Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Electricity Price-aware Consolidation Algorithms for Time-sensitive VM Services in Cloud Systems
School of Computer Science, Southeast University, Nanjing, Jiangsu, China.
School of Computer Science and Engeering, Southeast University, Nanjing, Jiangsu China.
Computer Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang China.
School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu China.
Vise andre og tillknytning
2019 (engelsk)Inngår i: IEEE Transactions on Services Computing, ISSN 1939-1374, E-ISSN 1939-1374Artikkel i tidsskrift (Fagfellevurdert) Epub ahead of print
Abstract [en]

Despite the salient feature of cloud computing, the cloud provider still suffers from electricity bill, which mainly comes from 1) the power consumption of running physical machines and 2) the dynamically varying electricity price offered by smart grids. In the literature, there exist viable solutions adaptive to electricity price variation to reduce the electricity bill. However, they are not applicable to serving time-sensitive VM requests. In serving time-sensitive VM requests, it is potential for the cloud provider to apply proper consolidation strategies to further reduce the electricity bill. In this work, to address this challenge, we develop electricity-price-aware consolidation algorithms for both the offline and online scenarios. For the offline scenario, we first develop an consolidation algorithm with constant approximation, which always approaches the optimal solution within a constant factor of 5. For the online scenario, we propose an $O(\log(\frac{L_{max}}{L_{min}}))$ -competitive algorithm that is able to approach the optimal offline solution within a logarithmic factor, where $\frac{L_{max}}{L_{min}}$ is the ratio of the longest length of the processing time requirement of VMs to the shortest one. Our trace-driven simulation results further demonstrate that the average performance of the proposed algorithms produce near-optimal electricity bill.

sted, utgiver, år, opplag, sider
IEEE, 2019.
Emneord [en]
Cloud computing, Approximation algorithms, Data centers, Resource management, Quality of service, Power demand, Virtual machining
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-73551DOI: 10.1109/TSC.2019.2894742OAI: oai:DiVA.org:ltu-73551DiVA, id: diva2:1303724
Tilgjengelig fra: 2019-04-10 Laget: 2019-04-10 Sist oppdatert: 2019-04-10

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Vasilakos, Athanasios

Søk i DiVA

Av forfatter/redaktør
Vasilakos, Athanasios
Av organisasjonen
I samme tidsskrift
IEEE Transactions on Services Computing

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf