Please wait ... |

Link to record
http://ltu.diva-portal.org/smash/person.jsf?pid=authority-person:57026 $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_upper_j_idt122_recordDirectLink",{id:"formSmash:upper:j_idt122:recordDirectLink",widgetVar:"widget_formSmash_upper_j_idt122_recordDirectLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt122_j_idt124",{id:"formSmash:upper:j_idt122:j_idt124",widgetVar:"widget_formSmash_upper_j_idt122_j_idt124",target:"formSmash:upper:j_idt122:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Direct link

Koroleva, Yulia

Open this publication in new window or tab >>Asymptotic behaviour of Stokes flow in a thin domain with amoving rough boundary### Fabricius, John

### Koroleva, Yulia

### Tsandzana, Afonso Fernando

### Wall, Peter

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_some",{id:"formSmash:j_idt184:0:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_otherAuthors",{id:"formSmash:j_idt184:0:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_otherAuthors",multiple:true}); 2014 (English)In: Proceedings of the Royal Society. Mathematical, Physical and Engineering Sciences, ISSN 1364-5021, E-ISSN 1471-2946, Vol. 470, no 2167, article id 20130735Article in journal (Refereed) Published
##### Abstract [en]

##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:ltu:diva-4639 (URN)10.1098/rspa.2013.0735 (DOI)000336184600003 ()2-s2.0-84901270334 (Scopus ID)29cc4d7b-7c7c-4e3c-9b00-a9bce047ccd3 (Local ID)29cc4d7b-7c7c-4e3c-9b00-a9bce047ccd3 (Archive number)29cc4d7b-7c7c-4e3c-9b00-a9bce047ccd3 (OAI)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_j_idt359",{id:"formSmash:j_idt184:0:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_j_idt365",{id:"formSmash:j_idt184:0:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_j_idt371",{id:"formSmash:j_idt184:0:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_j_idt371",multiple:true});
#####

##### Note

Validerad; 2014; 20140610 (johsod)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-07-10Bibliographically approved

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.

We consider a problem that models fluid flow in a thin domain bounded by two surfaces. One of the surfaces is rough and moving, whereas the other is flat and stationary. The problem involves two small parameters ε and μ that describe film thickness and roughness wavelength, respectively. Depending on the ratio λ = ε/μ, three different flow regimes are obtained in the limit as both of them tend to zero. Time-dependent equations of Reynolds type are obtained in all three cases (Stokes roughness, Reynolds roughness and high-frequency roughness regime). The derivations of the limiting equations are based on formal expansions in the parameters ε and μ.

Open this publication in new window or tab >>A rigorous derivation of the time-dependent Reynolds equation### Fabricius, John

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Koroleva, Yulia

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Wall, Peter

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_some",{id:"formSmash:j_idt184:1:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_otherAuthors",{id:"formSmash:j_idt184:1:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_otherAuthors",multiple:true}); 2013 (English)In: Asymptotic Analysis, ISSN 0921-7134, E-ISSN 1875-8576, Vol. 84, no 1-2, p. 103-121Article in journal (Refereed) Published
##### Abstract [en]

##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:ltu:diva-15258 (URN)10.3233/ASY-131165 (DOI)000322831900006 ()2-s2.0-84882673412 (Scopus ID)ec19b62c-1cae-4300-a321-86171dacc88b (Local ID)ec19b62c-1cae-4300-a321-86171dacc88b (Archive number)ec19b62c-1cae-4300-a321-86171dacc88b (OAI)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_j_idt359",{id:"formSmash:j_idt184:1:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_j_idt365",{id:"formSmash:j_idt184:1:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_j_idt371",{id:"formSmash:j_idt184:1:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_j_idt371",multiple:true});
#####

##### Note

We study the asymptotic behavior of solutions of the evolution Stokes equation in a thin three-dimensional domain bounded by two moving surfaces in the limit as the distance between the surfaces approaches zero. Using only a priori estimates and compactness it is rigorously verified that the limit velocity field and pressure are governed by the time-dependent Reynolds equation.

Validerad; 2013; 20130830 (ysko)

Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-07-10Bibliographically approvedOpen this publication in new window or tab >>On the connection between evolution Stokes equation and Reynolds equation for thin-tilm flow### Fabricius, John

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Koroleva, Yulia

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Wall, Peter

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_some",{id:"formSmash:j_idt184:2:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_otherAuthors",{id:"formSmash:j_idt184:2:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_otherAuthors",multiple:true}); 2012 (English)Conference paper, Oral presentation only (Refereed)
##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:ltu:diva-29292 (URN)2b713538-a956-444e-aa83-4c91320b9a3b (Local ID)2b713538-a956-444e-aa83-4c91320b9a3b (Archive number)2b713538-a956-444e-aa83-4c91320b9a3b (OAI)
##### Conference

International Conference on Differential Equations and Dynamical Systems : 29/06/2012 - 04/07/2012
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_j_idt359",{id:"formSmash:j_idt184:2:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_j_idt365",{id:"formSmash:j_idt184:2:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_j_idt371",{id:"formSmash:j_idt184:2:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_j_idt371",multiple:true});
#####

##### Note

Godkänd; 2012; 20120827 (andbra)Available from: 2016-09-30 Created: 2016-09-30 Last updated: 2018-03-08Bibliographically approved

Open this publication in new window or tab >>A new weighted Friedrichs-type inequality for a perforated domain with a sharp constant### Chechkin, Gregory

### Koroleva, Yulia

### Persson, Lars-Erik

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Wall, Peter

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_some",{id:"formSmash:j_idt184:3:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_otherAuthors",{id:"formSmash:j_idt184:3:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_otherAuthors",multiple:true}); 2011 (English)In: Eurasian Mathematical Journal, ISSN 2077-9879, Vol. 2, no 1, p. 81-103Article in journal (Refereed) Published
##### Abstract [en]

##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:ltu:diva-11916 (URN)af2acf00-136d-47f6-acf6-093028b67f4f (Local ID)af2acf00-136d-47f6-acf6-093028b67f4f (Archive number)af2acf00-136d-47f6-acf6-093028b67f4f (OAI)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_j_idt359",{id:"formSmash:j_idt184:3:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_j_idt365",{id:"formSmash:j_idt184:3:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_j_idt371",{id:"formSmash:j_idt184:3:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_j_idt371",multiple:true});
#####

##### Note

Validerad; 2011; 20110520 (yulkor)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2017-11-24Bibliographically approved

Moscow Lomonosov State University.

We derive a new three-dimensional Hardy-type inequality for a cube for the class of functions from the Sobolev space $H^1$ having zero trace on small holes distributed periodically along the boundary. The proof is based on a careful analysis of the asymptotic expansion of the first eigenvalue of a related spectral problem and the best constant of the corresponding Friedrichs-type inequality.

Open this publication in new window or tab >>On asymptotics of the solution of the boundary-value problem in a domain perforated along the boundary### Koroleva, Yulia

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Chechkin, Gregory

### Gadyl'shin, Rustem R.

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_some",{id:"formSmash:j_idt184:4:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_otherAuthors",{id:"formSmash:j_idt184:4:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_otherAuthors",multiple:true}); 2011 (English)In: Vestnik Cheljabinskogo Universiteta. Mathematics. Mechanics. Informatics, Vol. 27, no 14, p. 27-36Article in journal (Refereed) Published
##### Abstract [en]

##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:ltu:diva-13763 (URN)d0ea69be-fb4d-49d3-9424-8793b0f4afd2 (Local ID)d0ea69be-fb4d-49d3-9424-8793b0f4afd2 (Archive number)d0ea69be-fb4d-49d3-9424-8793b0f4afd2 (OAI)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_j_idt359",{id:"formSmash:j_idt184:4:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_j_idt365",{id:"formSmash:j_idt184:4:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_j_idt371",{id:"formSmash:j_idt184:4:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_j_idt371",multiple:true});
#####

##### Note

Godkänd; 2011; 20120705 (yulkor)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2017-11-24Bibliographically approved

Moscow Lomonosov State University.

Bashkir State Pedagogical University.

We consider the Poission problem in a model domain periodically perforatedalong the boundary. It is assumed that on the external boundary the homogenizedNeumann condition is imposed while on the boundary of the cavities the Dirichletcondition is supposed. We construct and justify the asymptotic expansion of thesolution to this problem.

Open this publication in new window or tab >>On Friedrichs-type estimates in domains with rapidly vanishing perforation along the boundary### Koroleva, Yulia

### Persson, Lars-Erik

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Wall, Peter

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_some",{id:"formSmash:j_idt184:5:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_otherAuthors",{id:"formSmash:j_idt184:5:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_otherAuthors",multiple:true}); 2011 (English)In: Book of Abstracts of the International Conference "Differential Equations and Related Topics'' dedicated to the Centenary Anniversary of Ivan G.Petrovskii: (XXIII Joint Session of Petrovskii Seminar and Moscow Mathematical Society) (May 29-June 4, 2011, Moscow, Russia), Moscow: Moscow State University Press, 2011, p. 65-66Conference paper, Meeting abstract (Refereed)
##### Place, publisher, year, edition, pages

Moscow: Moscow State University Press, 2011
##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:ltu:diva-28148 (URN)1d822a6f-71a5-474a-8425-a9c505b3808e (Local ID)1d822a6f-71a5-474a-8425-a9c505b3808e (Archive number)1d822a6f-71a5-474a-8425-a9c505b3808e (OAI)
##### Conference

Joint Session of Petrovskii Seminar and Moscow Mathematical Society : 29/05/2011 - 04/06/2011
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_j_idt359",{id:"formSmash:j_idt184:5:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_j_idt365",{id:"formSmash:j_idt184:5:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_j_idt371",{id:"formSmash:j_idt184:5:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_j_idt371",multiple:true});
#####

##### Note

Godkänd; 2011; 20110522 (yulkor)Available from: 2016-09-30 Created: 2016-09-30 Last updated: 2017-11-25Bibliographically approved

Luleå University of Technology, Department of Engineering Sciences and Mathematics.

Luleå University of Technology, Department of Engineering Sciences and Mathematics.

Open this publication in new window or tab >>On Friedrichs-type inequalities in domains rarely perforated along the boundary### Koroleva, Yulia

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Persson, Lars-Erik

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Wall, Peter

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_some",{id:"formSmash:j_idt184:6:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_otherAuthors",{id:"formSmash:j_idt184:6:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_otherAuthors",multiple:true}); 2011 (English)Report (Other academic)
##### Place, publisher, year, edition, pages

Luleå: Department of Engineering Sciences and Mathematics, Luleå University of Technology, 2011. p. 12
##### Series

Gula serien, ISSN 1400-4003 ; 2011:2
##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:ltu:diva-24304 (URN)a687e144-4fa2-421d-bce0-c33fd4a1a67f (Local ID)a687e144-4fa2-421d-bce0-c33fd4a1a67f (Archive number)a687e144-4fa2-421d-bce0-c33fd4a1a67f (OAI)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_j_idt359",{id:"formSmash:j_idt184:6:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_j_idt365",{id:"formSmash:j_idt184:6:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_j_idt371",{id:"formSmash:j_idt184:6:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_j_idt371",multiple:true});
#####

##### Note

Godkänd; 2011; 20120302 (andbra)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2017-11-24Bibliographically approved

Open this publication in new window or tab >>On Friedrichs-type inequalities in domains rarely perforated along the boundary### Koroleva, Yulia

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Persson, Lars-Erik

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Wall, Peter

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_some",{id:"formSmash:j_idt184:7:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_otherAuthors",{id:"formSmash:j_idt184:7:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_otherAuthors",multiple:true}); 2011 (English)In: Journal of inequalities and applications (Print), ISSN 1025-5834, E-ISSN 1029-242X, Vol. 2011Article in journal (Refereed) Published
##### Abstract [en]

##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:ltu:diva-7684 (URN)10.1186/1029-242X-2011-129 (DOI)000301732600001 ()2-s2.0-84868143661 (Scopus ID)616f9d49-e360-4b64-a56c-3dc84e44a552 (Local ID)616f9d49-e360-4b64-a56c-3dc84e44a552 (Archive number)616f9d49-e360-4b64-a56c-3dc84e44a552 (OAI)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_j_idt359",{id:"formSmash:j_idt184:7:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_j_idt365",{id:"formSmash:j_idt184:7:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_j_idt371",{id:"formSmash:j_idt184:7:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_j_idt371",multiple:true});
#####

##### Note

Validerad; 2011; Bibliografisk uppgift: Article no 129 ; 20111206 (wall)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-07-10Bibliographically approved

This paper is devoted to the Friedrichs inequality, where the domain isperiodically perforated along the boundary. It is assumed that the functionssatisfy homogeneous Neumann boundary conditions on the outer boundary andthat they vanish on the perforation. In particular, it is proved that thebest constant in the inequality converges to the best constant in aFriedrichs-type inequality as the size of the perforation goes to zero muchfaster than the period of perforation. The limit Friedrichs-type inequalityis valid for functions in the Sobolev space $H^{1}$.

Open this publication in new window or tab >>On spectrum of the Laplacian in a circle perforated along the boundary: application to a Friedrichs-type inequality### Chechkin, G.A.

### Koroleva, Yulia

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Persson, Lars-Erik

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Wall, Peter

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_some",{id:"formSmash:j_idt184:8:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_otherAuthors",{id:"formSmash:j_idt184:8:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_otherAuthors",multiple:true}); 2011 (English)Report (Other academic)
##### Place, publisher, year, edition, pages

Luleå: Department of Engineering Sciences and Mathematics, Luleå University of Technology, 2011. p. 20
##### Series

Gula serien, ISSN 1400-4003 ; 2011:08
##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:ltu:diva-22220 (URN)1ffac7bf-32cb-4459-a4a6-15d408ad0d9a (Local ID)1ffac7bf-32cb-4459-a4a6-15d408ad0d9a (Archive number)1ffac7bf-32cb-4459-a4a6-15d408ad0d9a (OAI)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_j_idt359",{id:"formSmash:j_idt184:8:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_j_idt365",{id:"formSmash:j_idt184:8:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_j_idt371",{id:"formSmash:j_idt184:8:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_j_idt371",multiple:true});
#####

##### Note

Godkänd; 2011; 20130108 (andbra)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2017-11-24Bibliographically approved

Department of Differential Equations, Faculty of Mechanics and Mathematics, Moscow Lomonosov State University.

Open this publication in new window or tab >>On spectrum of the Laplacian in a circle perforated along the boundary: Application to a Friedrichs-type inequality### Chechkin, Gregory

### Koroleva, Yulia

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Persson, Lars-Erik

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.### Wall, Peter

Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_some",{id:"formSmash:j_idt184:9:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_otherAuthors",{id:"formSmash:j_idt184:9:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_otherAuthors",multiple:true}); 2011 (English)In: International Journal of Differential Equations, ISSN 1687-9643, E-ISSN 1687-9651, Vol. 2011, article id 619623Article in journal (Refereed) Published
##### Abstract [en]

##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

urn:nbn:se:ltu:diva-11541 (URN)10.1155/2011/619623 (DOI)2-s2.0-84878539704 (Scopus ID)a8a24cc4-f621-4a39-87a4-78c05c6907e4 (Local ID)a8a24cc4-f621-4a39-87a4-78c05c6907e4 (Archive number)a8a24cc4-f621-4a39-87a4-78c05c6907e4 (OAI)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_j_idt359",{id:"formSmash:j_idt184:9:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_j_idt365",{id:"formSmash:j_idt184:9:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_j_idt371",{id:"formSmash:j_idt184:9:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_j_idt371",multiple:true});
#####

##### Note

Department of Differential Equations, Faculty of Mechanics and Mathematics, Moscow Lomonosov State University.

In this paper we construct and verify the asymptotic expansion for the spectrum of a boundary-value problem in a unit circle periodically perforated along the boundary. It is assumed that the size of perforation and the distance to the boundary of the circle are of the same smallness. As an application of the obtained results the asymptotic behavior of the best constant in a Friedrichs-type inequality is investigated.

Validerad; 2011; 20111206 (wall)

Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-07-10Bibliographically approved