RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Novel Hybrid Soft Computing Model Using Random Forest and Particle Swarm Optimization for Estimation of Undrained Shear Strength of Soil
Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh, Vietnam.Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh, Vietnam.
School of Resources and Safety Engineering, Central South University, Changsha, China.
Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, Hiroshima, Japan.
Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh, Vietnam.Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh, Vietnam.
Vise andre og tillknytning
2020 (engelsk)Inngår i: Sustainability, ISSN 2071-1050, E-ISSN 2071-1050, Vol. 12, nr 6, artikkel-id 2218Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Determination of shear strength of soil is very important in civilengineering for foundation design, earth and rock fill dam design, highway and airfield design,stability of slopes and cuts, and in the design of coastal structures. In this study, a novel hybrid softcomputing model (RF-PSO) of random forest (RF) and particle swarm optimization (PSO) wasdeveloped and used to estimate the undrained shear strength of soil based on the clay content (%),moisture content (%), specific gravity (%), void ratio (%), liquid limit (%), and plastic limit (%). Inthis study, the experimental results of 127 soil samples from national highway project Hai Phong-Thai Binh of Vietnam were used to generate datasets for training and validating models. Pearsoncorrelation coefficient (R) method was used to evaluate and compare performance of the proposedmodel with single RF model. The results show that the proposed hybrid model (RF-PSO) achieveda high accuracy performance (R = 0.89) in the prediction of shear strength of soil. Validation of themodels also indicated that RF-PSO model (R = 0.89 and Root Mean Square Error (RMSE) = 0.453) issuperior to the single RF model without optimization (R = 0.87 and RMSE = 0.48). Thus, theproposed hybrid model (RF-PSO) can be used for accurate estimation of shear strength which canbe used for the suitable designing of civil engineering structures.

sted, utgiver, år, opplag, sider
Switzerland: MDPI, 2020. Vol. 12, nr 6, artikkel-id 2218
Emneord [en]
machine learning, random forest, particle swarm optimization, Vietnam
HSV kategori
Forskningsprogram
Geoteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-78038DOI: 10.3390/su12062218ISI: 000523751400065OAI: oai:DiVA.org:ltu-78038DiVA, id: diva2:1414403
Merknad

Validerad;2020;Nivå 2;2020-03-16 (johcin)

Tilgjengelig fra: 2020-03-13 Laget: 2020-03-13 Sist oppdatert: 2020-04-29bibliografisk kontrollert

Open Access i DiVA

fulltext(1914 kB)10 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1914 kBChecksum SHA-512
81726791ac71b4959f8458376e763fc48c9b2feaf94914375ad75ad1fda1434d9d861f5dc8835e89c340ce3638ced652f9b81b3ce7ba87c28fc87241be6e27e8
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Al-Ansari, Nadhir

Søk i DiVA

Av forfatter/redaktør
Al-Ansari, Nadhir
Av organisasjonen
I samme tidsskrift
Sustainability

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 10 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 48 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf