Ändra sökning
Länk till posten
Permanent länk

Direktlänk
BETA
Kalybay, Aigerim
Publikationer (2 of 2) Visa alla publikationer
Abdikalikova, Z. & Kalybay, A. (2007). Summability of a Tchebysheff system of functions (ed.). Paper presented at . Luleå: Department of Mathematics, Luleå University of Technology
Öppna denna publikation i ny flik eller fönster >>Summability of a Tchebysheff system of functions
2007 (Engelska)Rapport (Övrigt vetenskapligt)
Ort, förlag, år, upplaga, sidor
Luleå: Department of Mathematics, Luleå University of Technology, 2007. s. 17
Serie
Research report / Department of Engineering Sciences and Mathematics, Luleå University of Technology1 jan 2011 → …, ISSN 1400-4003 ; 2007:05
Nationell ämneskategori
Matematisk analys
Forskningsämne
Matematik
Identifikatorer
urn:nbn:se:ltu:diva-24987 (URN)d52ccddc-f0a7-494e-9793-1d49c3b70365 (Lokalt ID)d52ccddc-f0a7-494e-9793-1d49c3b70365 (Arkivnummer)d52ccddc-f0a7-494e-9793-1d49c3b70365 (OAI)
Anmärkning

Godkänd; 2007; 20120507 (andbra)

Tillgänglig från: 2016-09-29 Skapad: 2016-09-29 Senast uppdaterad: 2018-02-27Bibliografiskt granskad
Kalybay, A. (2006). A new development of Nikol'skii - Lizorkin and Hardy type inequalities with applications (ed.). (Doctoral dissertation). Paper presented at . Luleå: Luleå tekniska universitet
Öppna denna publikation i ny flik eller fönster >>A new development of Nikol'skii - Lizorkin and Hardy type inequalities with applications
2006 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis consists of an introduction and five papers, which all deal with a new Sobolev type function space called the space with multiweighted derivatives. As basis for this space serves some differential operators containing weight functions. In the introduction we present the reasons why this operator appears naturally and also point out some possible application areas. In the first and the second papers we present and investigate a different way to characterize the behavior of a function from this space at the singular point zero. The main goal of these papers is to find suitable conditions for the validity of a Nikol'skii - Lizorkin type inequality for functions in this space. This inequality, in turn, is a generalization of the Poincare and Friedrichs inequalities, and it can be applied to the solution of elliptic boundary value problems because it involves the estimation of a function via its higher order derivatives and non-homogenous boundary values. In the first and the second papers we consider different classes of boundary values. The third and the fourth papers are devoted to a special generalization of the higher order Hardy inequality. The generalization consists of considering our special differential operator instead of a higher order derivative. Moreover, in the fourth paper the proofs of the main results face with the problem to characterize a new Hardy type inequality (for a Volterra type operator), which is of independent interest. In the fifth paper we study spectral properties of some differential operators by using a special technique based on Hardy type inequalities. Here, in particular, we use in a crucial way the results concerning the new Hardy type inequalities we proved in the third and the fourth papers.

Ort, förlag, år, upplaga, sidor
Luleå: Luleå tekniska universitet, 2006. s. 21
Serie
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544 ; 2006:21
Nationell ämneskategori
Matematisk analys
Forskningsämne
Matematik
Identifikatorer
urn:nbn:se:ltu:diva-17714 (URN)4cb88c00-9f29-11db-8975-000ea68e967b (Lokalt ID)4cb88c00-9f29-11db-8975-000ea68e967b (Arkivnummer)4cb88c00-9f29-11db-8975-000ea68e967b (OAI)
Anmärkning

Godkänd; 2006; 20070108 (haneit)

Tillgänglig från: 2016-09-29 Skapad: 2016-09-29 Senast uppdaterad: 2018-02-27Bibliografiskt granskad

Sök vidare i DiVA

Visa alla publikationer