Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Lubrication Behavior of Water Molecules Confined in TiO2 Nanoslits: A Molecular Dynamics Study
College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University.
College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University.
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Maskinelement.ORCID-id: 0000-0001-6085-7880
College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University.
Vise andre og tillknytning
Rekke forfattare: 62016 (engelsk)Inngår i: Journal of Chemical and Engineering Data, ISSN 0021-9568, E-ISSN 1520-5134, Vol. 61, nr 12, s. 4023-4030Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Titanium (Ti) metal has been widely used in orthopedic implants, such as knee replacements and fracture fixation devices, where water is the base fluid of the lubricant. In this work, a series of nonequilibrium molecular dynamics have been carried out to investigate the microstructure and lubrication of water molecules confined in TiO2 nanoslits under shearing. The effects of varying slit gap widths (0.8, 1.2, 1.6, and 2.0 nm) and shear velocities (200, 100, 50, and 10 m/s) on the friction coefficients between TiO2 and water molecules were evaluated to shed light on the role of the confined water molecules on lubrication. Simulation results showed that the friction coefficient decreased as the slit width increased. Detailed analysis of water molecules microstructure revealed that water molecules confined in the slits were layered. Typically, all the water molecules in Layer 1 and some water molecules in Layer 2 could reach the sliding velocity of the wall, which were in agreement with the reported mobility of water molecules absorbed on TiO2 nanoparticles via nuclear magnetic resonance. As the width of slit gap increased, the average lifetime of the H-bonds between water molecules within and beyond Layer 1 reduced and the amount of free water increased accordingly, which caused a decrease in the friction coefficient. This understanding can be used to explain at the molecular scale the observation in our previous atomic force microscope experiment in which the higher roughness in TiO2 reflected a lower friction coefficient. 

sted, utgiver, år, opplag, sider
2016. Vol. 61, nr 12, s. 4023-4030
HSV kategori
Forskningsprogram
Maskinelement
Identifikatorer
URN: urn:nbn:se:ltu:diva-59645DOI: 10.1021/acs.jced.6b00534ISI: 000389623400009OAI: oai:DiVA.org:ltu-59645DiVA, id: diva2:1034043
Merknad

Validerad; 2017; Nivå 2; 2017-01-10 (andbra)

Tilgjengelig fra: 2016-10-11 Laget: 2016-10-11 Sist oppdatert: 2018-07-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Shi, Yijun

Søk i DiVA

Av forfatter/redaktør
Shi, Yijun
Av organisasjonen
I samme tidsskrift
Journal of Chemical and Engineering Data

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 64 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf