Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Smart M2M Data Filtering Using Domain-Specific Thresholds in Domain-Agnostic Platforms
NEC Laboratories Europe.
NEC Laboratories Europe, NEC Europe Ltd., Heidelberg.
NEC Laboratories Europe.
NEC Corporation, Tokyo.
2013 (engelsk)Inngår i: 2013 IEEE International Congress on Big Data: proceedings : 27 June-2 July 2013, Santa Clara, California, Los Alamitos, Calif: IEEE Communications Society, 2013, s. 286-293Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Due to the demand for homogeneous, intelligent, and automated access to data measured anywhere and from any device, Machine-to-Machine (M2M) platforms are evolving as globally-intended multi-layer solutions that provide such access, abstracting from all technology-specific tasks. In order to preserve the stability of their potentially huge data-handling systems and the usefulness of their Big Data, M2M platforms must maintain some data selection and filtering logic. A challenge that appears in modern M2M platforms is related to the decoupling of the front end (devices, area networks) from the backend (applications, databases). Because of this decoupling, domain-specific tricks cannot be applied any more for filtering at the front end. This paper presents a solution using domain-specific filtering thresholds in a domain-agnostic platform, as well as filtering flows and algorithms tailored to modern M2M platforms. Their combination assembles the first filtering solution that supports the unified handling of heterogeneous filters. In an evaluation from the utility-monitoring domain, instances of our approach showed high efficiency of configuration and were the only ones to achieve, for example, forwarding less than 25% of the captured data maintaining a coverage ratio bigger than 50% for all considered applications.

sted, utgiver, år, opplag, sider
Los Alamitos, Calif: IEEE Communications Society, 2013. s. 286-293
Emneord [en]
data handling, information filtering, information filters, Big Data, data selection, data-handling systems, domain-agnostic platforms, domain-specific filtering thresholds, filtering algorithm, filtering flows, filtering logic, globally-intended multilayer solutions, heterogeneous filters, machine-to-machine platform, smart M2M data filtering, technology-specific tasks, utility-monitoring domain, Data handling, Data storage systems, Filtering, Information management, Logic gates, Sensors, Standards, M2M, filtering, platform
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-34180DOI: 10.1109/BigData.Congress.2013.45ISI: 000332528300038Scopus ID: 2-s2.0-84886066561Lokal ID: 84d8bc97-7f2a-4263-8b53-4abafee65d75ISBN: 978-0-7695-5006-0 (tryckt)OAI: oai:DiVA.org:ltu-34180DiVA, id: diva2:1007430
Konferanse
IEEE International Congress on Big Data : 27/06/2013 - 02/07/2013
Merknad

Upprättat; 2013; 20150921 (missch)

Tilgjengelig fra: 2016-09-30 Laget: 2016-09-30 Sist oppdatert: 2025-02-18bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Schmidt, Mischa

Søk i DiVA

Av forfatter/redaktør
Schmidt, Mischa

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 80 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf