults, Reinforcement learning, Sensors, Sleep, Sleep patterns, Smart homes
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-99666 (URN)10.1109/JIOT.2023.3300015 (DOI)001166992300055 ()2-s2.0-85166780685 (Scopus ID)
Projekt
FraViVo—Framtidens Välfärdsteknik med Internet of Things
Forskningsfinansiär
Vinnova, 2020-04096
Anmärkning

Validerad;2024;Nivå 2;2024-03-18 (hanlid);

Full text license: CC BY-NC-ND

Tillgänglig från: 2023-08-15 Skapad: 2023-08-15 Senast uppdaterad: 2024-11-20Bibliografiskt granskad
Shahid, Z. K., Saguna, S. & Åhlund, C. (2024). Recognizing Seasonal Sleep Patterns of Elderly in Smart Homes Using Clustering. In: 2024 IEEE 21st Consumer Communications & Networking Conference (CCNC): . Paper presented at 21st IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, January 6-9, 2024 (pp. 490-498). IEEE
Öppna denna publikation i ny flik eller fönster >>Recognizing Seasonal Sleep Patterns of Elderly in Smart Homes Using Clustering
2024 (Engelska)Ingår i: 2024 IEEE 21st Consumer Communications & Networking Conference (CCNC), IEEE, 2024, s. 490-498Konferensbidrag, Publicerat paper (Refereegranskat)
Ort, förlag, år, upplaga, sidor
IEEE, 2024
Nationell ämneskategori
Teknik och teknologier Folkhälsovetenskap, global hälsa och socialmedicin
Forskningsämne
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-103827 (URN)10.1109/CCNC51664.2024.10454817 (DOI)001192142600079 ()2-s2.0-85189207183 (Scopus ID)
Konferens
21st IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, January 6-9, 2024
Anmärkning

ISBN for host publication: 979-8-3503-0457-2;

Tillgänglig från: 2024-01-18 Skapad: 2024-01-18 Senast uppdaterad: 2025-02-20Bibliografiskt granskad
Kim, J. C., Saguna, S. & Åhlund, C. (2024). The Effects of Augmented Reality Companion on User Engagement in Energy Management Mobile App. Applied Sciences, 14(7), Article ID 2621.
Öppna denna publikation i ny flik eller fönster >>The Effects of Augmented Reality Companion on User Engagement in Energy Management Mobile App
2024 (Engelska)Ingår i: Applied Sciences, E-ISSN 2076-3417, Vol. 14, nr 7, artikel-id 2621Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

As the impact of global warming on climate change becomes noticeable, the importance of energy efficiency for reducing greenhouse gas emissions grows immense. To this end, a platform, solution, and mobile apps are developed as part of the European Union’s Horizon 2020 research and innovation program to support energy optimization in residences. However, to ensure long-term energy optimization, it is crucial to keep users engaged with the apps. Since augmented reality (AR) and a virtual animal companion positively influenced user engagement, we designed an AR companion that represented the user’s residence states; thereby making the user aware of indoor information. We conducted user evaluations to determine the effect of the AR companion on user engagement and perceived usability in the context of energy management. We identified that the user interface (UI) with AR (ARUI) barely affected user engagement and perceived usability compared to the traditional UI without AR (TUI); however, we found that the ARUI positively affected one of the user engagement aspects. Our results show AR companion integration’s potential benefits and effects on energy management mobile apps. Furthermore, our findings provide insights into UI design elements for developers considering multiple interaction modalities with AR.

Ort, förlag, år, upplaga, sidor
MDPI, 2024
Nyckelord
user interface, user evaluation, user engagement, perceived usability, augmented reality, Internet of Things, energy management
Nationell ämneskategori
Människa-datorinteraktion (interaktionsdesign)
Forskningsämne
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-104850 (URN)10.3390/app14072671 (DOI)001201100700001 ()2-s2.0-85192566624 (Scopus ID)
Forskningsfinansiär
EU, Horisont 2020, 893079
Anmärkning

Validerad;2024;Nivå 2;2024-03-22 (signyg);

Full text license: CC BY

Tillgänglig från: 2024-03-22 Skapad: 2024-03-22 Senast uppdaterad: 2024-10-18Bibliografiskt granskad
Shahid, Z. K., Saguna, S. & Åhlund, C. (2024). Variational Autoencoders for Anomaly Detection and Transfer Knowledge in Electricity and District Heating Consumption. IEEE transactions on industry applications, 60(5), 7437-7450
Öppna denna publikation i ny flik eller fönster >>Variational Autoencoders for Anomaly Detection and Transfer Knowledge in Electricity and District Heating Consumption
2024 (Engelska)Ingår i: IEEE transactions on industry applications, ISSN 0093-9994, E-ISSN 1939-9367, Vol. 60, nr 5, s. 7437-7450Artikel i tidskrift (Refereegranskat) Published
Ort, förlag, år, upplaga, sidor
IEEE, 2024
Nyckelord
Anomaly Detection, Anomaly detection, Autoencoder, Buildings, CNNLSTM, District heating, Electricity, electricity and district heating Daily Consumption, Energy consumption, Resistance heating, RNN-LSTM, School buildings, transfer knowledge, VAE, Water heating
Nationell ämneskategori
Energiteknik
Forskningsämne
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-108412 (URN)10.1109/TIA.2024.3425805 (DOI)001319511900075 ()2-s2.0-85198352210 (Scopus ID)
Anmärkning

Validerad;2024;Nivå 2;2024-10-17 (joosat);

Tillgänglig från: 2024-07-25 Skapad: 2024-07-25 Senast uppdaterad: 2024-11-20Bibliografiskt granskad
Mololoth, V. K., Åhlund, C. & Saguna, S. (2023). A Private Blockchain Based P2P Energy Trading Platform for Energy Users. In: Proceedings of 2023 IEEE International Smart Cities Conference, ISC2 2023: . Paper presented at 9th IEEE International Smart Cities Conference, ISC2 2023, Bucharest, Romania, September 24-27, 2023. Institute of Electrical and Electronics Engineers Inc.
Öppna denna publikation i ny flik eller fönster >>A Private Blockchain Based P2P Energy Trading Platform for Energy Users
2023 (Engelska)Ingår i: Proceedings of 2023 IEEE International Smart Cities Conference, ISC2 2023, Institute of Electrical and Electronics Engineers Inc. , 2023Konferensbidrag, Publicerat paper (Refereegranskat)
Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers Inc., 2023
Serie
Proceedings of the IEEE International Smart Cities Conference, ISSN 2687-8852, E-ISSN 2687-8860
Nationell ämneskategori
Datavetenskap (datalogi) Energisystem
Forskningsämne
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-103305 (URN)10.1109/ISC257844.2023.10293651 (DOI)2-s2.0-85178342222 (Scopus ID)979-8-3503-9775-8 (ISBN)979-8-3503-9776-5 (ISBN)
Konferens
9th IEEE International Smart Cities Conference, ISC2 2023, Bucharest, Romania, September 24-27, 2023
Tillgänglig från: 2023-12-13 Skapad: 2023-12-13 Senast uppdaterad: 2023-12-13Bibliografiskt granskad
Kim, J. C., Saguna, S. & Åhlund, C. (2023). Acceptability of a Health Care App With 3 User Interfaces for Older Adults and Their Caregivers: Design and Evaluation Study. JMIR Human Factors, 10, Article ID e42145.
Öppna denna publikation i ny flik eller fönster >>Acceptability of a Health Care App With 3 User Interfaces for Older Adults and Their Caregivers: Design and Evaluation Study
2023 (Engelska)Ingår i: JMIR Human Factors, E-ISSN 2292-9495, Vol. 10, artikel-id e42145Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background: The older population needs solutions for independent living and reducing the burden on caregivers while maintaining the quality and dignity of life.

Objective: The aim of this study was to design, develop, and evaluate an older adult health care app that supports trained caregivers (ie, formal caregivers) and relatives (ie, informal caregivers). We aimed to identify the factors that affect user acceptance of interfaces depending on the user’s role.

Methods: We designed and developed an app with 3 user interfaces that enable remote sensing of an older adult’s daily activities and behaviors. We conducted user evaluations (N=25) with older adults and their formal and informal caregivers to obtain an overall impression of the health care monitoring app in terms of user experience and usability. In our design study, the participants had firsthand experience with our app, followed by a questionnaire and individual interview to express their opinions on the app. Through the interview, we also identified their views on each user interface and interaction modality to identify the relationship between the user’s role and their acceptance of a particular interface. The questionnaire answers were statistically analyzed, and we coded the interview answers based on keywords related to a participant’s experience, for example, ease of use and usefulness.

Results: We obtained overall positive results in the user evaluation of our app regarding key aspects such as efficiency, perspicuity, dependability, stimulation, and novelty, with an average between 1.74 (SD 1.02) and 2.18 (SD 0.93) on a scale of −3.0 to 3.0. The overall impression of our app was favorable, and we identified that “simple” and “intuitive” were the main factors affecting older adults’ and caregivers’ preference for the user interface and interaction modality. We also identified a positive user acceptance of the use of augmented reality by 91% (10/11) of the older adults to share information with their formal and informal caregivers.

Conclusions: To address the need for a study to evaluate the user experience and user acceptance by older adults as well as both formal and informal caregivers regarding the user interfaces with multimodal interaction in the context of health monitoring, we designed, developed, and conducted user evaluations with the target user groups. Our results through this design study show important implications for designing future health monitoring apps with multiple interaction modalities and intuitive user interfaces in the older adult health care domain.

Ort, förlag, år, upplaga, sidor
JMIR Publications, 2023
Nyckelord
Internet of Things, health monitoring, older adults, augmented reality, user experience, independent living, design study, mobile phone
Nationell ämneskategori
Människa-datorinteraktion (interaktionsdesign)
Forskningsämne
Distribuerade datorsystem
Identifikatorer
urn:nbn:se:ltu:diva-95822 (URN)10.2196/42145 (DOI)001017203700025 ()36884275 (PubMedID)2-s2.0-85149873927 (Scopus ID)
Anmärkning

Validerad;2023;Nivå 2;2023-08-10 (joosat);

Funder: Swedish Governmental Agency for Innovation Systems (grant 2017-02807)

Licens fulltext: CC BY License

Tillgänglig från: 2023-03-09 Skapad: 2023-03-09 Senast uppdaterad: 2024-10-18Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0001-8561-7963

Sök vidare i DiVA

Visa alla publikationer