Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automated drill core mineralogical characterization method for texture classification and modal mineralogy estimation for geometallurgy
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.ORCID-id: 0000-0003-4800-9533
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
2019 (engelsk)Inngår i: Minerals Engineering, ISSN 0892-6875, E-ISSN 1872-9444, Vol. 136, s. 99-109Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In geometallurgy, a process model operating at the mineral liberation level needs quantitative textural information about the ore. The utilization of this information within process modeling and simulation will increase the quality of the predictions.

In this study, descriptors derived from color images and machine learning algorithms are used to group drill core intervals into textural classes and estimate mineral maps by automatic pixel classification. Different descriptors and classifiers are compared, based on their accuracy and capacity to be automated. Integration of the classifier approach with mineral processing simulation is also demonstrated. The quantification of textural information for mineral processing simulation introduced new tools towards an integrated information flow from the drill cores to a geometallurgical model.

The approach has been verified by comparing traditional geological texture classification against the one obtained from automatic methods. The tested drill cores are sampled from a porphyry copper deposit located in Northern Sweden.

sted, utgiver, år, opplag, sider
Amsterdam: Elsevier, 2019. Vol. 136, s. 99-109
Emneord [en]
Geometallurgy Drill core scanning Classification Texture Process mineralogy
HSV kategori
Forskningsprogram
Mineralteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-73323DOI: 10.1016/j.mineng.2019.03.008ISI: 000470338700012Scopus ID: 2-s2.0-85063084058OAI: oai:DiVA.org:ltu-73323DiVA, id: diva2:1299308
Merknad

Validerad;2019;Nivå 2;2019-03-26 (inah)

Tilgjengelig fra: 2019-03-26 Laget: 2019-03-26 Sist oppdatert: 2019-06-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Koch, Pierre-HenriLund, CeciliaRosenkranz, Jan

Søk i DiVA

Av forfatter/redaktør
Koch, Pierre-HenriLund, CeciliaRosenkranz, Jan
Av organisasjonen
I samme tidsskrift
Minerals Engineering

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 81 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf