Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Satpute, Sumeet GajananORCID iD iconorcid.org/0000-0003-1437-1809
Alternativa namn
Publikationer (10 of 44) Visa alla publikationer
Banerjee, A., Tevetzidis, I., Satpute, S. G. & Nikolakopoulos, G. (2025). Nonlinear Dynamic Inversion-Based Motion Planning of a Floating Satellite Platform. In: AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025: . Paper presented at AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025, 6-10 January 2025, Orlando, USA. American Institute of Aeronautics and Astronautics Inc, AIAA, Article ID AIAA 2025-1190.
Öppna denna publikation i ny flik eller fönster >>Nonlinear Dynamic Inversion-Based Motion Planning of a Floating Satellite Platform
2025 (Engelska)Ingår i: AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025, American Institute of Aeronautics and Astronautics Inc, AIAA , 2025, artikel-id AIAA 2025-1190Konferensbidrag, Publicerat paper (Övrigt vetenskapligt)
Ort, förlag, år, upplaga, sidor
American Institute of Aeronautics and Astronautics Inc, AIAA, 2025
Nationell ämneskategori
Robotik och automation
Forskningsämne
Robotik och artificiell intelligens
Identifikatorer
urn:nbn:se:ltu:diva-112340 (URN)10.2514/6.2025-1190 (DOI)2-s2.0-105001426206 (Scopus ID)
Konferens
AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025, 6-10 January 2025, Orlando, USA
Anmärkning

ISBN for host publication: 978-1-62410-723-8;

Funder: Swedish National Space Agency (SNSA); Rymd för Innovation och Tillväxt (RIT) project;

Tillgänglig från: 2025-04-11 Skapad: 2025-04-11 Senast uppdaterad: 2025-04-11Bibliografiskt granskad
Alibekov, U., Banerjee, A., Satpute, S. G. & Nikolakopoulos, G. (2025). Onboard Perception-Assisted High Fidelity Simulation Framework for Autonomous Planetary Soft-Landing. In: AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025: . Paper presented at AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025, 6-10 January 2025, Orlando, USA. American Institute of Aeronautics and Astronautics Inc, AIAA, Article ID AIAA 2025-1369.
Öppna denna publikation i ny flik eller fönster >>Onboard Perception-Assisted High Fidelity Simulation Framework for Autonomous Planetary Soft-Landing
2025 (Engelska)Ingår i: AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025, American Institute of Aeronautics and Astronautics Inc, AIAA , 2025, artikel-id AIAA 2025-1369Konferensbidrag, Publicerat paper (Övrigt vetenskapligt)
Ort, förlag, år, upplaga, sidor
American Institute of Aeronautics and Astronautics Inc, AIAA, 2025
Nationell ämneskategori
Robotik och automation
Forskningsämne
Robotik och artificiell intelligens
Identifikatorer
urn:nbn:se:ltu:diva-112191 (URN)10.2514/6.2025-1369 (DOI)2-s2.0-86000189697 (Scopus ID)
Konferens
AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025, 6-10 January 2025, Orlando, USA
Anmärkning

ISBN for host publication: 978-1-62410-723-8;

Tillgänglig från: 2025-04-01 Skapad: 2025-04-01 Senast uppdaterad: 2025-04-01Bibliografiskt granskad
Otte, N., Satpute, S. G., Banerjee, A. & Nikolakopoulos, G. (2025). Quadtree-Based Free-Space Cell-Decomposition for Pathplanning With RRT* Implementation. In: AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025: . Paper presented at AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025, 6-10 January 2025, Orlando, USA. American Institute of Aeronautics and Astronautics Inc, AIAA, Article ID AIAA 2025-1004.
Öppna denna publikation i ny flik eller fönster >>Quadtree-Based Free-Space Cell-Decomposition for Pathplanning With RRT* Implementation
2025 (Engelska)Ingår i: AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025, American Institute of Aeronautics and Astronautics Inc, AIAA , 2025, artikel-id AIAA 2025-1004Konferensbidrag, Publicerat paper (Övrigt vetenskapligt)
Ort, förlag, år, upplaga, sidor
American Institute of Aeronautics and Astronautics Inc, AIAA, 2025
Nationell ämneskategori
Robotik och automation
Forskningsämne
Robotik och artificiell intelligens
Identifikatorer
urn:nbn:se:ltu:diva-112341 (URN)10.2514/6.2025-1004 (DOI)2-s2.0-105001348564 (Scopus ID)
Konferens
AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025, 6-10 January 2025, Orlando, USA
Anmärkning

ISBN for host publication: 978-1-62410-723-8;

Tillgänglig från: 2025-04-11 Skapad: 2025-04-11 Senast uppdaterad: 2025-04-11Bibliografiskt granskad
Saradagi, A., Sankaranarayanan, V. N., Banerjee, A., Satpute, S. & Nikolakopoulos, G. (2025). Switched control barrier functions-based safe docking control strategy for a planar floating platform. Control Engineering Practice, 158, Article ID 106274.
Öppna denna publikation i ny flik eller fönster >>Switched control barrier functions-based safe docking control strategy for a planar floating platform
Visa övriga...
2025 (Engelska)Ingår i: Control Engineering Practice, ISSN 0967-0661, E-ISSN 1873-6939, Vol. 158, artikel-id 106274Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In this article, we present and experimentally validate a safe docking control strategy designed for an experimental planar floating platform, called the Slider. Three degrees-of-freedom (DOF) platforms like the Slider are used extensively in space industry and academia to emulate micro-gravity conditions on Earth, for validating in-plane Guidance, Navigation and Control (GNC) algorithms. The Slider uses an air cushion (induced by air bearings) to levitate on a smooth flat table, thus emulating the in-plane zero-gravity motion of a spacecraft in orbit. The proposed docking control strategy is applicable in the in-plane approach and docking phases of space docking missions, and is based on the Control Barrier Functions (CBF) approach, where a safe set (a Cardioid), capturing the clearance and direction-of-approach constraints, is rendered positively forward invariant. To enable precise and safe docking in the presence of unmodeled dynamics, disturbances induced by the tether and drifts induced by the non-flat floating surface, we present a switching strategy among the zero and positive level sets of a Cardioid function. In the approach phase, the positive contour of the Cardioid function smoothly steers the Slider platform into the neighborhood of a deadlock point, which is designed to be at a safe distance from the docking port. In the neighborhood of the deadlock point, Slider corrects its proximity and heading until its configuration is well-suited to enter the docking phase. The docking maneuver is initiated by the CBF switching mechanism (positive to zero contour), which expands the safe zone to include the final docking configuration. We present an analysis of the Quadratic program defining the CBF filter, and identify two deadlock points (an asymptotically stable point in the vicinity of the docking port and an unstable point diametrically opposite on the CBF boundary). Both the approach and docking phases are validated through experimentation on the Slider platform, in the presence of tether-induced disturbances and drifts induced by the non-ideal floating surface. In the docking phase, the CBF switching condition effectively handles experimental non-idealities and recovers the slider platform from unsafe configurations. The proposed docking strategy caters to the in-plane (3DOF) approach and docking phases of real space docking missions and is scalable to three-dimensional 6DOF operations, in conjunction with controllers that stabilize the attitude and the out-of-plane degree-of-freedom. Link to the video of experimental demonstration: https://youtu.be/eBiWvnKtG7U?si=QFPD-vm11wydyZSd.

Ort, förlag, år, upplaga, sidor
Elsevier, 2025
Nyckelord
Control barrier functions, Autonomous docking, Planar floating platforms, Safety critical systems, Space-emulating test-beds, Control applications, Robotics
Nationell ämneskategori
Annan elektroteknik och elektronik
Forskningsämne
Robotik och artificiell intelligens
Identifikatorer
urn:nbn:se:ltu:diva-111725 (URN)10.1016/j.conengprac.2025.106274 (DOI)2-s2.0-85217819443 (Scopus ID)
Anmärkning

Validerad;2025;Nivå 2;2025-02-28 (u4);

Fulltext license: CC BY

Tillgänglig från: 2025-02-28 Skapad: 2025-02-28 Senast uppdaterad: 2025-02-28Bibliografiskt granskad
Sankaranarayanan, V. N., Saradagi, A., Satpute, S. & Nikolakopoulos, G. (2024). A CBF-Adaptive Control Architecture for Visual Navigation for UAV in the Presence of Uncertainties. In: 2024 IEEE International Conference on Robotics and Automation (ICRA): . Paper presented at 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, May 13-17, 2024 (pp. 13659-13665). IEEE
Öppna denna publikation i ny flik eller fönster >>A CBF-Adaptive Control Architecture for Visual Navigation for UAV in the Presence of Uncertainties
2024 (Engelska)Ingår i: 2024 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2024, s. 13659-13665Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In this article, we propose a control solution for the safe transfer of a quadrotor UAV between two surface robots positioning itself only using the visual features on the surface robots, which enforces safety constraints for precise landing and visual locking, in the presence of modeling uncertainties and external disturbances. The controller handles the ascending and descending phases of the navigation using a visual locking control barrier function (VCBF) and a parametrizable switching descending CBF (DCBF) respectively, eliminating the need for an external planner. The control scheme has a backstepping approach for the position controller with the CBF filter acting on the position kinematics to produce a filtered virtual velocity control input, which an adaptive controller tracks to overcome modeling uncertainties and external disturbances. The experimental validation is carried out with a UAV that navigates from the base to the target using an RGB camera.

Ort, förlag, år, upplaga, sidor
IEEE, 2024
Nationell ämneskategori
Reglerteknik Robotik och automation
Forskningsämne
Robotik och artificiell intelligens
Identifikatorer
urn:nbn:se:ltu:diva-109775 (URN)10.1109/ICRA57147.2024.10611530 (DOI)2-s2.0-85202433253 (Scopus ID)
Konferens
2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, May 13-17, 2024
Anmärkning

Funder: Horizon 2020 (953454);

ISBN for host publication: 979-8-3503-8457-4;

Tillgänglig från: 2024-09-09 Skapad: 2024-09-09 Senast uppdaterad: 2025-02-05Bibliografiskt granskad
Seisa, A. S., Lindqvist, B., Satpute, S. G. & Nikolakopoulos, G. (2024). An Edge Architecture for Enabling Autonomous Aerial Navigation with Embedded Collision Avoidance Through Remote Nonlinear Model Predictive Control. Journal of Parallel and Distributed Computing, 188, Article ID 104849.
Öppna denna publikation i ny flik eller fönster >>An Edge Architecture for Enabling Autonomous Aerial Navigation with Embedded Collision Avoidance Through Remote Nonlinear Model Predictive Control
2024 (Engelska)Ingår i: Journal of Parallel and Distributed Computing, ISSN 0743-7315, E-ISSN 1096-0848, Vol. 188, artikel-id 104849Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In this article, we present an edge-based architecture for enhancing the autonomous capabilities of resource-constrained aerial robots by enabling a remote nonlinear model predictive control scheme, which can be computationally heavy to run on the aerial robots' onboard processors. The nonlinear model predictive control is used to control the trajectory of an unmanned aerial vehicle while detecting, and preventing potential collisions. The proposed edge architecture enables trajectory recalculation for resource-constrained unmanned aerial vehicles in relatively real-time, which will allow them to have fully autonomous behaviors. The architecture is implemented with a remote Kubernetes cluster on the edge side, and it is evaluated on an unmanned aerial vehicle as our controllable robot, while the robotic operating system is used for managing the source codes, and overall communication. With the utilization of edge computing and the architecture presented in this work, we can overcome computational limitations, that resource-constrained robots have, and provide or improve features that are essential for autonomous missions. At the same time, we can minimize the relative travel time delays for time-critical missions over the edge, in comparison to the cloud. We investigate the validity of this hypothesis by evaluating the system's behavior through a series of experiments by utilizing either the unmanned aerial vehicle or the edge resources for the collision avoidance mission.

Ort, förlag, år, upplaga, sidor
Elsevier, 2024
Nyckelord
Edge computing, Kubernetes, Robotics, Nonlinear model predictive control (NMPC)
Nationell ämneskategori
Robotik och automation
Forskningsämne
Robotik och artificiell intelligens
Identifikatorer
urn:nbn:se:ltu:diva-101399 (URN)10.1016/j.jpdc.2024.104849 (DOI)001182184100001 ()2-s2.0-85184517086 (Scopus ID)
Forskningsfinansiär
EU, Horisont 2020
Anmärkning

Validerad;2024;Nivå 2;2024-04-04 (signyg);

Full text license: CC BY

Tillgänglig från: 2023-09-20 Skapad: 2023-09-20 Senast uppdaterad: 2025-02-09Bibliografiskt granskad
Berra, A., Sankaranarayanan, V. N., Seisa, A. S., Mellet, J., Gamage, U. G. .., Satpute, S. G., . . . Heredia, G. (2024). Assisted Physical Interaction: Autonomous Aerial Robots with Neural Network Detection, Navigation, and Safety Layers. In: 2024 International Conference on Unmanned Aircraft Systems, ICUAS 2024: . Paper presented at 2024 International Conference on Unmanned Aircraft Systems (ICUAS 2024), Chania, Crete, Greece, June 4-7, 2024 (pp. 1354-1361). IEEE
Öppna denna publikation i ny flik eller fönster >>Assisted Physical Interaction: Autonomous Aerial Robots with Neural Network Detection, Navigation, and Safety Layers
Visa övriga...
2024 (Engelska)Ingår i: 2024 International Conference on Unmanned Aircraft Systems, ICUAS 2024, IEEE, 2024, s. 1354-1361Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The paper introduces a novel framework for safe and autonomous aerial physical interaction in industrial settings. It comprises two main components: a neural network-based target detection system enhanced with edge computing for reduced onboard computational load, and a control barrier function (CBF)-based controller for safe and precise maneuvering. The target detection system is trained on a dataset under challenging visual conditions and evaluated for accuracy across various unseen data with changing lighting conditions. Depth features are utilized for target pose estimation, with the entire detection framework offloaded into low-latency edge computing. The CBF-based controller enables the UAV to converge safely to the target for precise contact. Simulated evaluations of both the controller and target detection are presented, alongside an analysis of real-world detection performance.

Ort, förlag, år, upplaga, sidor
IEEE, 2024
Serie
2024 International Conference on Unmanned Aircraft Systems, ICUAS 2024
Nyckelord
Aerial Physical Interaction, Control Barrier Function, Edge Computing, Neural Network, UAVs
Nationell ämneskategori
Reglerteknik Datorgrafik och datorseende Signalbehandling Robotik och automation
Forskningsämne
Robotik och artificiell intelligens
Identifikatorer
urn:nbn:se:ltu:diva-108596 (URN)10.1109/ICUAS60882.2024.10557050 (DOI)001259354800145 ()2-s2.0-85197440827 (Scopus ID)
Konferens
2024 International Conference on Unmanned Aircraft Systems (ICUAS 2024), Chania, Crete, Greece, June 4-7, 2024
Forskningsfinansiär
EU, Horisont 2020, 953454
Tillgänglig från: 2024-08-16 Skapad: 2024-08-16 Senast uppdaterad: 2025-02-05Bibliografiskt granskad
Sankaranarayanan, V. N., Saradagi, A., Satpute, S. & Nikolakopoulos, G. (2024). Collision-Free Landing of Multiple UAVs on Moving Ground Vehicles Using Time-Varying Control Barrier Functions. In: 2024 American Control Conference, ACC 2024: . Paper presented at 2024 American Control Conference (ACC), Toronto, Canada, July 8-12, 2024 (pp. 3760-3767). IEEE
Öppna denna publikation i ny flik eller fönster >>Collision-Free Landing of Multiple UAVs on Moving Ground Vehicles Using Time-Varying Control Barrier Functions
2024 (Engelska)Ingår i: 2024 American Control Conference, ACC 2024, IEEE, 2024, s. 3760-3767Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In this article, we present a centralized approach for the control of multiple unmanned aerial vehicles (UAVs) for landing on moving unmanned ground vehicles (UGVs) using control barrier functions (CBFs). The proposed control framework employs two kinds of CBFs to impose safety constraints on the UAVs' motion. The first class of CBFs (LCBF) is a three-dimensional exponentially decaying function centered above the landing platform, designed to safely and precisely land UAVs on the UGVs. The second set is a spherical CBF (SCBF), defined between every pair of UAVs, which avoids collisions between them. The LCBF is time-varying and adapts to the motions of the UGVs. In the proposed CBF approach, the control input from the UAV's nominal tracking controller designed to reach the landing platform is filtered to choose a minimally-deviating control input that ensures safety (as defined by the CBFs). As the control inputs of every UAV are shared in establishing multiple CBF constraints, we prove that the control inputs are shared without conflict in rendering the safe sets forward invariant. The performance of the control framework is validated through a simulated scenario involving three UAVs landing on three moving targets.

Ort, förlag, år, upplaga, sidor
IEEE, 2024
Nationell ämneskategori
Reglerteknik
Forskningsämne
Robotik och artificiell intelligens
Identifikatorer
urn:nbn:se:ltu:diva-110166 (URN)10.23919/ACC60939.2024.10644586 (DOI)2-s2.0-85204419097 (Scopus ID)
Konferens
2024 American Control Conference (ACC), Toronto, Canada, July 8-12, 2024
Anmärkning

ISBN for host publication: 979-8-3503-8265-5;

Tillgänglig från: 2024-10-08 Skapad: 2024-10-08 Senast uppdaterad: 2024-10-08Bibliografiskt granskad
Sankaranarayanan, V. N., Saradagi, A., Satpute, S. & Nikolakopoulos, G. (2024). Time-varying Control Barrier Function for Safe and Precise Landing of a UAV on a Moving Target. In: 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS): . Paper presented at The 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024), Abu Dhabi, UAE, October 14-18, 2024 (pp. 8075-8080). IEEE
Öppna denna publikation i ny flik eller fönster >>Time-varying Control Barrier Function for Safe and Precise Landing of a UAV on a Moving Target
2024 (Engelska)Ingår i: 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2024, s. 8075-8080Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In this article, we present a control barrier function (CBF)-based control strategy for safe and precise landing of an unmanned aerial vehicle (UAV) on a moving target. The CBF is time-varying, as it depends on the velocity of the landing platform and captures three crucial safety constraints: (a) collision avoidance with the landing platform, (b) precise vertical descent on a narrow landing platform, and (c) ground clearance throughout the landing maneuver. The proposed CBF’s parameters can be adjusted to set the desired width and height of the descending cone. A quadratic programbased CBF safety filter is designed, which takes a nominal position tracking control input and yields a minimally invasive control input that enforces the safety constraints throughout the landing maneuver. The controller’s feasibility is analyzed and its performance is validated through multiple experiments using a quadrotor UAV and an unmanned ground vehicle.

Ort, förlag, år, upplaga, sidor
IEEE, 2024
Nationell ämneskategori
Robotik och automation
Forskningsämne
Robotik och artificiell intelligens
Identifikatorer
urn:nbn:se:ltu:diva-111630 (URN)10.1109/IROS58592.2024.10802827 (DOI)2-s2.0-85216477016 (Scopus ID)
Konferens
The 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024), Abu Dhabi, UAE, October 14-18, 2024
Forskningsfinansiär
EU, Horisont Europa, 953454
Anmärkning

ISBN for host publication: 979-8-3503-7770-5

Tillgänglig från: 2025-02-17 Skapad: 2025-02-17 Senast uppdaterad: 2025-02-17Bibliografiskt granskad
Kyuroson, A., Banerjee, A., Tafanidis, N. A., Satpute, S. & Nikolakopoulos, G. (2024). Towards fully autonomous orbit management for low-earth orbit satellites based on neuro-evolutionary algorithms and deep reinforcement learning. European Journal of Control, 80, Part A, Article ID 101052.
Öppna denna publikation i ny flik eller fönster >>Towards fully autonomous orbit management for low-earth orbit satellites based on neuro-evolutionary algorithms and deep reinforcement learning
Visa övriga...
2024 (Engelska)Ingår i: European Journal of Control, ISSN 0947-3580, E-ISSN 1435-5671, Vol. 80, Part A, artikel-id 101052Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The recent advances in space technology are focusing on fully autonomous, real-time, long-term orbit management and mission planning for large-scale satellite constellations in Low-Earth Orbit (LEO). Thus, a pioneering approach for autonomous orbital station-keeping has been introduced using a model-free Deep Policy Gradient-based Reinforcement Learning (DPGRL) strategy explicitly tailored for LEO. Addressing the critical need for more efficient and self-regulating orbit management in LEO satellite constellations, this work explores the potential synergy between Deep Reinforcement Learning (DRL) and Neuro-Evolution of Augmenting Topology (NEAT) to optimize station-keeping strategies with the primary goal to empower satellite to autonomously maintain their orbit in the presence of external perturbations within an allowable tolerance margin, thereby significantly reducing operational costs while maintaining precise and consistent station-keeping throughout their life cycle. The study specifically tailors DPGRL algorithms for LEO satellites, considering low-thrust constraints for maneuvers and integrating dense reward schemes and domain-based reward shaping techniques. By showcasing the adaptability and scalability of the combined NEAT and DRL framework in diverse operational scenarios, this approach holds immense promise for revolutionizing autonomous orbit management, paving the way for more efficient and adaptable satellite operations while incorporating the physical constraints of satellite, such as thruster limitations.

Ort, förlag, år, upplaga, sidor
Elsevier, 2024
Nyckelord
Deep reinforcement learning, Orbit management, Robotics, Satellite constellation
Nationell ämneskategori
Datavetenskap (datalogi) Signalbehandling
Forskningsämne
Robotik och artificiell intelligens
Identifikatorer
urn:nbn:se:ltu:diva-108432 (URN)10.1016/j.ejcon.2024.101052 (DOI)001359335600001 ()2-s2.0-85199155625 (Scopus ID)
Forskningsfinansiär
The European Space Agency (ESA)
Anmärkning

Validerad;2024;Nivå 2;2024-11-26 (sofila);

Funder: OHB Seden OPTACOM (contract no. OPC-OSE-CC-0536);

Full text license: CC BY

Tillgänglig från: 2024-08-01 Skapad: 2024-08-01 Senast uppdaterad: 2024-12-03Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0003-1437-1809

Sök vidare i DiVA

Visa alla publikationer