Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Distribution of temperature, H2O and atomic potassium during entrained flow biomass combustion: Coupling in situ TDLAS with modeling approaches and ash chemistry
Thermochemical Energy Conversion Laboratory (TEC-Lab), Department of Applied Physics and Electronics, Umeå University.
Umeå University, Department of Applied Physics and Electronics, Thermochemical Energy Conversion Laboratory.
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.ORCID-id: 0000-0002-5777-9241
Umeå University, Department of Applied Physics and Electronics, Thermochemical Energy Conversion Laboratory.
Vise andre og tillknytning
2018 (engelsk)Inngår i: Combustion and Flame, ISSN 0010-2180, E-ISSN 1556-2921, Vol. 188, s. 488-497Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Tunable diode laser absorption spectroscopy (TDLAS) is employed for simultaneous detection of gas temperature, water vapor (H2O) and gas-phase atomic potassium, K(g), in an atmospheric, research-scale entrained flow reactor (EFR). In situ measurements are conducted at four different locations in the EFR core to study the progress of thermochemical conversion of softwood and Miscanthus powders with focus on the primary potassium reactions. In an initial validation step during propane flame operation, the measured axial EFR profiles of H2O density-weighted, path-averaged temperature, path-averaged H2O concentration and H2O column density are found in good agreement with 2D CFD simulations and standard flue gas analysis. During biomass conversion, temperature and H2O are significantly higher than for the propane flame, up to 1500 K and 9%, respectively, and K(g) concentrations between 0.2 and 270 ppbv are observed. Despite the large difference in initial potassium content between the fuels, the K(g) concentrations obtained at each EFR location are comparable, which highlights the importance of considering all major ash-forming elements in the fuel matrix. For both fuels, temperature and K(g) decrease with residence time, and in the lower part of the EFR, K(g) is in excellent agreement with thermodynamic equilibrium calculations evaluated at the TDLAS-measured temperatures and H2O concentrations. However, in the upper part of the EFR, where the measured H2O suggested a global equivalence ratio smaller than unity, K(g) is far below the predicted equilibrium values. This indicates that, in contrast to the organic compounds, potassium species rapidly undergo primary ash transformation reactions even if the fuel particles reside in an oxygen-deficient environment

sted, utgiver, år, opplag, sider
Elsevier, 2018. Vol. 188, s. 488-497
HSV kategori
Forskningsprogram
Energiteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-66385DOI: 10.1016/j.combustflame.2017.10.013ISI: 000424859100040Scopus ID: 2-s2.0-85032255301OAI: oai:DiVA.org:ltu-66385DiVA, id: diva2:1154872
Merknad

Validerad;2017;Nivå 2;2017-11-06 (andbra)

Tilgjengelig fra: 2017-11-06 Laget: 2017-11-06 Sist oppdatert: 2018-03-02bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Skoglund, Nils

Søk i DiVA

Av forfatter/redaktør
Skoglund, Nils
Av organisasjonen
I samme tidsskrift
Combustion and Flame

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 99 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf