Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Deep learning for power quality
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.ORCID-id: 0000-0001-5845-5620
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.ORCID-id: 0000-0003-4074-9529
2023 (engelsk)Inngår i: Electric power systems research, ISSN 0378-7796, E-ISSN 1873-2046, Vol. 214, artikkel-id 108887Artikkel, forskningsoversikt (Fagfellevurdert) Published
Abstract [en]

This paper aims to introduce deep learning to the power quality community by reviewing the latest applications and discussing the open challenges of this technology. Publications covering deep learning to power quality are stratified in terms of application, type of data, and learning technique. This work shows that the majority of the deep learning applications to power quality are based on unrealistic synthetic data and supervised learning without proper labelling. Some applications with deep learning have already been solved by previous machine learning methods or expert systems. The main barriers to implementing deep learning to power quality are related to lack of novelty, low transparency of the deep learning methods, and lack of benchmark databases. This work also discusses that even with automatic feature extraction by deep learning methods, power quality expert knowledge is still needed to implement and analyse the results. The main research gaps identified in this work are related to the applications of semi-supervised learning, explainable deep learning and hybrid approaches combining deep learning with expert systems. Suggestions for overcoming the present limitations are: providing a stronger collaboration among the grid stakeholders and academy to keep track of power quality events; proper labelling and enlarging of datasets in deep learning methods; explaining the end-to-end decision making of deep learning methods; providing open-access databases for comparison purposes.

sted, utgiver, år, opplag, sider
Elsevier, 2023. Vol. 214, artikkel-id 108887
Emneord [en]
Artificial intelligence, Data analysis, Deep learning, Machine learning, Power quality
HSV kategori
Forskningsprogram
Elkraftteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-93726DOI: 10.1016/j.epsr.2022.108887ISI: 001024999300001Scopus ID: 2-s2.0-85139840780OAI: oai:DiVA.org:ltu-93726DiVA, id: diva2:1706430
Forskningsfinansiär
Swedish Energy Agency
Merknad

Validerad;2022;Nivå 2;2022-10-26 (hanlid)

Tilgjengelig fra: 2022-10-26 Laget: 2022-10-26 Sist oppdatert: 2024-03-07bibliografisk kontrollert
Inngår i avhandling
1. Applications of Unsupervised Deep Learning for Analysing Time-Varying Power Quality Big Data
Åpne denne publikasjonen i ny fane eller vindu >>Applications of Unsupervised Deep Learning for Analysing Time-Varying Power Quality Big Data
2023 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Continuous power quality monitoring allows grid stakeholders to obtain information about the performance of the network and costumer facilities. Moreover, the analysis of continuous monitoring allows researchers to obtain knowledge on power quality phenomena. Power quality measurements result in a large amount of data. Power quality data can be classified as big data, not only for its volume, but also for the other complexities: velocity, variety, and veracity. Manual analysis of power quality data is possible but time-consuming. Moreover, data reports based on standardized indexes and classical statistical techniques might hide important information of the time-varying behaviour in power quality measurements. Artificial intelligence plays a role in providing automatic tools for proper analytics of big data.  A subset of artificial intelligence called machine learning has enabled computers to learn without explicit programming. Driven by the huge improvements in computer processing, a subset of machine learning based on multiple layers of artificial neural networks has been developed to tackle increasingly complex problems. The so-called deep learning applications teach themselves to perform a specific task by automatically extracting essential features from the raw data. Despite the possibilities of automatic feature extraction, most applications of deep learning to power quality are still the same as expert systems or earliest machine learning tools. Moreover, most of the applications are based on synthetic generated data and supervised techniques. In this context, the main motivation of this thesis is providing a new tool based on unsupervised deep learning to handle analytics of time-varying power quality big data. 

The unsupervised deep learning method proposed in this thesis combines a deep autoencoder with clustering for extracting patterns and anomalies in power quality big data. The deep autoencoder maps the original data to a compressed format that contains the principal features of the data. Automatic results are provided by the deep learning, and inferences can be obtained without requiring prior knowledge of deep learning. The outputs from unsupervised deep learning can serve as a guide for further data analysis, highlighting important time steps within large power quality datasets. By following these indications from the deep learning results, experts gain valuable insights into power quality phenomena, which can be referred to as "learning from deep learning". The interpretation of the deep learning results in this thesis allowed to making proper inferences for patterns and anomalies. For power quality measurements synchronised with 24-h, the results allowed making inferences concerning daily variations, seasonality, and the origins of power quality disturbances. For power quality measurements non-synchronised with 24-h, the results could be interpreted visually through the distribution of the patterns in a physical variable, such as the dynamic operating conditions of an electrical railway power system.

An important contribution of this thesis concerns the physical interpretation of the phenomena is related to the anomalies in harmonics caused by geomagnetically induced currents. An interesting finding by applying the deep anomaly detection to measurements in the Swedish transmission grid is the damping of the anomalies caused by geomagnetically induced currents in the winter due to the heating load. This thesis also demonstrated that the signatures for anomalies in harmonic measurements in a Swedish transmission location are similar to the ones found in a low-latitude transmission location at the South Atlantic Anomaly due to geomagnetically induced currents. Moreover, by cross-checking the anomalies at the South Atlantic Anomaly with protection trips with undetermined causes, this thesis demonstrated that anomaly harmonics due to geomagnetically induced currents can cause protection mal trips.

This thesis demonstrates that unsupervised deep learning can serve as an additional tool for compressing time-varying power quality big data into a more interpretable form. Despite the application of an unsupervised method, power quality experts remain significant in power quality studies. The main conclusion of this thesis is that unsupervised deep learning enhances the understanding of power quality experts and provides a complementary approach for analysing and extracting insights from time-varying power quality big data.

sted, utgiver, år, opplag, sider
Luleå: Luleå University of Technology, 2023
Serie
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Emneord
power quality, power system harmonics, electric power distribution, interharmonics, big data analytics, pattern analysis, unsupervised learning, deep learning, artificial intelligence, geomagnetically induced currents
HSV kategori
Forskningsprogram
Elkraftteknik
Identifikatorer
urn:nbn:se:ltu:diva-100718 (URN)978-91-8048-353-7 (ISBN)978-91-8048-354-4 (ISBN)
Disputas
2023-10-04, Hörsal A, Luleå tekniska universitet, Skellefteå, 09:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2023-08-25 Laget: 2023-08-24 Sist oppdatert: 2023-09-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Oliveira, Roger Alves deBollen, Math H.J.

Søk i DiVA

Av forfatter/redaktør
Oliveira, Roger Alves deBollen, Math H.J.
Av organisasjonen
I samme tidsskrift
Electric power systems research

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 548 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf