Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Vector coevolving particle swarm optimization algorithm
School of Computer Science and technology, Engineering Research Center of Digital Media Technology, Ministry of Education, Shandong University, Jinan.
School of Computer Science and technology, Engineering Research Center of Digital Media Technology, Ministry of Education, Shandong University, Jinan.
School of Computer Science and technology, Engineering Research Center of Digital Media Technology, Ministry of Education, Shandong University, Jinan.
Shandong Provincial Key Laboratory of Network based Intelligent Computing, University of Jinan.
Vise andre og tillknytning
Rekke forfattare: 52017 (engelsk)Inngår i: Information Sciences, ISSN 0020-0255, E-ISSN 1872-6291, Vol. 394-395, s. 273-298Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this paper, we propose a novel vector coevolving particle swarm optimization algorithm (VCPSO). In VCPSO, the full dimension of each particle is first randomly partitioned into several sub-dimensions. Then, we randomly assign either one of our newly designed scalar operators or learning operators to update the values in each sub-dimension. The scalar operators are designed to enhance the population diversity and avoid premature convergence. In addition, the learning operators are designed to enhance the global and local search ability. The proposed algorithm is compared with several other classical swarm optimizers on thirty-three benchmark functions. Comprehensive experimental results show that VCPSO displays a better or comparable performance compared to the other algorithms in terms of solution accuracy and statistical results.

sted, utgiver, år, opplag, sider
Elsevier, 2017. Vol. 394-395, s. 273-298
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-61834DOI: 10.1016/j.ins.2017.01.038ISI: 000396973000016Scopus ID: 2-s2.0-85012262497OAI: oai:DiVA.org:ltu-61834DiVA, id: diva2:1071719
Merknad

Validerad; 2017; Nivå 2; 2017-03-21 (rokbeg)

Tilgjengelig fra: 2017-02-06 Laget: 2017-02-06 Sist oppdatert: 2018-09-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Vasilakos, Athanasios

Søk i DiVA

Av forfatter/redaktør
Vasilakos, Athanasios
Av organisasjonen
I samme tidsskrift
Information Sciences

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 56 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf