Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Self-Adaptive Pre-Processing Methodology for Big Data Stream Mining in Internet of Things Environmental Sensor Monitoring
Department of Computer and Information Science, University of Macau.
Department of Computer and Information Science, University of Macau.
School of Computer Science, North China University of Technology, Beijing .
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.ORCID-id: 0000-0003-1902-9877
Vise andre og tillknytning
2017 (engelsk)Inngår i: Symmetry, E-ISSN 2073-8994, Vol. 9, nr 10, artikkel-id 244Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Over the years, advanced IT technologies have facilitated the emergence of new ways of generating and gathering data rapidly, continuously, and largely and are associated with a new research and application branch, namely, data stream mining (DSM). Among those multiple scenarios of DSM, the Internet of Things (IoT) plays a significant role, with a typical meaning of a tough and challenging computational case of big data. In this paper, we describe a self-adaptive approach to the pre-processing step of data stream classification. The proposed algorithm allows different divisions with both variable numbers and lengths of sub-windows under a whole sliding window on an input stream, and clustering-based particle swarm optimization (CPSO) is adopted as the main metaheuristic search method to guarantee that its stream segmentations are effective and adaptive to itself. In order to create a more abundant search space, statistical feature extraction (SFX) is applied after variable partitions of the entire sliding window. We validate and test the effort of our algorithm with other temporal methods according to several IoT environmental sensor monitoring datasets. The experiments yield encouraging outcomes, supporting the reality that picking significant appropriate variant sub-window segmentations heuristically with an incorporated clustering technique merit would allow these to perform better than others

sted, utgiver, år, opplag, sider
Basel: MDPI, 2017. Vol. 9, nr 10, artikkel-id 244
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-66368DOI: 10.3390/sym9100244ISI: 000414911000047Scopus ID: 2-s2.0-85036562877OAI: oai:DiVA.org:ltu-66368DiVA, id: diva2:1154507
Merknad

Validerad;2017;Nivå 2;2017-11-02 (andbra)

Tilgjengelig fra: 2017-11-02 Laget: 2017-11-02 Sist oppdatert: 2025-02-18bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Vasilakos, Athanasios

Søk i DiVA

Av forfatter/redaktør
Vasilakos, Athanasios
Av organisasjonen
I samme tidsskrift
Symmetry

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 81 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf