Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Estimation of coking indexes based on parental coal properties by variable importance measurement and boosted-support vector regression method
Department of Industrial Engineering, Birjand University of Technology, Birjand, Iran.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.ORCID-id: 0000-0002-2265-6321
2019 (engelsk)Inngår i: Measurement, ISSN 0263-2241, E-ISSN 1873-412X, Vol. 135, s. 306-311Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Coke as a fuel has a critical role for steel making industries. Since coke is a product of blended coals, it is essential to study relationships between parental coal components with quality of their coke products. Free swelling index (FSI) and maximum fluidity (MF) are standard coking indexes that widely used for blending coals and measuring quality of products. This study has been explored interdependencies between measured coal components by mutual information (MI) method and evaluated their importance in the prediction of coking indexes for a wide range of Illinois coal samples. MI results indicated that the set of moisture-organic sulfur and moisture-nitrogen-sulfate sulfur were the best variables for predictions of log(MF) and FSI, respectively. Adaptive Boosting method based on support vector regression (SVR), called Boosted-SVR, was used the selected variable sets for predictions of coking indexes. In testing stage of models, correlation of determination (R2) between actual and predicted values for the log(MF) and FSI were 0.89 and 0.90, respectively. These results indicated that Boosted-SVR model could quite satisfactory predict coking indexes. In general, outcomes of this investigation demonstrated an appropriate potential of coking quality prediction with limited numbers of input variables and suggested that a combination of MI with Boosted-SVR model as a new powerful tool which can be used for the computation of other complex fuel and processing problems based on measurement of conventional properties.

sted, utgiver, år, opplag, sider
Elsevier, 2019. Vol. 135, s. 306-311
Emneord [en]
Free swelling index, Maximum fluidity, Feature selection, Mutual information, Boosted-SVR
HSV kategori
Forskningsprogram
Mineralteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-72227DOI: 10.1016/j.measurement.2018.11.068ISI: 000468747300031Scopus ID: 2-s2.0-85057353034OAI: oai:DiVA.org:ltu-72227DiVA, id: diva2:1272679
Merknad

Validerad;2019;Nivå 2;2018-12-19 (svasva)

Tilgjengelig fra: 2018-12-19 Laget: 2018-12-19 Sist oppdatert: 2019-06-18bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Chelgani, Saeed Chehreh

Søk i DiVA

Av forfatter/redaktør
Chelgani, Saeed Chehreh
Av organisasjonen
I samme tidsskrift
Measurement

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 90 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf