Please wait ... |

Link to record
http://ltu.diva-portal.org/smash/person.jsf?pid=authority-person:56669 $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_upper_j_idt122_recordDirectLink",{id:"formSmash:upper:j_idt122:recordDirectLink",widgetVar:"widget_formSmash_upper_j_idt122_recordDirectLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt122_j_idt124",{id:"formSmash:upper:j_idt122:j_idt124",widgetVar:"widget_formSmash_upper_j_idt122_j_idt124",target:"formSmash:upper:j_idt122:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Direct link

Fabricius, Johnorcid.org/0000-0003-1993-8229

Open this publication in new window or tab >>Pressure-driven flow in thin domains### Fabricius, John

### Miroshnikova, Elena

### Tsandzana, Afonso

### Wall, Peter

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_some",{id:"formSmash:j_idt184:0:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_otherAuthors",{id:"formSmash:j_idt184:0:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_otherAuthors",multiple:true}); 2020 (English)In: Asymptotic Analysis, ISSN 0921-7134, E-ISSN 1875-8576, Vol. 116, no 1, p. 1-26Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

IOS Press, 2020
##### Keywords

Stokes equation, pressure boundary condition, two-scale convergence, thin domain, Bogovskii operator, Korn inequality
##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:ltu:diva-75853 (URN)10.3233/ASY-191535 (DOI)000501542500001 ()
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_j_idt359",{id:"formSmash:j_idt184:0:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_j_idt365",{id:"formSmash:j_idt184:0:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_j_idt371",{id:"formSmash:j_idt184:0:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_j_idt371",multiple:true});
#####

##### Note

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.

Department of Mathematics and Informatics, Eduardo Mondlane University, Maputo, Mozambique.

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.

We study the asymptotic behavior of pressure-driven Stokes flow in a thin domain. By letting the thickness of the domain tend to zero we derive a generalized form of the classical Reynolds–Poiseuille law, i.e. the limit velocity field is a linear function of the pressure gradient. By prescribing the external pressure as a normal stress condition, we recover a Dirichlet condition for the limit pressure. In contrast, a Dirichlet condition for the velocity yields a Neumann condition for the limit pressure.

Validerad;2019;Nivå 2;2019-12-10 (johcin)

Available from: 2019-09-05 Created: 2019-09-05 Last updated: 2019-12-20Bibliographically approvedOpen this publication in new window or tab >>Stokes flow with kinematic and dynamic boundary conditions### Fabricius, John

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_some",{id:"formSmash:j_idt184:1:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_otherAuthors",{id:"formSmash:j_idt184:1:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_otherAuthors",multiple:true}); 2019 (English)In: Quarterly of Applied Mathematics, ISSN 0033-569X, E-ISSN 1552-4485, Vol. 77, no 3, p. 525-544Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

American Mathematical Society (AMS), 2019
##### Keywords

Stokes equation, stress condition, traction condition, de Rham operator, pressure operator
##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:ltu:diva-74756 (URN)10.1090/qam/1534 (DOI)000469390700004 ()2-s2.0-85073716246 (Scopus ID)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_j_idt359",{id:"formSmash:j_idt184:1:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_j_idt365",{id:"formSmash:j_idt184:1:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_j_idt371",{id:"formSmash:j_idt184:1:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_j_idt371",multiple:true});
#####

##### Note

We review the first and second boundary value problems for the Stokes system posed in a bounded Lipschitz domain in . Particular attention is given to the mixed boundary condition: a Dirichlet condition is imposed for the velocity on one part of the boundary while a Neumann condition for the stress tensor is imposed on the remaining part. Some minor modifications to the standard theory are therefore required. The most noteworthy result is that both pressure and velocity are unique.

Validerad;2019;Nivå 2;2019-06-19 (johcin)

Available from: 2019-06-19 Created: 2019-06-19 Last updated: 2019-11-04Bibliographically approvedOpen this publication in new window or tab >>A Comparison of the Roughness Regimes in Hydrodynamic Lubrication### Fabricius, John

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Tsandzana, Afonso Fernando

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Pérez-Ràfols, Francesc

### Wall, Peter

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_some",{id:"formSmash:j_idt184:2:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_otherAuthors",{id:"formSmash:j_idt184:2:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_otherAuthors",multiple:true}); 2017 (English)In: Journal of tribology, ISSN 0742-4787, E-ISSN 1528-8897, Vol. 139, no 5, article id 051702Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

The American Society of Mechanical Engineers (ASME), 2017
##### National Category

Mathematical Analysis Tribology (Interacting Surfaces including Friction, Lubrication and Wear)
##### Research subject

Mathematics; Machine Elements
##### Identifiers

urn:nbn:se:ltu:diva-64734 (URN)10.1115/1.4035868 (DOI)000406397500016 ()2-s2.0-85020933899 (Scopus ID)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_j_idt359",{id:"formSmash:j_idt184:2:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_j_idt365",{id:"formSmash:j_idt184:2:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_j_idt371",{id:"formSmash:j_idt184:2:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_j_idt371",multiple:true});
#####

##### Note

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.

This work relates to previous studies concerning the asymptotic behavior of Stokes flow in a narrow gap between two surfaces in relative motion. It is assumed that one of the surfaces is rough, with small roughness wavelength l, so that the film thickness h becomes rapidly oscillating. Depending on the limit of the ratio h/l, denoted as k, three different lubrication regimes exist: Reynolds roughness (k-0), Stokes roughness (0<γ<1), and high-frequency roughness (γ = ∞). In each regime, the pressure field is governed by a generalized Reynolds equation, whose coefficients (so-called flow factors) depend on k. To investigate the accuracy and applicability of the limit regimes, we compute the Stokes flow factors for various roughness patterns by varying the parameter k. The results show that there are realistic surface textures for which the Reynolds roughness is not accurate and the Stokes roughness must be used instead.

Validerad;2017;Nivå 2;2017-07-03 (andbra)

Available from: 2017-07-03 Created: 2017-07-03 Last updated: 2018-11-27Bibliographically approvedOpen this publication in new window or tab >>Flow in thin domains with a microstructure: Lubrication and thin porous media### Almqvist, Andreas

### Fabricius, John

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Lundström, Staffan

### Wall, Peter

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_some",{id:"formSmash:j_idt184:3:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_otherAuthors",{id:"formSmash:j_idt184:3:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_otherAuthors",multiple:true}); 2017 (English)In: AIP Conference Proceedings, ISSN 0094-243X, E-ISSN 1551-7616, Vol. 1798, article id 020172Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

AIP Publishing, 2017
##### National Category

Mathematical Analysis Tribology (Interacting Surfaces including Friction, Lubrication and Wear) Fluid Mechanics and Acoustics
##### Research subject

Machine Elements; Mathematics; Fluid Mechanics
##### Identifiers

urn:nbn:se:ltu:diva-62224 (URN)10.1063/1.4972764 (DOI)000399203000171 ()2-s2.0-85013665597 (Scopus ID)
##### Conference

11th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences, ICNPAA 2016, La Rochelle, France, 4-8 July 2016
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_j_idt359",{id:"formSmash:j_idt184:3:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_j_idt365",{id:"formSmash:j_idt184:3:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_j_idt371",{id:"formSmash:j_idt184:3:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_j_idt371",multiple:true});
#####

##### Note

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Fluid and Experimental Mechanics.

This paper is devoted to homogenization of different models of flow in thin domains with a microstructure. The focus is on applications connected to the effect of surface roughness in full film lubrication, but a parallel to flow in thin porous media is also discussed. Mathematical models of such flows naturally include two small parameters. One is connected to the fluid film thickness and the other to the microstructure. The corresponding asymptotic analysis is a delicate problem, since the result depends on how fast the two small parameters tend to zero relative to each other. We give a review of the current status in this area and point out some future challenges.

2017-03-03 (andbra);Konferensartikel i tidskrift

Available from: 2017-03-01 Created: 2017-03-01 Last updated: 2018-11-20Bibliographically approvedOpen this publication in new window or tab >>Homogenization of the Stokes equation with mixed boundary condition in a porous medium### Fabricius, John

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Miroshnikova, Elena

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Wall, Peter

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_some",{id:"formSmash:j_idt184:4:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_otherAuthors",{id:"formSmash:j_idt184:4:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_otherAuthors",multiple:true}); 2017 (English)In: Cogent Mathamatics, E-ISSN 2331-1835, Vol. 4, no 1, article id 1327502Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Taylor & Francis, 2017
##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:ltu:diva-64001 (URN)10.1080/23311835.2017.1327502 (DOI)000403291100001 ()
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_j_idt359",{id:"formSmash:j_idt184:4:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_j_idt365",{id:"formSmash:j_idt184:4:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_j_idt371",{id:"formSmash:j_idt184:4:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_j_idt371",multiple:true});
#####

##### Note

We homogenize stationary incompressible Stokes flow in a periodic porous medium. The fluid is assumed to satisfy a no-slip condition on the boundary of solid inclusions and a normal stress (traction) condition on the global boundary. Under these assumptions, the homogenized equation becomes the classical Darcy law with a Dirichlet condition for the pressure.

Validerad;2017;Nivå 2;2017-07-06 (rokbeg)

Available from: 2017-06-14 Created: 2017-06-14 Last updated: 2018-07-10Bibliographically approvedOpen this publication in new window or tab >>Darcy's law for flow in a periodic thin porous medium confined between two parallel plates### Fabricius, John

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Hellström, Gunnar

### Lundström, Staffan

### Miroshnikova, Elena

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_some",{id:"formSmash:j_idt184:5:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_some",multiple:true}); ### Wall, Peter

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_otherAuthors",{id:"formSmash:j_idt184:5:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_otherAuthors",multiple:true}); Show others...PrimeFaces.cw("SelectBooleanButton","widget_formSmash_j_idt184_5_j_idt188_j_idt202",{id:"formSmash:j_idt184:5:j_idt188:j_idt202",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_j_idt202",onLabel:"Hide others...",offLabel:"Show others..."}); 2016 (English)In: Transport in Porous Media, ISSN 0169-3913, E-ISSN 1573-1634, Vol. 115, no 3, p. 473-493Article in journal (Refereed) Published
##### Abstract [en]

##### Keywords

Thin porous media, Asymptotic analysis, Homogenization, Darcy’s law, Mixed boundary condition, Stress boundary condition, Permeability
##### National Category

Fluid Mechanics and Acoustics Mathematical Analysis
##### Research subject

Fluid Mechanics; Mathematics
##### Identifiers

urn:nbn:se:ltu:diva-8685 (URN)10.1007/s11242-016-0702-2 (DOI)000388983600005 ()2-s2.0-84966705369 (Scopus ID)7396f0ae-22ce-48c1-b5d8-eaeed32c8ba5 (Local ID)7396f0ae-22ce-48c1-b5d8-eaeed32c8ba5 (Archive number)7396f0ae-22ce-48c1-b5d8-eaeed32c8ba5 (OAI)
##### Conference

InterPore Industry Workshop on Thin Porous Mediat as part of the 5th International Conference of the Interpore-Society, Prague, May 13 2014.
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_j_idt359",{id:"formSmash:j_idt184:5:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_j_idt365",{id:"formSmash:j_idt184:5:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_j_idt371",{id:"formSmash:j_idt184:5:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_j_idt371",multiple:true});
#####

##### Funder

Swedish Research Council
##### Note

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Fluid and Experimental Mechanics.

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Fluid and Experimental Mechanics.

We study stationary incompressible fluid flow in a thin periodic porous medium. The medium under consideration is a bounded perforated 3D-domain confined between two parallel plates. The distance between the plates is \(\delta \), and the perforation consists of \(\varepsilon \)-periodically distributed solid cylinders which connect the plates in perpendicular direction. Both parameters \(\varepsilon \), \(\delta \) are assumed to be small in comparison with the planar dimensions of the plates. By constructing asymptotic expansions, three cases are analysed: (1) \(\varepsilon \ll \delta \), (2) \(\delta /\varepsilon \sim \text {constant}\) and (3) \(\varepsilon \gg \delta \). For each case, a permeability tensor is obtained by solving local problems. In the intermediate case, the cell problems are 3D, whereas they are 2D in the other cases, which is a considerable simplification. The dimensional reduction can be used for a wide range of \(\varepsilon \) and \(\delta \) with maintained accuracy. This is illustrated by some numerical examples.

Validerad; 2016; Nivå 1; 2016-11-25 (andbra); Konferensartikel i tidskrift

Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2019-09-25Bibliographically approvedOpen this publication in new window or tab >>Homogenization of a compressible cavitation model### Fabricius, John

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Tsandzana, Afonso Fernando

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Wall, Peter

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_some",{id:"formSmash:j_idt184:6:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_otherAuthors",{id:"formSmash:j_idt184:6:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_otherAuthors",multiple:true}); 2015 (English)In: European journal of applied mathematics (Print), ISSN 0956-7925, E-ISSN 1469-4425, Vol. 26, no 3, p. 383-399Article in journal (Refereed) Published
##### Abstract [en]

##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:ltu:diva-15347 (URN)10.1017/S0956792515000078 (DOI)000353580600005 ()2-s2.0-84928640588 (Scopus ID)ed7d137c-6164-4914-abea-4210d97ee63f (Local ID)ed7d137c-6164-4914-abea-4210d97ee63f (Archive number)ed7d137c-6164-4914-abea-4210d97ee63f (OAI)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_j_idt359",{id:"formSmash:j_idt184:6:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_j_idt365",{id:"formSmash:j_idt184:6:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_j_idt371",{id:"formSmash:j_idt184:6:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_j_idt371",multiple:true});
#####

##### Note

Validerad; 2015; Nivå 2; 20150319 (andbra)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-07-10Bibliographically approved

We develop a mathematical model in hydrodynamic lubrication that takes into account three phenomena: cavitation, surface roughness and compressibility of the fluid. Like the classical Reynolds equation, the model is mass preserving. We compute the homogenized coefficients in the case of unidirectional roughness. A one-dimensional problem is also solved explicitly

Open this publication in new window or tab >>A new approach for studying cavitation in lubrication### Almqvist, Andreas

### Fabricius, John

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Larsson, Roland

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.### Wall, Peter

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_some",{id:"formSmash:j_idt184:7:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_otherAuthors",{id:"formSmash:j_idt184:7:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_otherAuthors",multiple:true}); 2014 (English)In: Journal of tribology, ISSN 0742-4787, E-ISSN 1528-8897, Vol. 136, no 1, article id 11706Article in journal (Refereed) Published
##### Abstract [en]

##### National Category

Tribology (Interacting Surfaces including Friction, Lubrication and Wear) Mathematical Analysis
##### Research subject

Machine Elements; Mathematics
##### Identifiers

urn:nbn:se:ltu:diva-13843 (URN)10.1115/1.4025875 (DOI)000327760400018 ()2-s2.0-84888398410 (Scopus ID)d21f407a-71f4-4b91-9fc4-890b771ddabe (Local ID)d21f407a-71f4-4b91-9fc4-890b771ddabe (Archive number)d21f407a-71f4-4b91-9fc4-890b771ddabe (OAI)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_j_idt359",{id:"formSmash:j_idt184:7:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_j_idt365",{id:"formSmash:j_idt184:7:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_j_idt371",{id:"formSmash:j_idt184:7:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_j_idt371",multiple:true});
#####

##### Note

Validerad; 2014; 20131209 (andbra)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-07-10Bibliographically approved

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.

The underlying theory, in this paper, is based on clear physical arguments related to conservation of mass flow and considers both incompressible and compressible fluids. The result of the mathematical modeling is a system of equations with two unknowns, which are related to the hydrodynamic pressure and the degree of saturation of the fluid. Discretization of the system leads to a linear complementarity problem (LCP), which easily can be solved numerically with readily available standard methods and an implementation of a model problem in matlab code is made available for the reader of the paper. The model and the associated numerical solution method have significant advantages over today's most frequently used cavitation algorithms, which are based on Elrod-Adams pioneering work

Open this publication in new window or tab >>Asymptotic behaviour of Stokes flow in a thin domain with amoving rough boundary### Fabricius, John

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Koroleva, Yulia

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Tsandzana, Afonso Fernando

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Wall, Peter

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_some",{id:"formSmash:j_idt184:8:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_otherAuthors",{id:"formSmash:j_idt184:8:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_otherAuthors",multiple:true}); 2014 (English)In: Proceedings of the Royal Society. Mathematical, Physical and Engineering Sciences, ISSN 1364-5021, E-ISSN 1471-2946, Vol. 470, no 2167, article id 20130735Article in journal (Refereed) Published
##### Abstract [en]

##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:ltu:diva-4639 (URN)10.1098/rspa.2013.0735 (DOI)000336184600003 ()2-s2.0-84901270334 (Scopus ID)29cc4d7b-7c7c-4e3c-9b00-a9bce047ccd3 (Local ID)29cc4d7b-7c7c-4e3c-9b00-a9bce047ccd3 (Archive number)29cc4d7b-7c7c-4e3c-9b00-a9bce047ccd3 (OAI)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_j_idt359",{id:"formSmash:j_idt184:8:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_j_idt365",{id:"formSmash:j_idt184:8:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_j_idt371",{id:"formSmash:j_idt184:8:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_j_idt371",multiple:true});
#####

##### Note

Validerad; 2014; 20140610 (johsod)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-07-10Bibliographically approved

We consider a problem that models fluid flow in a thin domain bounded by two surfaces. One of the surfaces is rough and moving, whereas the other is flat and stationary. The problem involves two small parameters ε and μ that describe film thickness and roughness wavelength, respectively. Depending on the ratio λ = ε/μ, three different flow regimes are obtained in the limit as both of them tend to zero. Time-dependent equations of Reynolds type are obtained in all three cases (Stokes roughness, Reynolds roughness and high-frequency roughness regime). The derivations of the limiting equations are based on formal expansions in the parameters ε and μ.

Open this publication in new window or tab >>On the effects of surface roughness in thin film flow governed by the time dependent Stokes equations### Wall, Peter

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Koroleva, Yo. U

### Tsandzana, Afonso Fernando

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Fabricius, John

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_some",{id:"formSmash:j_idt184:9:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_otherAuthors",{id:"formSmash:j_idt184:9:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_otherAuthors",multiple:true}); 2014 (English)In: Doklady. Mathematics, ISSN 1064-5624, E-ISSN 1531-8362, Vol. 90, no 1, p. 445-449Article in journal (Refereed) Published
##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:ltu:diva-7771 (URN)10.1134/S106456241405010X (DOI)000341595000015 ()6309bf9f-c82b-41d2-8278-f1f5a9b4f551 (Local ID)6309bf9f-c82b-41d2-8278-f1f5a9b4f551 (Archive number)6309bf9f-c82b-41d2-8278-f1f5a9b4f551 (OAI)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_j_idt359",{id:"formSmash:j_idt184:9:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_j_idt365",{id:"formSmash:j_idt184:9:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_j_idt371",{id:"formSmash:j_idt184:9:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_j_idt371",multiple:true});
#####

##### Note

Validerad; 2014; 20140917 (andbra)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-07-10Bibliographically approved

Faculty of Mechanics and Mathematics, Moscow State University.