Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Mathematical Morphology on Irregularly Sampled Data in One Dimension
Uppsala University.
Flagship Biosciences Inc, Colorado, USA.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system. Innovative Machine Vision Pty Ltd.ORCID-id: 0000-0001-6186-7116
Uppsala University.
2017 (engelsk)Inngår i: Mathematical Morphology : Theory and Applications, ISSN 2353-3390, Vol. 2, nr 1, s. 1-24Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Mathematical morphology (MM) on grayscale images is commonly performed in the discretedomain on regularly sampled data. However, if the intention is to characterize or quantify continuousdomainobjects, then the discrete-domain morphology is affected by discretization errors that may bealleviated by considering the underlying continuous signal, given a correctly sampled bandlimited image.Additionally, there are a number of applications where MM would be useful and the data is irregularlysampled. A common way to deal with this is to resample the data onto a regular grid. Often this createsproblems where data is interpolated in areas with too few samples. In this paper, an alternative way ofthinking about the morphological operators is presented. This leads to a new type of discrete operatorsthat work on irregularly sampled data. These operators are shown to be morphological operators thatare consistent with the regular, morphological operators under the same conditions, and yield accurateresults under certain conditions where traditional morphology performs poorly

sted, utgiver, år, opplag, sider
Walter de Gruyter, 2017. Vol. 2, nr 1, s. 1-24
Emneord [en]
mathematical morphology
HSV kategori
Forskningsprogram
Signalbehandling
Identifikatorer
URN: urn:nbn:se:ltu:diva-66189DOI: 10.1515/mathm-2017-0001OAI: oai:DiVA.org:ltu-66189DiVA, id: diva2:1150576
Prosjekter
Noggranna bildbaserade mätningar genom oregelbunden sampling
Forskningsfinansiär
Swedish Research Council, E0598301Tilgjengelig fra: 2017-10-19 Laget: 2017-10-19 Sist oppdatert: 2021-03-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Thurley, Matthew

Søk i DiVA

Av forfatter/redaktør
Thurley, Matthew
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 162 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf