Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Process mineralogy as a key factor affecting the flotation kinetics of copper sulfide minerals
Department of Mining Engineering, Urmia University, Urmia, Iran.
School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.ORCID-id: 0000-0002-5228-3888
Department of Mining Engineering, Urmia University, Urmia, Iran.
Vise andre og tillknytning
2019 (engelsk)Inngår i: International Journal of Minerals, Metallurgy and Materials, ISSN 1674-4799, E-ISSN 1869-103X, Vol. 26, nr 4, s. 430-439Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The aim of this study is to apply process mineralogy as a practical tool for further understanding and predicting the flotation kinetics of the copper sulfide minerals. The minerals’ composition and association, grain distribution, and liberation within the ore samples were analyzed in the feed, concentrate, and the tailings of the flotation processes with two pulp densities of 25wt% and 30wt%. The major copper-bearing minerals identified by microscopic analysis of the concentrate samples included chalcopyrite (56.2wt%), chalcocite (29.1wt%), covellite (6.4wt%), and bornite (4.7wt%). Pyrite was the main sulfide gangue mineral (3.6wt%) in the concentrates. A 95% degree of liberation with d80 > 80 µm was obtained for chalcopyrite as the main copper mineral in the ore sample. The recovery rate and the grade in the concentrates were enhanced with increasing chalcopyrite particle size. Chalcopyrite particles with a d80 of approximately 100 µm were recovered at the early stages of the flotation process. The kinetic studies showed that the kinetic second-order rectangular distribution model perfectly fit the flotation test data. Characterization of the kinetic parameters indicated that the optimum granulation distribution range for achieving a maximum flotation rate for chalcopyrite particles was between the sizes 50 and 55 µm.

sted, utgiver, år, opplag, sider
Springer, 2019. Vol. 26, nr 4, s. 430-439
Emneord [en]
microscopic analysis, flotation, kinetics, second order rectangular distribution model, sulphide minerals
HSV kategori
Forskningsprogram
Mineralteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-73642DOI: 10.1007/s12613-019-1733-9ISI: 000464703200004OAI: oai:DiVA.org:ltu-73642DiVA, id: diva2:1304863
Merknad

Validerad;2019;Nivå 2;2019-04-15 (svasva)

Tilgjengelig fra: 2019-04-15 Laget: 2019-04-15 Sist oppdatert: 2019-05-02bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Ghorbani, Yousef

Søk i DiVA

Av forfatter/redaktør
Ghorbani, Yousef
Av organisasjonen
I samme tidsskrift
International Journal of Minerals, Metallurgy and Materials

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 44 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf