Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A hybrid Particle Swarm Optimization: Variable Neighborhood Search Algorithm for Constrained Shortest Path Problems
Technical University of Crete, School of Production Engineering and Management, University Campus, 73100 Chania.
Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Industriell Ekonomi.ORCID-id: 0000-0001-8473-3663
University of Macedonia, School of Information Sciences, Department of Applied Informatics.
Rekke forfattare: 32017 (engelsk)Inngår i: European Journal of Operational Research, ISSN 0377-2217, E-ISSN 1872-6860, Vol. 261, nr 3, s. 819-834Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this paper, a well known NP-hard problem, the constrained shortest path problem, is studied. As efficient metaheuristic approaches are required for its solution, a new hybridized version of Particle Swarm Optimization algorithm with Variable Neighborhood Search is proposed for solving this significant combinatorial optimization problem. Particle Swarm Optimization (PSO) is a population-based swarm intelligence algorithm that simulates the social behavior of social organisms by using the physical movements of the particles in the swarm. A Variable Neighborhood Search (VNS) algorithm is applied in order to optimize the particles’ position. In the proposed algorithm, the Particle Swarm Optimization with combined Local and Global Expanding Neighborhood Topology (PSOLGENT), a different equation for the velocities of particles is given and a novel expanding neighborhood topology is used. Another issue in the application of the VNS algorithm in the Constrained Shortest Path problem is which local search algorithms are suitable from this problem. In this paper, a number of continuous local search algorithms are used. The algorithm is tested in a number of modified instances from the TSPLIB and comparisons with classic versions of PSO and with other versions of the proposed method are performed. Also, the results of the algorithm are compared with the results of a number of metaheuristic and evolutionary algorithms. The results obtained are very satisfactory and strengthen the efficiency of the algorithm.

sted, utgiver, år, opplag, sider
2017. Vol. 261, nr 3, s. 819-834
HSV kategori
Forskningsprogram
Industriell logistik
Identifikatorer
URN: urn:nbn:se:ltu:diva-62564DOI: 10.1016/j.ejor.2017.03.031ISI: 000401889300002Scopus ID: 2-s2.0-85016465911OAI: oai:DiVA.org:ltu-62564DiVA, id: diva2:1083016
Merknad

Validerad;2017;Nivå 2;2017-06-02 (andbra)

Tilgjengelig fra: 2017-03-20 Laget: 2017-03-20 Sist oppdatert: 2018-07-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Migdalas, Athanasios

Søk i DiVA

Av forfatter/redaktør
Migdalas, Athanasios
Av organisasjonen
I samme tidsskrift
European Journal of Operational Research

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 288 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.2