Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Applied Machine Learning: Forecasting Heat Load in District Heating System
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.
Rekke forfattare: 4
2016 (engelsk)Inngår i: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 133, 478-488 s.Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Forecasting energy consumption in buildings is a key step towards the realization of optimized energy production, distribution and consumption. This paper presents a data driven approach for analysis and forecast of aggregate space and water thermal load in buildings. The analysis and the forecast models are built using district heating data unobtrusively collected from ten residential and commercial buildings located in Skellefteå, Sweden. The load forecast models are generated using supervised machine learning techniques, namely, support vector machine, regression tree, feed forward neural network, and multiple linear regression. The model takes the outdoor temperature, historical values of heat load, time factor variables and physical parameters of district heating substations as its input. A performance comparison among the machine learning methods and identification of the importance of models input variables is carried out. The models are evaluated with varying forecast horizons of every hour from 1 up to 48 hours. Our results show that support vector machine, feed forward neural network and multiple linear regression are more suitable machine learning methods with lower performance errors than the regression tree. Support vector machine has the least normalized root mean square error of 0.07 for a forecast horizon of 24 hour.

sted, utgiver, år, opplag, sider
2016. Vol. 133, 478-488 s.
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-59596DOI: 10.1016/j.enbuild.2016.09.068ISI: 000389087300045Scopus ID: 2-s2.0-84992362157OAI: oai:DiVA.org:ltu-59596DiVA: diva2:1033758
Merknad

Validerad; 2016; Nivå 2; 2016-11-08 (andbra)

Tilgjengelig fra: 2016-10-10 Laget: 2016-10-10 Sist oppdatert: 2017-11-30bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Idowu, SamuelSaguna, SagunaÅhlund, ChristerSchelén, Olov
Av organisasjonen
I samme tidsskrift
Energy and Buildings

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 435 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.29.1