Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Machine Learning on Big Data: Opportunities and Challenges
Information Systems Department, UMBC, Baltimore.
Information Systems Department, UMBC, Baltimore.
Information Systems Department, UMBC, Baltimore.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.ORCID-id: 0000-0003-1902-9877
Rekke forfattare: 42017 (engelsk)Inngår i: Neurocomputing, ISSN 0925-2312, E-ISSN 1872-8286, Vol. 237, s. 350-361Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Machine learning (ML) is continuously unleashing its power in a wide range of applications. It has been pushed to the forefront in recent years partly owing to the advert of big data. ML algorithms have never been better promised while challenged by big data. Big data enables ML algorithms to uncover more fine-grained patterns and make more timely and accurate predictions than ever before; on the other hand, it presents major challenges to ML such as model scalability and distributed computing. In this paper, we introduce a framework of ML on big data (MLBiD) to guide the discussion of its opportunities and challenges. The framework is centered on ML which follows the phases of preprocessing, learning, and evaluation. In addition, the framework is also comprised of four other components, namely big data, user, domain, and system. The phases of ML and the components of MLBiD provide directions for the identification of associated opportunities and challenges and open up future work in many unexplored or under explored research areas.

sted, utgiver, år, opplag, sider
Elsevier, 2017. Vol. 237, s. 350-361
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-61412DOI: 10.1016/j.neucom.2017.01.026ISI: 000397356700032Scopus ID: 2-s2.0-85011371254OAI: oai:DiVA.org:ltu-61412DiVA, id: diva2:1064623
Merknad

Validerad; 2017; Nivå 2; 2017-03-08 (andbra)

Tilgjengelig fra: 2017-01-12 Laget: 2017-01-12 Sist oppdatert: 2018-09-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Vasilakos, Athanasios

Søk i DiVA

Av forfatter/redaktør
Vasilakos, Athanasios
Av organisasjonen
I samme tidsskrift
Neurocomputing

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 687 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf