Change search
Link to record
Permanent link

Direct link
BETA
Eitzenberger, AndreasORCID iD iconorcid.org/0000-0003-0420-3174
Publications (8 of 8) Show all publications
Svartsjaern, M. & Eitzenberger, A. (2017). Determination of magnitude completeness from convex Gutenberg-Richter graphs in the central portion ofthe Kiirunavaara mine. The Southern African Journal of Mining and Metallurgy, 117(6), 545-560
Open this publication in new window or tab >>Determination of magnitude completeness from convex Gutenberg-Richter graphs in the central portion ofthe Kiirunavaara mine
2017 (English)In: The Southern African Journal of Mining and Metallurgy, ISSN 2225-6253, E-ISSN 1543-9518, Vol. 117, no 6, p. 545-560Article in journal (Refereed) Published
Abstract [en]

This paper describes a study of seismic records from the Kiirunavaaramine footwall which were interpreted in relation with numerical modelsdeveloped outside the study. Seismic data was retrieved from a portion ofthe mine and filtered with respect to the ratio between energy carried byan event's P (primary) and S (secondary) waves (Es/Ep ratio), localmagnitude, and active mining depth. The data was analysed using Es/Epratios and Gutenberg-Richter graphs to determine the event origin,mechanisms, and minimum magnitude cut-off. The magnitudecompleteness was identified by studying the b-value stability and b-valuedifferentiation between origin sets. It was shown that, by separatingseismic events into the origin components shear, complex, and tensilebased on Es/Ep ratios, a representative value for the magnitudecompleteness can be identified for a catalogue with a convex cumulativelog curve. The majority of the events were shown to be of shear-slip originbased on the recorded Es/Ep ratios, with pure tensile events constitutingonly about 10% of the recorded data. Spatial and temporal event locationpatterns were studied and compared with numerical modelling results. Thecomparison showed a correlation between shear-slip seismic events andvolumes experiencing high differential stresses in the lower part of thefootwall. In the upper part of the footwall the results did not reveal anyclear correlation between observed damage in drifts and seismic eventlocations. The concentration of seismic events in the lower portion of thefootwall is discussed in the context of rock mass displacements. Theresults indicate a possible connection between mine seismicity at depthand damage observations in the drifts in higher non-seismic areas byseismic softening and subsequent lateral expansion of the rock mass.

Place, publisher, year, edition, pages
South African Institute of Mining and Metallurgy, 2017
National Category
Geotechnical Engineering Other Civil Engineering
Research subject
Mining and Rock Engineering
Identifiers
urn:nbn:se:ltu:diva-64636 (URN)10.17159/2411-9717/2017/v117n6a5 (DOI)000406202900005 ()
Note

Validerad;2017;Nivå 2;2017-07-06 (andbra)

Available from: 2017-06-29 Created: 2017-06-29 Last updated: 2019-02-18Bibliographically approved
Svartsjaern, M., Saiang, D., Nordlund, E. & Eitzenberger, A. (2016). Conceptual Numerical Modeling of Large-Scale Footwall Behavior at the Kiirunavaara Mine, and Implications for Deformation Monitoring (ed.). Paper presented at . Rock Mechanics and Rock Engineering, 49(3), 943-960
Open this publication in new window or tab >>Conceptual Numerical Modeling of Large-Scale Footwall Behavior at the Kiirunavaara Mine, and Implications for Deformation Monitoring
2016 (English)In: Rock Mechanics and Rock Engineering, ISSN 0723-2632, E-ISSN 1434-453X, Vol. 49, no 3, p. 943-960Article in journal (Refereed) Published
Abstract [en]

Over the last 30 years the Kiirunavaara mine has experienced a slow but progressive fracturing and movement in the footwall rock mass which is directly related to the sublevel caving (SLC) method utilized by Luossavaara-Kiirunavaara Aktiebolag (LKAB). As part of an on-going work, this paper focuses on describing and explaining a likely evolution path of large-scale fracturing in the Kiirunavaara footwall. The trace of this fracturing was based on a series of damage mapping campaigns carried out over the last two years, accompanied by numerical modelling. Data collected from the damage mapping between mine levels 320 and 907 m was used to create a 3D surface representing a conceptual boundary for the extent of the damaged volume. The extent boundary surface was used as the basis for calibrating conceptual numerical models created in UDEC. The mapping data, in combination with the numerical models, indicated a plausible evolution path of the footwall fracturing that was subsequently described. Between levels 320 and 740 m the extent of fracturing into the footwall appears to be controlled by natural pre-existing discontinuities, while below 740 m there are indications of a curved shear or step-path failure. The step-path is hypothesised to be activated by rock mass heave into the SLC zone above the current extraction level. Above the 320 m level the fracturing seems to intersect a sub-vertical structure that daylights in the old open pit slope. Identification of these probable damage mechanisms was an important step in order to determine the requirements for a monitoring system for tracking footwall damage. This paper describes the background work for design of the system currently being installed.

National Category
Other Civil Engineering
Research subject
Mining and Rock Engineering
Identifiers
urn:nbn:se:ltu:diva-10894 (URN)10.1007/s00603-015-0750-x (DOI)000371313300014 ()2-s2.0-84959154826 (Scopus ID)9c57e456-e493-4fed-a105-98f1373c0678 (Local ID)9c57e456-e493-4fed-a105-98f1373c0678 (Archive number)9c57e456-e493-4fed-a105-98f1373c0678 (OAI)
Note
Validerad; 2016; Nivå 2; 20150527 (miknil)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-07-10Bibliographically approved
Nordlund, E., Jones, T. & Eitzenberger, A. (Eds.). (2016). Proceedings of the 8th International Symposium on Ground Support in Mining and Underground Construction. Paper presented at Ground Support 2016. Luleå, Sweden: Luleå University of Technology
Open this publication in new window or tab >>Proceedings of the 8th International Symposium on Ground Support in Mining and Underground Construction
2016 (English)Conference proceedings (editor) (Refereed)
Place, publisher, year, edition, pages
Luleå, Sweden: Luleå University of Technology, 2016. p. 856
Keywords
ground support, ground control, mining, underground construction, tunneling, tunnelling, rock bolts, shotcrete, deformation
National Category
Geotechnical Engineering
Research subject
Mining and Rock Engineering
Identifiers
urn:nbn:se:ltu:diva-61915 (URN)978-91-7583-804-5 (ISBN)
Conference
Ground Support 2016
Available from: 2017-02-09 Created: 2017-02-09 Last updated: 2018-05-02Bibliographically approved
Eitzenberger, A. (2013). Vågutbredning i berg (ed.). In: (Ed.), (Ed.), Föredrag vid Bergmekanikdag i Stockholm, 11 mars 2013: . Paper presented at Bergmekanikdag 2013 : 11/03/2013 - 11/03/2013 (pp. 115-126). Stockholm: Stiftelsen bergteknisk forskning - Befo
Open this publication in new window or tab >>Vågutbredning i berg
2013 (Swedish)In: Föredrag vid Bergmekanikdag i Stockholm, 11 mars 2013, Stockholm: Stiftelsen bergteknisk forskning - Befo , 2013, p. 115-126Conference paper, Published paper (Other academic)
Abstract [sv]

I tätbefolkade områden kan vibrationer genererade av tågtrafik i tunnlar nå närliggande byggnader i form av stomljud och/eller vibrationer. Tillförlitliga prognoser för att säkerställa att de som vistas i byggnaderna inte ska störas är nödvändigt när man planerar en ny järnväg eller bygger nya byggnader längs en befintlig järnväg. Numeriska analyser är idag en naturlig del vid prognostisering av tåginducerade vibrationer/stomljud. Vid analyserna antas ofta marken bestå av ett homogent och isotropt material. Vågutbredning genom diskontinuerliga bergmassor har studerats med hjälp numeriska analyser för att bedöma om ett sådant antagande är rimligt. Resultaten visar att sprickor under vissa förutsättningar påverkar vibrationerna lokalt på markytan ovanför en tunnel utsatt för en dynamisk last. Egenskaper som har stor inverkan på vågutbredning är sprickans normal och skjuvstyvhet, sprickors orientering och antal samt sprickavståndet. Zoner kan kanalisera vågor vilket resulterar i ökade vibrationer på markytan där zonen når markytan, men kan också agera som en vågfälla eller ett filter. Om det översta skicket av bergmassan har egenskaper som skiljer sig från den omgivande bergmassan förstärks generellt vibrationerna på markytan, särskilt i horisontell riktning.

Place, publisher, year, edition, pages
Stockholm: Stiftelsen bergteknisk forskning - Befo, 2013
Series
Bergmekanikdag Stockholm, ISSN 0281-4714 ; 2013
National Category
Other Civil Engineering
Research subject
Mining and Rock Engineering
Identifiers
urn:nbn:se:ltu:diva-27796 (URN)1585d2bc-fd37-4e44-9511-2e46d6d02a2f (Local ID)1585d2bc-fd37-4e44-9511-2e46d6d02a2f (Archive number)1585d2bc-fd37-4e44-9511-2e46d6d02a2f (OAI)
Conference
Bergmekanikdag 2013 : 11/03/2013 - 11/03/2013
Note
Godkänd; 2013; 20130617 (ysko)Available from: 2016-09-30 Created: 2016-09-30 Last updated: 2018-05-02Bibliographically approved
Eitzenberger, A., Zhang, P. & Nordlund, E. (2012). Numerical simulation of train-induced vibrations in rock masses (ed.). In: (Ed.), Qihu Qian; Yingxin Zhou (Ed.), Harmonising rock engineering and the environment: proceedings of the 12th ISRM International Congress on Rock Mechanics, Beijing, October 18 - 21, 2011. Paper presented at ISRM International Congress on Rock Mechanics : 18/10/2011 - 21/10/2011 (pp. 1189-1194). Leiden: CRC Press/Balkema
Open this publication in new window or tab >>Numerical simulation of train-induced vibrations in rock masses
2012 (English)In: Harmonising rock engineering and the environment: proceedings of the 12th ISRM International Congress on Rock Mechanics, Beijing, October 18 - 21, 2011 / [ed] Qihu Qian; Yingxin Zhou, Leiden: CRC Press/Balkema , 2012, p. 1189-1194Conference paper, Published paper (Refereed)
Abstract [en]

The vibrations generated by a moving train in a tunnel will radiate into the surrounding ground which, in densely populated areas, will reach nearby buildings and its residents. Analyses are commonly made where the aim is to estimate the ground-borne noise and vibrations levels that may occur in nearby buildings. A common assumption is to treat the rock mass as an isotropic, homogeneous, and linear elastic material. Thus, the influence of discontinuities on the propagation of waves is not considered in the analyses. Within this study, numerical simulations were performed to study the propagation of low-frequency waves through a rock mass near a tunnel. A single period sinusoidal wave was applied as dynamic source on the floor of the tunnel. Observation points were located on the ground surface and around the tunnel. The influence on wave propagation from overburden, position of a discontinuity in relation to the tunnel, and normal and shear stiffness of the discontinuity, was studied by using the Universal Distinct Element Code (UDEC). The results show that increasing overburden reduces the vibration levels on the ground surface. Furthermore, the influence of the normal and shear stiffness of discontinuities depends on where the horizontal discontinuity is positioned in relation to the tunnel. If the horizontal discontinuity is positioned above the dynamic source (e.g. above tunnel or in the tunnel wall) the vibration levels on the ground surface will be reduced but if the horizontal discontinuity is located below the dynamic source (e.g. below the tunnel) the vibration levels on the ground surface will be enhanced. In our analyses, discontinuities only have an impact on the wave propagation if the normal and shear stiffness of is ≤10 GPa/m

Place, publisher, year, edition, pages
Leiden: CRC Press/Balkema, 2012
National Category
Geotechnical Engineering Other Civil Engineering
Research subject
Soil Mechanics; Mining and Rock Engineering
Identifiers
urn:nbn:se:ltu:diva-37592 (URN)84856721538 (Scopus ID)ba914c96-ce00-409d-8384-a2929ffc61c0 (Local ID)978-0-415-80444-8 (ISBN)ba914c96-ce00-409d-8384-a2929ffc61c0 (Archive number)ba914c96-ce00-409d-8384-a2929ffc61c0 (OAI)
Conference
ISRM International Congress on Rock Mechanics : 18/10/2011 - 21/10/2011
Note
Godkänd; 2012; 20120229 (andbra)Available from: 2016-10-03 Created: 2016-10-03 Last updated: 2018-05-02Bibliographically approved
Eitzenberger, A. (2012). Wave propagation in rock and the influence of discontinuities (ed.). (Doctoral dissertation). Paper presented at . Luleå: Luleå tekniska universitet
Open this publication in new window or tab >>Wave propagation in rock and the influence of discontinuities
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis concerns wave propagation in rock as a tool for determination of rockproperties and as a consequence of activities, such as trains.Using waves as a tool often means that rock properties are determined or the interior of a sample is studied without being damaged. Another use of waves is to measure the velocities in rock samples shaped as cubes, spheres or cores with plane and parallel end surfaces in order to determine if the rock is anisotropic; an important property to for example for the evaluation of stress measurements. The preparation of such samples are rather time consuming and costly, especially if many measurements have to be carried out. To overcome this obstacle diametrical measurements on drilled rock cores have been evaluated as a possible method to detect anisotropy. Measurements have been performed on metal cores, isotropic and anisotropic rock cores as well as rock cores containing microcracks. The results show that the technique is able to detect anisotropy caused by both geological composition and microcracks having a preferred orientation. However, in order to be detected the anisotropy must be parallel or sub-parallel to the core axis.Furthermore, diametrical measurements on cores retrieved from the rock mass beneath a drift showed that the anisotropy decreased while the P-wave velocity increased with increasing distance from the drift floor. Microcracks with a preferred orientation were developed either during excavation or by the increased stresses around the drift. Waves as a consequence of activities are generally considered as something negative, for example, vibrations radiating from underground railways. In densely populated areas these vibrations reach nearby buildings and the residents as ground-borne noise and/or vibrations. Reliable predictions to ensure that residents will not be annoyed are a necessity when planning a new railway or constructing new buildings along an existing route. Numerical analysis is a natural part of the prediction models for train-induced vibrations. In general these analyses treat the ground as homogeneous and isotropic. To determine if such an assumption is valid wave propagation through discontinuous rock masses have been studied using numerical analyses. The results of the analyses show for example that discontinuities can significantly increase the vibrations locally on the ground surface above a dynamically loaded tunnel. Properties having the greatest impact on wave propagation are the shear and normal stiffness of the discontinuity, the number of discontinuities and their internal distance, angle of incidence and the frequency of the wave. This study shows that discontinuities under certain conditions have an impact on the propagation of train-induced vibrations. Zones with a non-zero thickness show some other interesting phenomena, for example: they can result in channelling of waves resulting in higher velocity-levels at the ground surface where the zone daylights but also as a wave trap or filter. If the uppermost part of the rock mass has properties different from those of the host rock mass, generally amplifies the peak particle velocity on the ground surface especially in the horizontal direction.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2012. p. 63
Series
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
National Category
Other Civil Engineering
Research subject
Mining and Rock Engineering
Identifiers
urn:nbn:se:ltu:diva-17702 (URN)4bc44cbf-0722-46a6-af99-8b20111988e9 (Local ID)978-91-7439-413-9 (ISBN)4bc44cbf-0722-46a6-af99-8b20111988e9 (Archive number)4bc44cbf-0722-46a6-af99-8b20111988e9 (OAI)
Note
Godkänd; 2012; 20111025 (ysko); DISPUTATION Ämne: Berganläggningsteknik/Rock Mechanics and Rock Engineering Opponent: Professor Charlie Chunlin Li, Department of Geology and Mineral Resources Engineering, NTNU, Trondheim, Norway, Ordförande: Professor Erling Nordlund, Institutionen för samhällsbyggnad och naturresurser, Luleå tekniska universitet Tid: Fredag den 19 oktober 2012, kl 10.00 Plats: E246, Luleå tekniska universitetAvailable from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-05-02Bibliographically approved
Eitzenberger, A. (2008). Inventory of geomechanical phenomena related to train-induced vibrations from tunnels (ed.). (Licentiate dissertation). Paper presented at . Luleå: Luleå tekniska universitet
Open this publication in new window or tab >>Inventory of geomechanical phenomena related to train-induced vibrations from tunnels
2008 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Banverket is expecting that the number of railway tunnels in densely populated areas will increase over the next 20 years due to the lack of available space on the ground surface, but also since the railway is considered an environmentally friendly solution of transportation for the future. The need for good predictions of vibration and noise levels in dwellings along the planned tunnels is therefore evident. Due to lack of understanding of the propagation of train-induced vibrations from tunnels in rock a research project has been initiated by Banverket. This thesis constitutes the first stage of that project. In this thesis, the propagation of vibrations through a rock mass has been reviewed. The emphasis has been on wave propagation in hard rock masses. Areas, such as the generation of vibrations at the train-rail interface, the response of buildings and humans, national and international recommended noise and vibrations levels, and possible countermeasures are briefly reviewed as well. Finally, suggestions for the continued research are presented. The propagation of waves is influenced by attenuation along the propagation path. The attenuation can either be through geometric spreading, energy loss within the material, or reflection and refraction at boundaries. In a rock mass, where heterogeneities of various scales are present, the attenuation of (train-induced) waves through the ground therefore mainly depends on the properties of the discontinuities. Theoretical models of wave propagation across individual fractures have been presented in the literature. These models can be used to study the attenuation at the fracture for different combinations of joint stiffness, impedance, and angle of incidence. Also multiple parallel joints can be theoretically analysed. The attenuation of low-frequency waves is more prominent in weak rock masses and virtually negligible for hard rock masses. An increased amount of random oriented joints, faults and boundaries increases the attenuation of the waves, but is not possible to study with the aid of theoretical models. The rock mass is in most cases inhomogeneous due to all heterogeneities present. Despite this fact, the rock mass and soil is always treated as an isotropic, homogeneous material in the analyses of ground-borne noise and ground-borne vibrations. This concerns both numerical and empirical methods. Thus, there is a lack of a method that considers the influence of various heterogeneities present in a rock mass on the propagation of waves. Future research regarding train-induced vibrations should focus on combining the models of attenuation in the material with the models of attenuation across joints. Thereafter, conceptual models should be used to determine the propagation of low-frequency waves in a rock mass containing various amounts of heterogeneities (from isotropic to highly inhomogeneous) which should be compared to the theoretical methods available. Once the behaviour of waves in an inhomogeneous rock mass has been established, conceptual models should be used together with measurements from a few well documented cases. From the results of the analysis, guidelines for analysis of railway tunnels with regard to ground-borne noise and ground-borne vibrations should be established.

Abstract [sv]

Banverket uppskattar att antalet järnvägstunnlar I tätbebyggt område kommer att öka inom de närmaste 20 åren, dels på grund av att tåg är ett miljövänligt transportsätt samt att marken i tätbebyggda områden är begränsad. Det finns därför ett stort behov av tillförlitliga metoder för att bedöma vilka vibrations- samt stomljudsnivåer som kommer att uppstå i bostäderna längs den planerade järnvägen. För att öka förståelsen har Banverket initierat ett forskningsprojekt där denna avhandling utgör den första delen. I denna avhandling har vågors propagering genom bergmassan studerats. Områden som uppkomsten av vibrationerna, hur människor och byggnader påverkas av vibrationer, nationella samt internationella standarder, samt åtgärder för att minska vibrationer har studerats. Slutligen ges förslag på fortsatt forskning.När vågor propagerar genom ett material dämpas vågen. Dämpningen kan bestå av geometrisk dämpning, energiförluster till materialet, eller reflektion och refraktion vid materialgränser. I en bergmassa som innehåller heterogeniteter i varierande skala orsakas dämpningen av vågorna främst av sprickornas egenskaper. Teoretiska modeller av vågors propagering genom en spricka finns rapporterade i litteraturen . Dessa modeller kan användas för att studera en sprickas inverkan på vågor för olika kombinationer av sprickegenskaper, till exempel sprickstyvhet, impedans eller infallsvinkel. Det finns även teoretiska modeller för att studera parallella sprickors inverkan på vågor. Dämpningen av vågor med låg frekvens är dominerande i bergmassor av låg kvalitet men i princip försumbar i hårt friskt berg. Ökad förekomst av sprickor, förkastningar, och materialgränser ökar dämpningen. Det är dock svårt att studera sådana bergmassor på ett bra sätt med analytiska modeller.En bergmassa innehåller en mängd olika typer av heterogeniteter. Trots detta antas oftast bergmassan vara ett isotropt, elastiskt och homogent material vid analyser av stomljud och vibrationer. Detta gäller både numeriska och empiriska modeller. Det finns således ingen metod som beaktar sprickors egenskaper vid analyser av vibrationer i bergmassor. I den fortsatta forskningen bör man studera möjligheten att kombinera metoder som används för att bestämma materialdämpning med metoderna som används för att bestämma dämpningen för sprickor och materialkontakter. Detta skulle möjliggöra utvecklingen av enkla regler för hur bergmassan ska modelleras vid analyser av stomljud. Därtill bör konceptuella modeller användas för att studera vågors propagering genom material med varierande grad av uppsprickning. Dessa enkla modeller bör sedan jämföras med de teoretiska modellerna. De konceptuella modellerna bör sedan kombineras med studier av något eller några väldokumenterade tunnlar. Utifrån analyserna bör det vara möjligt att skapa enkla regler för hur bergmassan ska modelleras då man studerar stomljud.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2008. p. 84
Series
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757 ; 2008:54
Keywords
Civil engineering and architecture - Geoengineering and mining engineering, Samhällsbyggnadsteknik och arkitektur - Geoteknik och gruvteknik
National Category
Geotechnical Engineering Other Civil Engineering
Research subject
Soil Mechanics; Mining and Rock Engineering
Identifiers
urn:nbn:se:ltu:diva-18147 (URN)71ad8c10-c76b-11dd-941d-000ea68e967b (Local ID)71ad8c10-c76b-11dd-941d-000ea68e967b (Archive number)71ad8c10-c76b-11dd-941d-000ea68e967b (OAI)
Note
Godkänd; 2008; 20081211 (ysko)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-05-02Bibliographically approved
Eitzenberger, A. (2008). Train-induced vibrations in tunnels: a review (ed.). Paper presented at . Luleå: Luleå tekniska universitet
Open this publication in new window or tab >>Train-induced vibrations in tunnels: a review
2008 (English)Report (Other academic)
Abstract [en]

Banverket is expecting that the number of railway tunnels in densely populated areas will increase over the next 20 years due to the lack of available space on the ground surface. Together with the increased awareness of the residents the need for good prediction of vibration and noise levels in dwellings along the planned tunnels is evident. Consequently, a study of the propagation of vibrations through rock and soil generated by trains operating in tunnels is required in order to make more reliable prognoses. This report constitutes the first stage within a research project aimed at increasing the understanding about ground-borne noise and ground-borne vibrations generated by trains moving in tunnels constructed in rock. In this report, the propagation of vibration through a rock mass is reviewed. The emphasis has been on wave propagation in hard rock, but soil has also been included. Areas, such as the generation of vibration at the train-rail interaction, the response of buildings and humans, national and international recommended noise and vibrations levels, measurement of noise and vibrations, and possible countermeasures are briefly reviewed as well. Finally, suggestions for the continued research within this field are presented. The propagation of waves is influenced by attenuation along the propagation path. The attenuation can either be through geometric spreading, energy loss within the material, or reflection and refraction at boundaries. In a rock mass, where heterogeneities of various scales are present, the attenuation of (train-induced) waves through the ground therefore mainly depends on discontinuities, e.g. joints, faults, cracks, crushed zones, dykes, and boundaries between different rock types or soil. Also the topography - along as well as intersecting tunnels - influences the wave propagation in form of local amplification. An increased amount of joints, faults and boundaries increases the attenuation of the waves. The rock mass is in most cases inhomogeneous due to all heterogeneities present. Despite this fact, the rock mass and soil is always treated as an isotropic, homogeneous material when analyzed with regard to ground-borne noise and ground-borne vibrations. This concerns both numerical and empirical methods. Thus, there is a lack of knowledge regarding the influence of various heterogeneities on the propagation of waves, and thereby vibrations, in non-isotropic ground conditions (e.g. a rock mass) at low frequencies. Future research regarding train-induced vibration should focus on conceptual models used to determine the propagation of low-frequency waves in a rock mass containing various amount of heterogeneities (from isotropic to highly inhomogeneous). Once the behaviour of waves in an inhomogeneous rock mass has been established, conceptual models should be used together with measurements from a few well documented cases. From the results of the analysis, guidelines for analysis of railway tunnels with regard to ground-borne noise and ground-borne vibrations should be established.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2008. p. 90
Series
Technical report / Luleå University of Technology, ISSN 1402-1536 ; 2008:06
Keywords
Civil engineering and architecture - Geoengineering and mining engineering, Samhällsbyggnadsteknik och arkitektur - Geoteknik och gruvteknik
National Category
Other Civil Engineering Geotechnical Engineering
Research subject
Mining and Rock Engineering; Soil Mechanics
Identifiers
urn:nbn:se:ltu:diva-23003 (URN)537205b0-267a-11dd-9e62-000ea68e967b (Local ID)537205b0-267a-11dd-9e62-000ea68e967b (Archive number)537205b0-267a-11dd-9e62-000ea68e967b (OAI)
Note
Godkänd; 2008; 20080520 (ysko)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-05-02Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0003-0420-3174

Search in DiVA

Show all publications