Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Sensibility study for optimizing the classification of remote sensing time series
2007 (engelsk)Independent thesis Advanced level (degree of Master (One Year)), 10 poäng / 15 hpOppgave
Abstract [en]

Sensibility studies are necessary to evaluate if an existing method is optimizable. The present method for classification of land cover uses the course of information about an observed region during one year. The progress of the natural cover of an observed region gets visible by using weekly composites of NDVI measurements. Filling this data in a diagram results in a time curve. This time series can be characterized by minimum, maximum, amplitude, average and standard deviation of the curve and by other parameters. The analysis of this values, for example by utilization of Recursive Partitioning and Regression Trees (RPART) allows a classification of the vegetation. In the sensibility study the effects of the variation of several criteria like temporal segmentation, pre-utilization of curve smoothing are analyzed. Also the impact of changing training data on the classification of specific target classes and the possibility of predicting classes are an objective of this sensibility studies. Therefore the software, developed in a dissertation at the University of Würzburg, is changed and adopted to be able to apply statistics on the input data to provide the output for the analysis.The gained knowledge shows in which extent the results can be used to optimize the existing method. This results are more interesting in the field of segmentation, harmonics, and prediction than in curve smoothing. It is indicated that the correctness of the classification changes a lot by changing the training regions and that segmentation is very a promising approach.

sted, utgiver, år, opplag, sider
2007.
Emneord [en]
Technology
Emneord [sv]
Teknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-48626ISRN: LTU-PB-EX--07/085--SELokal ID: 60eeb794-7a57-4d56-97aa-1607c3c6c463OAI: oai:DiVA.org:ltu-48626DiVA, id: diva2:1021969
Fag / kurs
Student thesis, at least 15 credits
Utdanningsprogram
Space Engineering, master's level
Examiner
Merknad
Validerat; 20101217 (root)Tilgjengelig fra: 2016-10-04 Laget: 2016-10-04bibliografisk kontrollert

Open Access i DiVA

fulltekst(3577 kB)115 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3577 kBChecksum SHA-512
4f77a90460c304a967864568d1ca467de0010b314a0b30fd7a5f5f5037f5ef857ef6a9d93ff8b5ffdcc00a89922f16b10cb077fbe197c9d18fc8b8da3332a802
Type fulltextMimetype application/pdf

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 115 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 55 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf