Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
When to engage in interaction - And how?: EEG-based enhancement of robot's ability to sense social signals in HRI
Institute for Cognitive Systems (ICS), Technische Universität München.
Institute for Cognitive Systems (ICS), Technische Universität München.ORCID-id: 0000-0003-3323-7357
Institute for Cognitive Systems (ICS), Technische Universität München.
Technische Universität Muünchen, Institute for Cognitive Systems.
Rekke forfattare: 42014 (engelsk)Inngår i: IEEE-RAS International Conference on Humanoid Robots, Piscataway, NJ: IEEE Computer Society, 2014, s. 1104-1109, artikkel-id 7041506Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Humanoids are to date still limited in reliable interpretation of social cues that humans convey which restricts fluency and naturalness in social human-robot interaction (HRI). We propose a method to read out two important aspects of social engagement directly from the brain of a human interaction partner: (1) the intention to initiate eye contact and (2) the distinction between the observer being initiator or responder of an established gaze contact between human and robot. We suggest that these measures would give humanoids an important means for deciding when (timing) and how (social role) to engage in interaction with a human. We propose an experimental setup using iCub to evoke and capture the respective electrophysiological patterns via electroencephalography (EEG). Data analysis revealed biologically plausible brain activity patterns for both processes of social engagement. By using Support Vector Machine (SVM) classifiers with RBF kernel we showed that these patterns can be modeled with high within-participant accuracies of avg. 80.4% for (1) and avg. 77.0% for (2).

sted, utgiver, år, opplag, sider
Piscataway, NJ: IEEE Computer Society, 2014. s. 1104-1109, artikkel-id 7041506
Serie
IEEE-RAS International Conference on Humanoid Robots, ISSN 2164-0572
HSV kategori
Forskningsprogram
Teknisk psykologi
Identifikatorer
URN: urn:nbn:se:ltu:diva-61787DOI: 10.1109/HUMANOIDS.2014.7041506Scopus ID: 2-s2.0-84945189418ISBN: 9781479971749 (digital)OAI: oai:DiVA.org:ltu-61787DiVA, id: diva2:1070759
Konferanse
14th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2014, Madrid, Spain, 18-20 November 2014
Tilgjengelig fra: 2017-02-02 Laget: 2017-02-02 Sist oppdatert: 2017-11-24bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Wykowska, Agnieszka

Søk i DiVA

Av forfatter/redaktør
Wykowska, Agnieszka

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 2 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf