Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Robertson, StephanieORCID iD iconorcid.org/0000-0002-8298-292X
Alternativa namn
Publikationer (10 of 14) Visa alla publikationer
Robertson, S. M. & Frostevarg, J. (2021). Effects of surface and cut oxides on laser arc hybrid welding stability of high strength steels.
Öppna denna publikation i ny flik eller fönster >>Effects of surface and cut oxides on laser arc hybrid welding stability of high strength steels
2021 (Engelska)Ingår i: Artikel i tidskrift (Övrigt vetenskapligt) Submitted
Ort, förlag, år, upplaga, sidor
Luleå: Luleå University of Technology, 2021
Nyckelord
Laser beam welding, high strength steels, heat treatment, microstructure, Snapshot method
Nationell ämneskategori
Bearbetnings-, yt- och fogningsteknik
Forskningsämne
Produktionsutveckling
Identifikatorer
urn:nbn:se:ltu:diva-83451 (URN)
Tillgänglig från: 2021-05-07 Skapad: 2021-05-07 Senast uppdaterad: 2025-07-04
Robertson, S., Frostevarg, J., Näsström, J., Berndtsson, T. & Kaplan, A. (2021). Evaluation of pre-determined dilution of high strength steels by the Snapshot method. Optics and lasers in engineering, 139, Article ID 106512.
Öppna denna publikation i ny flik eller fönster >>Evaluation of pre-determined dilution of high strength steels by the Snapshot method
Visa övriga...
2021 (Engelska)Ingår i: Optics and lasers in engineering, ISSN 0143-8166, E-ISSN 1873-0302, Vol. 139, artikel-id 106512Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Dilution is an unavoidable consequence of multi-material fusion processing, i.e. welding, cladding etc. In this paper we propose a novel method for controlled dilution experiments, analyzing microstructural trends of steel filler wire diluted with steel base metal. The highlight of this method is the control of processing conditions used to melt a pre-determined dilution of two high strength steels. The materials involved are S960QL base metal machining chips and a chopped under-matched wire consumable, which is used to increase the toughness of welded joints. These materials were combined in specific mass ratios in a prepared cavity and then melted by a pulsed laser beam. A high-speed RGB camera evaluated the relative spatial temperature of the melt surface. The molten mass then solidified into a uniform nugget, confirmed by energy dispersive x-ray spectrometry (EDS) to have a homogenous chemical composition (a ‘Snapshot’ nugget). Hardness values obtained for different dilution levels were compared to a narrow gap multi-layer laser weld (NGMLW), with a decreased dilution rate yielding a decreased hardness. The Snapshot microstructures created are similar to the different regions of the NGMLW, in the weld cap and in the body of the weld. Snapshot nuggets were also evaluated for non-metallic inclusion (NMI) size distributions relating to the dilution levels (NMIs are important indicators for acicular ferrite, which has been shown to increase impact toughness).

Ort, förlag, år, upplaga, sidor
Elsevier, 2021
Nyckelord
Dilution, Narrow gap multi-layer welding, Laser welding, Snapshot method, Energy dispersive x-ray spectroscopy
Nationell ämneskategori
Bearbetnings-, yt- och fogningsteknik
Forskningsämne
Produktionsutveckling
Identifikatorer
urn:nbn:se:ltu:diva-82060 (URN)10.1016/j.optlaseng.2020.106512 (DOI)000614093000044 ()2-s2.0-85097904003 (Scopus ID)
Forskningsfinansiär
Interreg Nord, 2014-2020Europeiska regionala utvecklingsfonden (ERUF), 304-15588-2015Vinnova, 2019-00781
Anmärkning

Validerad;2021;Nivå 2;2021-01-01 (johcin);

Finansiär: EC Research Fund for Coal and Steel (709954)

Tillgänglig från: 2020-12-18 Skapad: 2020-12-18 Senast uppdaterad: 2021-05-07Bibliografiskt granskad
Robertson, S. (2021). Laser welding and laser heat treatment of high strength steels. (Doctoral dissertation). Luleå University of Technology
Öppna denna publikation i ny flik eller fönster >>Laser welding and laser heat treatment of high strength steels
2021 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Laser-svetsning och värmebehandling av höghållfast stål
Abstract [en]

Laser materials processing, including thermal treatment and laser welding has been undergoing continuous growth in the manufacturing industry for decades. A laser beam offers high precision and energy transfer, capable of various processing. For many cases a Gaussian beam is applied, but lately development of more complex beam shapes has been developed, where e.g. multiple beams (beam splitting) can be used for increased tolerances during welding.

This thesis presents six papers (Papers A-F) on welding of high strength steels, laser pulse shaping, thermal treatments, and microstructural investigations. Different methods for obtaining a desirable weld were investigated through tailoring of the laser beam process. This affected the resulting temperature fields and thermal histories of the specimens. Experimental analysis was supported through various in-situ observation techniques and metallurgical studies.

Papers A-C present thermal processing and chemical manipulation to obtain the desired microstructure, by introducing and applying the here introduced Snapshot method. Paper A explores tailoring a laser pulse to mimic a hybrid welding process, Paper B elaborates the simulation to a multi-cycle process, and Paper C explores dilution. The manuscripts utilize a specialized experimental setup, optical analysis methods, and standard thermal measuring techniques. Metallographic analysis showed that thermal process optimization and/or dilution rate control during welding improved weld zone characteristics.

Improvements also include joint macrostructure characteristics, which are impacted by process stability, the theme of Papers D-F. Melt pool phenomena are studied in depth in Papers D and E. Paper D explores material ejections in a single beam welding scenario. Paper E investigates six beam shapes, from a single beam to a quad-beam arrangement. Paper F studies hybrid welding, a process that was simulated in Papers A-C but focused on the stability of the process instead of thermally guiding the microstructure. 

The studies complement each other in knowledge and methods. Welding of high strength steel is joining method-dependent, which imposes a unique thermal profile that affects the microstructures. The microstructure is also influenced by the chemical composition, an important point when multiple materials are used. The studies contribute an analysis of certain aspects of thermal and chemical effects of different laser-based processes to further optimize processing of specifically high strength steels, though the aspects can be generalized to other metals

Ort, förlag, år, upplaga, sidor
Luleå University of Technology, 2021
Serie
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Nyckelord
Laser welding, heat treatment, high strength steel, Snapshot method, microstructure
Nationell ämneskategori
Bearbetnings-, yt- och fogningsteknik
Forskningsämne
Produktionsutveckling
Identifikatorer
urn:nbn:se:ltu:diva-84181 (URN)978-91-7790-848-7 (ISBN)978-91-7790-849-4 (ISBN)
Disputation
2021-09-09, E632, Luleå, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2021-05-11 Skapad: 2021-05-07 Senast uppdaterad: 2022-01-17Bibliografiskt granskad
Robertson, S. M., Kaplan, A. F. .. & Frostevarg, J. (2021). Material ejection attempts during laser keyhole welding. Journal of Manufacturing Processes, 67, 91-100
Öppna denna publikation i ny flik eller fönster >>Material ejection attempts during laser keyhole welding
2021 (Engelska)Ingår i: Journal of Manufacturing Processes, ISSN 1526-6125, Vol. 67, s. 91-100Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Material loss during keyhole mode laser welding often leads to surface imperfections that can negatively impact component performance. High-speed imaging identified four types of material ejection attempts: classical spatter, re-captured spatter, protuberances, and scalloping. The momentum attributed to the melt body, which is influenced by the keyhole properties, dictates whether the ejection attempt is successful or if the material is re-captured. The relationship between the dynamics of the keyhole and melt pool was elaborated in an extended systematic description of melt ejection attempts, which were then classified. Ejection attempts were often observed to be proceeded by a co-current swelling of the melt, adjacent to the keyhole, followed by a melt depression. The melt swell would elongate into a melt column with a concentration of momentum, where excessive momentum causes the melt to neck and separate into spatter. Trajectory determines if the spatter becomes a permanent fixture or re-incorporates into the melt body, with the latter having the possibility to cause further melt body disturbances leading to more ejection attempts. If the melt column fails to neck and separate, or an additional force acts upon the column, a protuberance or a scallop could then form. Keyhole and melt pool fluctuations were sometimes observed to be accommodated, avoiding material ejection. In these cases, a stable weld could be obtained with large variations in the dimensions of the melt pool and the keyhole.

Ort, förlag, år, upplaga, sidor
Elsevier, 2021
Nyckelord
spatter, protuberance, material ejection, keyhole stability, melt pool dynamics, laser welding
Nationell ämneskategori
Bearbetnings-, yt- och fogningsteknik
Forskningsämne
Produktionsutveckling
Identifikatorer
urn:nbn:se:ltu:diva-83449 (URN)10.1016/j.jmapro.2021.04.052 (DOI)000658516300001 ()2-s2.0-85104925644 (Scopus ID)
Forskningsfinansiär
Vinnova, 2019-00781
Anmärkning

Validerad;2021;Nivå 2;2021-05-06 (alebob)

Tillgänglig från: 2021-03-30 Skapad: 2021-03-30 Senast uppdaterad: 2021-06-17Bibliografiskt granskad
Kaplan, A. F. H., Robertson, S. M., Volpp, J. & Frostevarg, J. (2021). Melt pool forming a buttonhole in tailored blank welding with multiple laser spots. In: IOP Conference Series: Materials Science and Engineering: . Paper presented at 18th Nordic Laser Materials Processing Conference (18th NOLAMP), Luleå, Sweden, January 18-20, 2022. Institute of Physics (IOP), 1135, Article ID 012022.
Öppna denna publikation i ny flik eller fönster >>Melt pool forming a buttonhole in tailored blank welding with multiple laser spots
2021 (Engelska)Ingår i: IOP Conference Series: Materials Science and Engineering, Institute of Physics (IOP), 2021, Vol. 1135, artikel-id 012022Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Laser beam welding of tailored blank butt joints of different sheet thickness generates asymmetric melt pool conditions. By employing two, three or four tailored laser beams, additional options for shaping the melt pool conditions can be offered. As observed by high speed imaging, in most multi-spot cases a large stable buttonhole was generated, by the trailing laser beams asymmetrically towards the thinner sheet. Correspondingly, the ablation pressure from the multiple boiling fronts has generated a fast melt jet, particularly along the thicker sheet. In many cases the boiling front kept open to the keyhole rear. The buttonhole differs from the Catenoid-like shape reported earlier. The walls are steeper and the horizontal shape can be asymmetric. The melt pool can switch between different stable modes. Inclined arrangement of three beams enabled even two separate, parallel boiling fronts and melt jets, combining behind the opening. Despite the large buttonhole, sound welds were achieved. Solely for four equal laser beams, arranged as a square, a melt pool without buttonhole was generated. Provided the driving forces from the ablation pressure along with the melt flow are sufficiently explored and understood, new opportunities to optimize the welding process are available.

Ort, förlag, år, upplaga, sidor
Institute of Physics (IOP), 2021
Serie
IOP Conference Series: Materials Science and Engineering, ISSN 1757-8981, E-ISSN 1757-899X
Nationell ämneskategori
Bearbetnings-, yt- och fogningsteknik
Forskningsämne
Produktionsutveckling
Identifikatorer
urn:nbn:se:ltu:diva-90026 (URN)10.1088/1757-899X/1135/1/012022 (DOI)000766307500022 ()
Konferens
18th Nordic Laser Materials Processing Conference (18th NOLAMP), Luleå, Sweden, January 18-20, 2022
Forskningsfinansiär
Vinnova, 2019-00781
Anmärkning

Funder: European Commission, Research Foundation for Coal and Steel, project Steel S4EV, (800726)

Tillgänglig från: 2022-03-31 Skapad: 2022-03-31 Senast uppdaterad: 2022-04-11Bibliografiskt granskad
He, H., Forouzan, F., Volpp, J., Robertson, S. M. & Vuorinen, E. (2021). Microstructure and Mechanical Properties of Laser-Welded DP Steels Used in the Automotive Industry. Materials, 14(2), Article ID 456.
Öppna denna publikation i ny flik eller fönster >>Microstructure and Mechanical Properties of Laser-Welded DP Steels Used in the Automotive Industry
Visa övriga...
2021 (Engelska)Ingår i: Materials, E-ISSN 1996-1944, Vol. 14, nr 2, artikel-id 456Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The aim of this work was to investigate the microstructure and the mechanical properties of laser-welded joints combined of Dual Phase DP800 and DP1000 high strength thin steel sheets. Microstructural and hardness measurements as well as tensile and fatigue tests have been carried out. The welded joints (WJ) comprised of similar/dissimilar steels with similar/dissimilar thickness were consisted of different zones and exhibited similar microstructural characteristics. The trend of microhardness for all WJs was consistent, characterized by the highest value at hardening zone (HZ) and lowest at softening zone (SZ). The degree of softening was 20 and 8% for the DP1000 and DP800 WJ, respectively, and the size of SZ was wider in the WJ combinations of DP1000 than DP800. The tensile test fractures were located at the base material (BM) for all DP800 weldments, while the fractures occurred at the fusion zone (FZ) for the weldments with DP1000 and those with dissimilar sheet thicknesses. The DP800-DP1000 weldment presented similar yield strength (YS, 747 MPa) and ultimate tensile strength (UTS, 858 MPa) values but lower elongation (EI, 5.1%) in comparison with the DP800-DP800 weldment (YS 701 MPa, UTS 868 MPa, EI 7.9%), which showed similar strength properties as the BM of DP800. However, the EI of DP1000-DP1000 weldment was 1.9%, much lower in comparison with the BM of DP1000. The DP800-DP1000 weldment with dissimilar thicknesses showed the highest YS (955 MPa) and UTS (1075 MPa) values compared with the other weldments, but with the lowest EI (1.2%). The fatigue fractures occurred at the WJ for all types of weldments. The DP800-DP800 weldment had the highest fatigue limit (348 MPa) and DP800-DP1000 with dissimilar thicknesses had the lowest fatigue limit (<200 MPa). The fatigue crack initiated from the weld surface.

Ort, förlag, år, upplaga, sidor
MDPI, 2021
Nyckelord
laser welding, dual phase steel, similar/dissimilar welded joints, microhardness, tensile properties, fatigue
Nationell ämneskategori
Bearbetnings-, yt- och fogningsteknik Annan materialteknik
Forskningsämne
Materialteknik; Produktionsutveckling
Identifikatorer
urn:nbn:se:ltu:diva-82628 (URN)10.3390/ma14020456 (DOI)000611382200001 ()33477790 (PubMedID)2-s2.0-85099781493 (Scopus ID)
Forskningsfinansiär
Carl Tryggers stiftelse för vetenskaplig forskning
Anmärkning

Validerad;2021;Nivå 2;2021-01-25 (alebob);

Finansiär: EC Research Fund for Coal and Steel (800726, 754155)

Tillgänglig från: 2021-01-25 Skapad: 2021-01-25 Senast uppdaterad: 2024-07-04Bibliografiskt granskad
Robertson, S. M. & Kaplan, A. F. .. (2021). Multi-keyhole separation during multi-spot laser welding of duplex steel. Optics and Laser Technology, 143, Article ID 107382.
Öppna denna publikation i ny flik eller fönster >>Multi-keyhole separation during multi-spot laser welding of duplex steel
2021 (Engelska)Ingår i: Optics and Laser Technology, ISSN 0030-3992, E-ISSN 1879-2545, Vol. 143, artikel-id 107382Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Separated keyholes generated during a multi-beam laser welding process were observed, analyzed, and quantified. Two high-speed cameras were utilized to capture process phenomena of bead on plate experiments, with a near vertical and a horizontal view. The films were analyzed for: the ability to form a unique keyhole for each beam, the time and location of observed fully penetrated keyhole, and other associated trends. The number of beams was correlated to fully penetrated, separate keyholes. Keyhole separations were observed to be stable while full penetration was less regular. The location of a fully penetrating keyhole correlated with the position of the stronger beam. The dynamic melt wall width separating the keyholes was measured with beam orientation and power ratios between beams having a significant impact. Beam orientation showed that the lagging inter-keyhole wall of a quad-beam process was impacted by the presence of a fully molten front in the in-line beam arrangement. For the cross-beam orientation, the lagging wall did not seem impacted by the melt front. Large power differences between leading beams for the quad-beam, in-line orientation formed a melt column in the location of the weaker beam and spattering from the column.

Ort, förlag, år, upplaga, sidor
Elsevier, 2021
Nyckelord
Multi-focal, Multi-spot, Multi-beam, Beam shaping, Keyhole dynamics, Laser welding
Nationell ämneskategori
Annan teknik
Forskningsämne
Produktionsutveckling
Identifikatorer
urn:nbn:se:ltu:diva-86334 (URN)10.1016/j.optlastec.2021.107382 (DOI)000687055900007 ()2-s2.0-85110145313 (Scopus ID)
Forskningsfinansiär
Vinnova, 2019-00781
Anmärkning

Validerad;2021;Nivå 2;2021-07-12 (beamah);

Forskningsfinansiär: EC Research Fund for Coal and Steel (800726)

Tillgänglig från: 2021-07-12 Skapad: 2021-07-12 Senast uppdaterad: 2025-02-10Bibliografiskt granskad
Kaplan, A. F. H., Höfemann, M., Vaamonde, E., Ramasamy, A., Kalfsbeek, B., Näsström, J., . . . Volpp, J. (2020). Microstructures from wire-fed laser welding of high strength steel grades. Paper presented at 38th International Congress of Applications of Lasers & Electro-Optics (ICALEO® 2019), 7-10 October, 2019, Orlando, Florida, United States. Journal of laser applications, 32(2), Article ID 022050.
Öppna denna publikation i ny flik eller fönster >>Microstructures from wire-fed laser welding of high strength steel grades
Visa övriga...
2020 (Engelska)Ingår i: Journal of laser applications, ISSN 1042-346X, E-ISSN 1938-1387, Vol. 32, nr 2, artikel-id 022050Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In welding, wire-feeding enables alteration of the resulting microstructure and, in turn, the mechanical behavior of the welded joint. For pipeline steel grades, very few commercial wires are matching at high strength and simultaneously ensure sufficient toughness. New wire chemistries need to be investigated. Promising consumable chemistries can be studied through metal cored wires. One promising concept is alloys that promote acicular ferrite instead of bainite. Interlocking instead of parallel laths can lead to higher toughness. In the gouge range of 15–19 mm, laser-arc hybrid welding has been studied for pipeline steel grades X80 and X100. For efficient mapping of various weld metal conditions, a simplifying “snapshot” method was developed. A pulse shaped laser beam melts wire pieces in a controlled manner, reproducing thermal cycles in welding. The weld metal tends to form bainite, but under certain conditions, complex microstructures with interlocking laths can be generated. Slow thermal cycles can lead to coalescence of the laths to coarser structures, while fast cycles favored finer structures and occasionally lath interlocking. The formation of acicular ferrite was difficult to achieve. Advanced wire chemistries lowered the hardness of the weld metal, as did preheating.

Ort, förlag, år, upplaga, sidor
Laser Institute of America, 2020
Nyckelord
laser welding, high strength steel, microstructure, material properties, wire consumable
Nationell ämneskategori
Bearbetnings-, yt- och fogningsteknik
Forskningsämne
Produktionsutveckling
Identifikatorer
urn:nbn:se:ltu:diva-79439 (URN)10.2351/7.0000087 (DOI)000533620100005 ()2-s2.0-85107460665 (Scopus ID)
Konferens
38th International Congress of Applications of Lasers & Electro-Optics (ICALEO® 2019), 7-10 October, 2019, Orlando, Florida, United States
Anmärkning

Godkänd;2020;Nivå 0;2020-06-12 (alebob);Konferensartikel i tidskrift

Tillgänglig från: 2020-06-12 Skapad: 2020-06-12 Senast uppdaterad: 2021-12-13Bibliografiskt granskad
Robertson, S., Frostevarg, J., Ramasamy, A., Kalfsbeek, B., Volpp, J. & Kaplan, A. F. . (2020). Microstructures of high strength steel welding consumables from directed thermal cycles by shaped laser pulses. The International Journal of Advanced Manufacturing Technology, 109(9-12), 2653-2662
Öppna denna publikation i ny flik eller fönster >>Microstructures of high strength steel welding consumables from directed thermal cycles by shaped laser pulses
Visa övriga...
2020 (Engelska)Ingår i: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 109, nr 9-12, s. 2653-2662Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Filler wire metallurgy was modified through temporally shaped laser pulses, controlling cooling cycles in a recently developed method. Trends were identified through efficient mapping while maintaining representative thermal cycles of welding processes. A primary pulse melted preplaced filler wires while a secondary, linearly ramped-down pulse elevated the nugget to re-austenization temperatures. Ramped-down pulses resulted in linear cooling rates comparable with and exceeding furnace-based methods, between 50 and 300∘C/s. The linear decay of laser output power guided the temperature through a regime to obtain desired microstructures. For three very high-strength steel filler wire chemistries, quenching resulted in smaller plates with cross-hatched microstructures, accompanied by grain boundary ferrite. Finer bainite microstructures started forming for fast linear temperature decay, about 250∘C/s. Slower decay or a weaker third cycle formed coarser microstructures with coalescent sheaves and less cross-hatching.

Ort, förlag, år, upplaga, sidor
Springer, 2020
Nyckelord
filler wire, consumable, welding, thermal cycle, microstructure, cooling rate
Nationell ämneskategori
Bearbetnings-, yt- och fogningsteknik
Forskningsämne
Produktionsutveckling
Identifikatorer
urn:nbn:se:ltu:diva-76032 (URN)10.1007/s00170-020-05749-1 (DOI)000556174000002 ()2-s2.0-85088950305 (Scopus ID)
Projekt
OptoSteelNorFaST-HT
Forskningsfinansiär
Interreg Nord, 304-15588-2015
Anmärkning

Validerad;2020;Nivå 2;2020-09-01 (johcin)

Tillgänglig från: 2019-09-24 Skapad: 2019-09-24 Senast uppdaterad: 2021-12-13Bibliografiskt granskad
Robertson, S., Frostevarg, J., Volpp, J., Kaplan, A. F. H., Ramasamy, A. & Kalfsbeek, B. (2019). Microstructural Effects of Controlled Dilution of High Strength Steel Wire into S960QL. Paper presented at 17th Nordic Laser Materials Processing Conference (NOLAMP17), 27-29 August, 2019, Trondheim, Norway. Procedia Manufacturing, 36, 146-153
Öppna denna publikation i ny flik eller fönster >>Microstructural Effects of Controlled Dilution of High Strength Steel Wire into S960QL
Visa övriga...
2019 (Engelska)Ingår i: Procedia Manufacturing, E-ISSN 2351-9789, Vol. 36, s. 146-153Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Controlled dilution experiments were conducted in a novel manner that allowed for precise dilution of base material into the wire consumables, enabling for a prompt analysis of microstructural trends as dilution is altered. Different heat cycles and cooling rates of the wire material, without base metal additions, were shown to cause different microstructures, varying from parallel plates to random or interlocking[SR1]  orientation, with varying size of packets. The proposed method enables more controlled conditions with a known dilution value from mass percentages. Chopped filler wire is weighed and added to the base metal crucible, base metal chips are also weighed and added to the filler wire in specific mass percentages. A pulsed laser irradiates the metal, melting the mixture into a sample nugget. Lack of fusion is a benefit in this method as contamination from the base plate is negligible. The cooling rate is influenced by the pulse shape, and can be used to reheat the nugget, demonstrating the microstructural evolution in a complex thermal cycle. This method is demonstrated for S960QL steel with under-matched wire consumable, generally used for laser-arc hybrid processes to obtain high toughness, where a representative thermal cycle is needed. The thermal cycle is measured via a remote process, Dualscope, to evaluate the spacial temperature of the surface. The microstructures found using the snapshot method are similar to those found in the narrow gap multi-layer weld, different only in the size of the grains and packets.

Ort, förlag, år, upplaga, sidor
Elsevier, 2019
Nyckelord
filler wire, consumable, welding: dilution rates, microstructures
Nationell ämneskategori
Bearbetnings-, yt- och fogningsteknik
Forskningsämne
Materialteknik
Identifikatorer
urn:nbn:se:ltu:diva-75415 (URN)10.1016/j.promfg.2019.08.020 (DOI)000610364700019 ()2-s2.0-85072525140 (Scopus ID)
Konferens
17th Nordic Laser Materials Processing Conference (NOLAMP17), 27-29 August, 2019, Trondheim, Norway
Projekt
OptoSteel
Anmärkning

Konferensartikel i tidskrift;

Full text license: CC BY-NC-ND

Tillgänglig från: 2019-08-06 Skapad: 2019-08-06 Senast uppdaterad: 2025-06-18Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0002-8298-292X

Sök vidare i DiVA

Visa alla publikationer