Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An Adaptive Bumble Bees Mating Optimization algorithm
Technical University of Crete, School of Production Engineering and Management, University Campus, 73100 Chania.
Technical University of Crete, School of Production Engineering and Management, University Campus, 73100 Chania.
Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Industriell Ekonomi.ORCID-id: 0000-0001-8473-3663
Rekke forfattare: 32017 (engelsk)Inngår i: Applied Soft Computing, ISSN 1568-4946, E-ISSN 1872-9681, Vol. 56, s. 13-30Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The finding of the suitable parameters of an evolutionary algorithm, as the Bumble Bees Mating Optimization (BBMO) algorithm, is one of the most challenging tasks that a researcher has to deal with. One of the most common used ways to solve the problem is the trial and error procedure. In the recent few years, a number of adaptive versions of every evolutionary and nature inspired algorithm have been presented in order to avoid the use of a predefined set of parameters for all instances of the studied problem. In this paper1, an adaptive version of the BBMO algorithm is proposed, where initially random values are given to each one of the parameters and, then, these parameters are adapted during the optimization process. The proposed Adaptive BBMO algorithm is used for the solution of the Multicast Routing Problem (MRP). As we would like to prove that the proposed algorithm is suitable for solving different kinds of combinatorial optimization problems we test the algorithm, also, in the Probabilistic Traveling Salesman Problem (PTSP) and in the Hierarchical Permutation Flowshop Scheduling Problem (HPFSP). Finally, the algorithm is tested in four classic benchmark functions for global optimization problems (Rosenbrock, Sphere, Rastrigin and Griewank) in order to prove the generality of the procedure. A number of benchmark instances for all problems are tested using the proposed algorithm in order to prove its effectiveness.

sted, utgiver, år, opplag, sider
Elsevier, 2017. Vol. 56, s. 13-30
HSV kategori
Forskningsprogram
Industriell logistik
Identifikatorer
URN: urn:nbn:se:ltu:diva-61742DOI: 10.1016/j.asoc.2017.01.032ISI: 000400031600002Scopus ID: 2-s2.0-85012284307OAI: oai:DiVA.org:ltu-61742DiVA, id: diva2:1070164
Merknad

Validerad; 2017; Nivå 2; 2017-02-23 (andbra)

Tilgjengelig fra: 2017-01-31 Laget: 2017-01-31 Sist oppdatert: 2018-09-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Migdalas, Athanasios

Søk i DiVA

Av forfatter/redaktør
Migdalas, Athanasios
Av organisasjonen
I samme tidsskrift
Applied Soft Computing

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 418 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf