Ändra sökning
Länk till posten
Permanent länk

Direktlänk
BETA
Publikationer (10 of 89) Visa alla publikationer
Allali, N., Urbanova, V., Etienne, M., Devaux, X., Mallet, M., Vigolo, B., . . . Mamane, V. (2018). Accurate control of the covalent functionalization of single-walled carbon nanotubes for the electro-enzymatically controlled oxidation of biomolecules. Beilstein Journal of Nanotechnology, 9, 2750-2762
Öppna denna publikation i ny flik eller fönster >>Accurate control of the covalent functionalization of single-walled carbon nanotubes for the electro-enzymatically controlled oxidation of biomolecules
Visa övriga...
2018 (Engelska)Ingår i: Beilstein Journal of Nanotechnology, ISSN 2190-4286, Vol. 9, s. 2750-2762Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Single-walled carbon nanotubes (SWCNTs) were functionalized by ferrocene through ethyleneglycol chains of different lengths (FcETGn) and the functionalized SWCNTs (f-SWCNTs) were characterized by different complementary analytical techniques. In particular, high-resolution scanning electron transmission microscopy (HRSTEM) and electron energy loss spectroscopy (EELS) analyses support that the outer tubes of the carbon-nanotube bundles were covalently grafted with FcETGn groups. This result confirms that the electrocatalytic effect observed during the oxidation of the reduced form of nicotinamide adenine dinucleotide (NADH) co-factor by the f-SWCNTs is due to the presence of grafted ferrocene derivatives playing the role of a mediator. This work clearly proves that residual impurities present in our SWCNT sample (below 5 wt. %) play no role in the electrocatalytic oxidation of NADH. Moreover, molecular dynamic simulations confirm the essential role of the PEG linker in the efficiency of the bioelectrochemical device in water, due to the favorable interaction between the ETG units and water molecules that prevents π-stacking of the ferrocene unit on the surface of the CNTs. This system can be applied to biosensing, as exemplified for glucose detection. The well-controlled and well-characterized functionalization of essentially clean SWCNTs enabled us to establish the maximum level of impurity content, below which the f-SWCNT intrinsic electrochemical activity is not jeopardized.

Ort, förlag, år, upplaga, sidor
Beilstein-Institut, 2018
Nyckelord
biosensing, carbon nanotubes, covalent functionalization, electrocatalysis, ferrocene
Nationell ämneskategori
Annan fysik
Forskningsämne
Experimentell fysik; Tillämpad fysik
Identifikatorer
urn:nbn:se:ltu:diva-71587 (URN)10.3762/bjnano.9.257 (DOI)000448782500001 ()30416926 (PubMedID)2-s2.0-85056284634 (Scopus ID)
Anmärkning

Validerad;2018;Nivå 2;2018-11-15 (johcin)

Tillgänglig från: 2018-11-15 Skapad: 2018-11-15 Senast uppdaterad: 2019-04-11Bibliografiskt granskad
Zhu, C., Soldatov, A. & Mathew, A. (2017). Advanced microscopy and spectroscopy reveal the adsorption and clustering of Cu(II) onto TEMPO-oxidized cellulose nanofibers. Nanoscale, 9(22), 7419-7428
Öppna denna publikation i ny flik eller fönster >>Advanced microscopy and spectroscopy reveal the adsorption and clustering of Cu(II) onto TEMPO-oxidized cellulose nanofibers
2017 (Engelska)Ingår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 9, nr 22, s. 7419-7428Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

TEMPO (2,2,6,6-tetramethylpiperidine-1-oxylradical)-mediated oxidation nanofibers (TOCNF), as a biocompatible and bioactive material, have opened up a new application of nanocellulose for the removal of water contaminants. This development demands extremely sensitive and accurate methods to understand the surface interactions between water pollutants and TOCNF. In this report, we investigated the adsorption of metal ions on TOCNF surfaces using experimental techniques atthe nano and molecular scales with Cu(II) as the target pollutant in both aqueous and dry forms. Imaging with in situ atomic force microscopy (AFM), together with a study of the physiochemical properties of TOCNF caused by adsorption with Cu(II) in liquid, were conducted using the PeakForce Quantitative NanoMechanics (PF-QNM) mode at the nano scale. The average adhesion force between the tip and the target single TOCNF almost tripled after adsorption with Cu(II) from 50 pN to 140 pN. The stiffness of the TOCNF was also enhanced because the Cu(II) bound to the carboxylate groups and hardened the fiber. AFM topography, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) mapping and X-ray photoelectron spectroscopy (XPS) indicated that the TOCNF were covered by copper nanolayers and/or nanoparticles after adsorption. The changes in the molecular structure caused by the adsorption were demonstrated by Raman and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). This methodology will be of great assistance to gain qualitative and quantitative information on the adsorption process and interaction between charged entities in aqueous medium.

Ort, förlag, år, upplaga, sidor
Royal Society of Chemistry, 2017
Nationell ämneskategori
Annan fysik Biomaterial
Forskningsämne
Experimentell fysik; Trä och bionanokompositer
Identifikatorer
urn:nbn:se:ltu:diva-63514 (URN)10.1039/c7nr01566f (DOI)000402881600009 ()28530277 (PubMedID)2-s2.0-85021169078 (Scopus ID)
Anmärkning

Validerad;2017;Nivå 2;2017-06-14 (rokbeg)

Tillgänglig från: 2017-05-24 Skapad: 2017-05-24 Senast uppdaterad: 2018-07-10Bibliografiskt granskad
Botella, P., Devaux, X., Dossot, M., Garashchenko, V., Beltzung, J. C., Soldatov, A. & Ananev, S. (2017). Single-Walled Carbon Nanotubes Shock-Compressed to 0.5 Mbar. Physica status solidi. B, Basic research, 254(11), Article ID 1700315.
Öppna denna publikation i ny flik eller fönster >>Single-Walled Carbon Nanotubes Shock-Compressed to 0.5 Mbar
Visa övriga...
2017 (Engelska)Ingår i: Physica status solidi. B, Basic research, ISSN 0370-1972, E-ISSN 1521-3951, Vol. 254, nr 11, artikel-id 1700315Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Single-walled carbon nanotubes (SWCNTs) have been dynamically (shock) compressed to 0.5 Mbar, above the limit of their structural integrity. Two distinct types of material are identified by high-resolution transmission electron microscopy (HRTEM) and multi-wavelength Raman spectroscopy in the sample recovered after shock: multi-layer graphene (MLG) and a two-phase material composed of nano-clustered graphene and amorphous carbon whereas no diamond-like carbon or carbon nano-onions are found. Peak decomposition of the Raman spectra was used to estimate the coherent scatterers (clusters) size in MLG at 36 nm from the D- to G-band intensity ratio dependence on the photon excitation energy. Botella et al. (article no. 1700315) propose the peak fitting model for decomposition of the Raman spectra of highly disordered carbon material containing graphene nano-clusters and stress the importance of accounting for heptagonal- and pentagonal-ring defects in graphene layers for the analysis of such spectra. The cover image shows HRTEM images and the correspondent Raman spectra of the two types of material along with peak decomposition of the two-phase material with the peaks assigned to heptagons (a) and pentagons (b). Particulars of the SWCNTs transformation to other structural forms of carbon at high pressure/temperature are discussed

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2017
Nationell ämneskategori
Annan fysik
Forskningsämne
Experimentell fysik
Identifikatorer
urn:nbn:se:ltu:diva-68344 (URN)10.1002/pssb.201700315 (DOI)
Anmärkning

Validerad;2017;Nivå 2;2017-11-21 (andbra)

Tillgänglig från: 2018-04-13 Skapad: 2018-04-13 Senast uppdaterad: 2018-05-04Bibliografiskt granskad
Botella, P., Devaux, X., Dossot, M., Garashchenko, V., Beltzung, J. C., Soldatov, A. & Ananev, S. (2017). Single-Walled Carbon Nanotubes Shock-Compressed to 0.5 Mbar. Physica status solidi. B, Basic research, 254(11), Article ID 1770259.
Öppna denna publikation i ny flik eller fönster >>Single-Walled Carbon Nanotubes Shock-Compressed to 0.5 Mbar
Visa övriga...
2017 (Engelska)Ingår i: Physica status solidi. B, Basic research, ISSN 0370-1972, E-ISSN 1521-3951, Vol. 254, nr 11, artikel-id 1770259Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Single-walled carbon nanotubes (SWCNTs) have been dynamically (shock) compressed to 0.5 Mbar, above the limit of their structural integrity. Two distinct types of material are identified by high-resolution transmission electron microscopy (HRTEM) and multi-wavelength Raman spectroscopy in the sample recovered after shock: multi-layer graphene (MLG) and a two-phase material composed of nano-clustered graphene and amorphous carbon whereas no diamond-like carbon or carbon nano-onions are found. Peak decomposition of the Raman spectra was used to estimate the coherent scatterers (clusters) size in MLG at 36 nm from the D- to G-band intensity ratio dependence on the photon excitation energy. Botella et al. (article no. 1700315) propose the peak fitting model for decomposition of the Raman spectra of highly disordered carbon material containing graphene nano-clusters and stress the importance of accounting for heptagonal- and pentagonal-ring defects in graphene layers for the analysis of such spectra. The cover image shows HRTEM images and the correspondent Raman spectra of the two types of material along with peak decomposition of the two-phase material with the peaks assigned to heptagons (a) and pentagons (b). Particulars of the SWCNTs transformation to other structural forms of carbon at high pressure/temperature are discussed

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2017
Nationell ämneskategori
Annan fysik
Forskningsämne
Experimentell fysik
Identifikatorer
urn:nbn:se:ltu:diva-66624 (URN)10.1002/pssb.201770259 (DOI)000417609800010 ()
Tillgänglig från: 2017-11-17 Skapad: 2017-11-17 Senast uppdaterad: 2019-04-03Bibliografiskt granskad
Öberg, S., Adjizian, J.-J., Erbahar, D., Rio, J., Humbert, B., Dossot, M., . . . Ewels, C. P. (2016). Effect of functionalization and charging on resonance energy and radial breathing modes of metallic carbon nanotubes (ed.). Paper presented at . Physical Review B. Condensed Matter and Materials Physics, 93(4), Article ID 45408.
Öppna denna publikation i ny flik eller fönster >>Effect of functionalization and charging on resonance energy and radial breathing modes of metallic carbon nanotubes
Visa övriga...
2016 (Engelska)Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 93, nr 4, artikel-id 45408Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

While changes in resonant Raman scattering measurements are commonly used to measure the effect of chemical functionalization on single-walled carbon nanotubes, the precise effects of functionalization on these spectra have yet to be clearly identified. In this density functional theory study, we explore the effects of functionalization on both the nanotube resonance energy and frequency shifts in radial breathing mode. Charge transfer effects cause a shift in the first Van Hove singularity spacings, and hence resonance excitation energy, and lead to a decrease in the radial breathing mode frequency, notably when the Fermi level decreases. By varying stochastically the effective mass of carbon atoms in the tube, we simulate the mass effect of functionalization on breathing mode frequency. Finally, full density functional calculations are performed for different nanotubes with varying functional group distribution and concentration using fluorination and hydrogenation, allowing us to determine overall effect on radial breathing mode and charge transfer. The results concur well with experiment, and we discuss the importance when using Raman spectroscopy to interpret experimental functionalization treatments

Nationell ämneskategori
Annan fysik
Forskningsämne
Tillämpad fysik; Experimentell fysik
Identifikatorer
urn:nbn:se:ltu:diva-11347 (URN)10.1103/PhysRevB.93.045408 (DOI)000367894400008 ()2-s2.0-84955455581 (Scopus ID)a4afae03-a703-44c1-aba6-e770cff97d90 (Lokalt ID)a4afae03-a703-44c1-aba6-e770cff97d90 (Arkivnummer)a4afae03-a703-44c1-aba6-e770cff97d90 (OAI)
Anmärkning
Validerad; 2016; Nivå 2; 20160129 (andbra)Tillgänglig från: 2016-09-29 Skapad: 2016-09-29 Senast uppdaterad: 2018-07-10Bibliografiskt granskad
Chernogorova, O. P., Drozdova, E. I., Ushakova, I. N., Bulychev, S., Ekimov, E., Benavides, V. & Soldatov, A. (2016). Indentation behaviour of superelastic hard carbon. Philosophical Magazine, 96(32-34), 3451-3460
Öppna denna publikation i ny flik eller fönster >>Indentation behaviour of superelastic hard carbon
Visa övriga...
2016 (Engelska)Ingår i: Philosophical Magazine, ISSN 1478-6435, E-ISSN 1478-6443, Vol. 96, nr 32-34, s. 3451-3460Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Superelastic hard carbon particles widely varying in structure andproperties have been studied by instrumented microindentationtechnique. The carbon particles up to 200 μm in size were producedby fullerene collapse upon high-pressure high-temperature treatmentof metal–fullerene powder mixture with simultaneous sintering ofmetal matrix composite materials (CM) reinforced by the particles.The structure and properties of the carbon particles were controlledby changing synthesis parameters and the state (composition andstructure) of the parent fullerite crystals. The specific features of theinstrumented indentation behaviour of the particles were studied asa function of their hardness. Mechanical properties of the particlestested at loads of up to 1970 mN exhibit an indentation size effect,which becomes more pronounced with increasing hardness of thecarbon particles. Upon holding at a constant load, the fullerenederivedcarbon particles undergo unrecoverable deformation, and theindentation creep CIT increases with increasing particle hardness. Anincrease in hardness of the reinforcing carbon particles substantiallyimproves the wear resistance of the CM and decreases their frictioncoefficient.

Nationell ämneskategori
Annan fysik
Forskningsämne
Experimentell fysik
Identifikatorer
urn:nbn:se:ltu:diva-59920 (URN)10.1080/14786435.2016.1235802 (DOI)000388738500010 ()2-s2.0-84991278469 (Scopus ID)
Anmärkning

Validerad; 2016; Nivå 2; 2016-11-21(andbra)

Tillgänglig från: 2016-10-24 Skapad: 2016-10-24 Senast uppdaterad: 2018-07-10Bibliografiskt granskad
Battie, Y., Dossot, M., Allali, N., Mamane, V., Naciri, A. ., Broch, L. & Soldatov, A. (2016). Mild covalent functionalization of single-walled carbon nanotubes highlighted by spectroscopic ellipsometry (ed.). Paper presented at . Carbon, 96, 557-564
Öppna denna publikation i ny flik eller fönster >>Mild covalent functionalization of single-walled carbon nanotubes highlighted by spectroscopic ellipsometry
Visa övriga...
2016 (Engelska)Ingår i: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 96, s. 557-564Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Single-walled carbon nanotubes (SWCNT) synthesized using the HiPco® process and purified thereafter were submitted to two covalent functionalization processes: i) a mild oxidation in a concentrated HNO3 solution using microwave irradiation and ii) a radical functionalization to graft methoxyphenyl groups. The samples were analyzed by Raman spectroscopy and spectroscopic ellipsometry in the energy window 0.07-4.96 eV. The complex dielectric function was analytically calculated in order to extract the real (εr) and imaginary (εi) parts of this function vs. the incident energy of the light. The ellipsometric data in the infrared part of the spectrum revealed that process i) mainly affected the amorphous carbon deposited on the surface of SWCNTs while process ii) strongly changed the electronic nature of the film due to a charge transfer between methoxyphenyl groups and SWCNTs. These results demonstrate the richness of information that spectroscopic ellipsometry is able to bring about on an entire carbon nanotube ensemble compared to Raman spectroscopy, while not suffering from limitation on their electronic structure and/or aggregate state/presence of surfactants.

Nationell ämneskategori
Annan fysik
Forskningsämne
Experimentell fysik
Identifikatorer
urn:nbn:se:ltu:diva-12813 (URN)10.1016/j.carbon.2015.09.066 (DOI)000366078000066 ()2-s2.0-84947998139 (Scopus ID)bf80e084-3972-4c26-b41f-6d06d022ddcc (Lokalt ID)bf80e084-3972-4c26-b41f-6d06d022ddcc (Arkivnummer)bf80e084-3972-4c26-b41f-6d06d022ddcc (OAI)
Anmärkning
Validerad; 2016; Nivå 2; 20151002 (andbra)Tillgänglig från: 2016-09-29 Skapad: 2016-09-29 Senast uppdaterad: 2019-04-11Bibliografiskt granskad
Devaux, X., Vigolo, B., McRae, E., Valsaque, F., Allali, N., Mamane, V., . . . Tsareva, S. Y. (2015). Covalent Functionalization of HiPco Single-Walled Carbon Nanotubes: Differences in the Oxidizing Action of H2SO4 and HNO3 during a Soft Oxidation Process (ed.). Paper presented at . ChemPhysChem, 16(12), 2692-2701
Öppna denna publikation i ny flik eller fönster >>Covalent Functionalization of HiPco Single-Walled Carbon Nanotubes: Differences in the Oxidizing Action of H2SO4 and HNO3 during a Soft Oxidation Process
Visa övriga...
2015 (Engelska)Ingår i: ChemPhysChem, ISSN 1439-4235, E-ISSN 1439-7641, Vol. 16, nr 12, s. 2692-2701Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The results of a study on the evolution of HiPco single-walled carbon nanotubes during the oxidizing action of H2SO4 and HNO3 are presented. The process conditions used have been chosen so as to avoid any significant damage to the nanotube structure. The type and level of functionalization, the location of the grafted functions on the surface of the nanotube and the changes in morphological characteristics of the samples were examined by using a wide and complementary range of analytical techniques. We propose an explanation for the differences in the oxidizing action of sulfuric and nitric acids. The combined results allow us to suggest possible reaction mechanisms that occur on the surface of the nanotube.

Nationell ämneskategori
Annan fysik
Forskningsämne
Experimentell fysik
Identifikatorer
urn:nbn:se:ltu:diva-7362 (URN)10.1002/cphc.201500248 (DOI)000359906900026 ()26136373 (PubMedID)2-s2.0-84939252266 (Scopus ID)5bc47731-9547-4a86-99ba-8d3283d0a889 (Lokalt ID)5bc47731-9547-4a86-99ba-8d3283d0a889 (Arkivnummer)5bc47731-9547-4a86-99ba-8d3283d0a889 (OAI)
Anmärkning
Validerad; 2015; Nivå 2; 20150703 (andbra)Tillgänglig från: 2016-09-29 Skapad: 2016-09-29 Senast uppdaterad: 2019-04-11Bibliografiskt granskad
Benavides, V., Chernogorova, O., Drozdova, E. I., Ushakova, I. N. & Soldatov, A. (2015). Raman and electron microscopy study of C60 collapse/transformation to a nanoclustered graphene-based disordered carbon phase at high pressure/temperature (ed.). Paper presented at . Physica status solidi. B, Basic research, 252(11), 2626-2629
Öppna denna publikation i ny flik eller fönster >>Raman and electron microscopy study of C60 collapse/transformation to a nanoclustered graphene-based disordered carbon phase at high pressure/temperature
Visa övriga...
2015 (Engelska)Ingår i: Physica status solidi. B, Basic research, ISSN 0370-1972, E-ISSN 1521-3951, Vol. 252, nr 11, s. 2626-2629Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Transformation of C60 polymers to a superelastic hard carbon (nanoclustered graphene phase (NGP)) occurring in metal matrix at 5 GPa in a temperature interval of 1000–1100 K was studied by optical, scanning electron microscopy (SEM), and Raman spectroscopy. Raman spectral scan across the sample surface allowed us to identify different stages of the structural transformation. The SEM and Raman spectroscopy data testify for the NGP appearance at the defects concentration sites in the parent fullerite structure. We propose that the buckyballs collapse/formation of the NGP is governed by nucleation and growth (diffusive) mechanism unlike earlier discussed in the literature possibility of the martensitic-type (displacive) character of this transformation.

Nationell ämneskategori
Annan fysik
Forskningsämne
Experimentell fysik
Identifikatorer
urn:nbn:se:ltu:diva-6977 (URN)10.1002/pssb.201552665 (DOI)000364690400046 ()2-s2.0-84946434200 (Scopus ID)54debcfd-13d4-4b81-a6a0-24a4447f86f0 (Lokalt ID)54debcfd-13d4-4b81-a6a0-24a4447f86f0 (Arkivnummer)54debcfd-13d4-4b81-a6a0-24a4447f86f0 (OAI)
Anmärkning
Validerad; 2015; Nivå 2; 20151027 (andbra)Tillgänglig från: 2016-09-29 Skapad: 2016-09-29 Senast uppdaterad: 2018-07-10Bibliografiskt granskad
Noël, M., Ananev, S., Mases, M., Devaux, X., Lee, J., Evdokimov, I., . . . Soldatov, A. (2014). Probing structural integrity of single walled carbon nanotubes by dynamic and static compression (ed.). Paper presented at . Physica Status Solidi. Rapid Research Letters, 8(11), 935-938, Article ID 4.
Öppna denna publikation i ny flik eller fönster >>Probing structural integrity of single walled carbon nanotubes by dynamic and static compression
Visa övriga...
2014 (Engelska)Ingår i: Physica Status Solidi. Rapid Research Letters, ISSN 1862-6254, E-ISSN 1862-6270, Vol. 8, nr 11, s. 935-938, artikel-id 4Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We report on a first study of single walled carbon nanotubes (SWCNTs) after application of dynamic (shock) compression. The experiments were conducted at 19 GPa and 36 GPa in a recovery assembly. For comparison, an experiment at a static pressure of 36 GPa was performed on the material from the same batch in a diamond anvil cell (DAC). After the high pressure treatment the samples were characterized by Raman spectroscopy and transmission electron microscopy (TEM). After exposure to 19 GPa of shock compression the CNT material exhibited substantial structural damage such as CNT wall disruption, opening of the tube along its axis (“unzipping”) and tube shortening (“cutting”). Dynamic compression to 36 GPa resulted in essentially complete CNT destruction whereas at least a fraction of the nanotubes was recovered after 36 GPa of static compression though severely damaged. The results of these shock wave experiments underline the prospect of using SWCNTs as reinforcing units in material

Nationell ämneskategori
Annan fysik
Forskningsämne
Experimentell fysik
Identifikatorer
urn:nbn:se:ltu:diva-2389 (URN)10.1002/pssr.201409353 (DOI)000345274300010 ()2-s2.0-84910679063 (Scopus ID)00027906-f0eb-4cda-9952-cad4e7041d92 (Lokalt ID)00027906-f0eb-4cda-9952-cad4e7041d92 (Arkivnummer)00027906-f0eb-4cda-9952-cad4e7041d92 (OAI)
Anmärkning
Validerad; 2014; 20140912 (andbra)Tillgänglig från: 2016-09-29 Skapad: 2016-09-29 Senast uppdaterad: 2018-07-10Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0002-5145-1560

Sök vidare i DiVA

Visa alla publikationer