Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Belief Rule Based Expert System to Predict Earthquake under Uncertainty
University of Chittagong, Bangladesh.ORCID-id: 0000-0002-7473-8185
University of Chittagong, Bangladesh.
University of Chittagong, Bangladesh.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.ORCID-id: 0000-0003-0244-3561
2018 (engelsk)Inngår i: Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, ISSN 2093-5374, E-ISSN 2093-5382, Vol. 9, nr 2, s. 26-41Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The impact of earthquake is devastating, which has the capability to stop the socio-economic activities of a region within a short span of time. Therefore, an earlier prediction of earthquake could play an important role to save human lives as well as socio-economic activities. The signs of animal behavior along with environmental and chemical changes in nature could be considered as a way to predict the earthquake. These factors cannot be determined accurately because of the presence of different categories of uncertainties. Therefore, this article presents a belief rule based expert system (BRBES) which has the capability to predict earthquake under uncertainty. Historical data of various earthquakes of the world with specific reference to animal behavior as well as environmental and chemical changes have been considered in validating the BRBES. The reliability of our proposed BRBES’s output is measured in comparison with Fuzzy Logic Based Expert System (FLBES) and Artificial Neural Networks (ANN) based system, whereas our BRBES’s results are found more reliable than that of FLBES and ANN. Therefore, this BRBES can be considered to predict the occurrence of an earthquake in a region by taking account of the data, related to the animal, environmental and chemical changes.

sted, utgiver, år, opplag, sider
JoWUA , 2018. Vol. 9, nr 2, s. 26-41
Emneord [en]
Earthquake, Prediction, Expert system, Uncertainty, Belief rule base.
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-70025DOI: 10.22667/JOWUA.2018.06.30.026OAI: oai:DiVA.org:ltu-70025DiVA, id: diva2:1229551
Prosjekter
A belief-rule-based DSS to assess flood risks by using wireless sensor networks
Forskningsfinansiär
Swedish Research Council, 2014-4251
Merknad

Validerad;2018;Nivå 1;2018-08-02 (rokbeg)

Tilgjengelig fra: 2018-07-01 Laget: 2018-07-01 Sist oppdatert: 2018-08-10bibliografisk kontrollert

Open Access i DiVA

fulltext(821 kB)143 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 821 kBChecksum SHA-512
ab0af60f105cdd69be30ba3940a55150b90be3653686f0c3dcb04a45d35f588872ee1a172bb8bf21d2a0c611fc7365135837fbcc31a19c5c3565099780369952
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fullteksthttp://isyou.info/jowua/papers/jowua-v9n2-2.pdf

Personposter BETA

Andersson, Karl

Søk i DiVA

Av forfatter/redaktør
Hossain, Mohammad ShahadatAndersson, Karl
Av organisasjonen
I samme tidsskrift
Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 143 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 4345 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf