Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Real-time Performance Evaluation of LTE for IIoT
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap. InfoVista Sweden.ORCID-id: 0000-0003-1139-6998
InfoVista Sweden.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.ORCID-id: 0000-0003-0244-3561
2018 (engelsk)Inngår i: Proceedings of the 43rd IEEE Conference on Local Computer Networks (LCN) / [ed] Soumaya Cherkaoui, Institute of Electrical and Electronics Engineers (IEEE), 2018Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Industrial Internet of Things (IIoT) is claimed to be a global booster technology for economic development. IIoT brings bulky use-cases with a simple goal of enabling automation, autonomation or just plain digitalization of industrial processes. The abundance of interconnected IoT and CPS generate additional burden on the telecommunication networks, imposing number of challenges to satisfy the key performance requirements. In particular, the QoS metrics related to real-time data exchange for critical machine-to-machine type communication. This paper analyzes a real-world example of IIoT from a QoS perspective, such as remotely operated underground mining vehicle. As part of the performance evaluation, a software tool is developed for estimating the absolute, one-way delay in end-toend transmissions. The measured metric is passed to a machine learning model for one-way delay prediction based on LTE RAN measurements using a commercially available cutting-edge software tool. The achieved results prove the possibility to predict the delay figures using machine learning model with a coefficient of determination up to 90%.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2018.
Emneord [en]
IIoT, LTE, QoS, delay, jitter, real-time, critical IoT
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-70316DOI: 10.1109/LCN.2018.8638081Scopus ID: 2-s2.0-85062855153OAI: oai:DiVA.org:ltu-70316DiVA, id: diva2:1237755
Konferanse
43nd IEEE Conference on Local Computer Networks Workshops (LCN Workshops), Chicago, October 1-4, 2018
Tilgjengelig fra: 2018-08-09 Laget: 2018-08-09 Sist oppdatert: 2019-04-08

Open Access i DiVA

fulltext(2320 kB)109 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2320 kBChecksum SHA-512
4ec94caae7176aa22720f811430c5aa3fcf8554f91e14cf9975ffbe4116e437c44995344c446d60541f8cfaee9e403447aeeb0d4e81b67e6cf75ab6dd337a54b
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopushttp://ieeelcn.org

Personposter BETA

Minovski, DimitarAndersson, Karl

Søk i DiVA

Av forfatter/redaktør
Zhohov, RomanMinovski, DimitarAndersson, Karl
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 109 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 262 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf