Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Molecular Dynamics Simulations of Hydrocarbon Film Growth from Acetylene Monomers and Radicals: Effect of Substrate Temperature
Institute of Condensed Matter and Nanosciences - Bio & Soft Matter (IMCN/BSMA), Université Catholique de Louvain.
Institute of Condensed Matter and Nanosciences - Bio & Soft Matter (IMCN/BSMA), Université Catholique de Louvain.
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
Institute of Condensed Matter and Nanosciences - Molecules, Solids and Reactivity (IMCN/MOST) Université Catholique de Louvain.
Vise andre og tillknytning
2018 (engelsk)Inngår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 122, nr 27, s. 15252-15263Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In an attempt to rationalize the mechanisms occurring during plasma polymerization of acetylene, classical molecular dynamics (MD) computer simulations investigating the deposition and reaction of a mixed gas of acetylene molecules and radicals on the Ag(111) substrate were performed for a wide range of substrate temperatures. Prior to that, this article establishes a methodology for film deposition and identifies the appropriate potentials for hydrocarbons by comparison with electronic calculations using the density functional theory (DFT). Based on this preliminary study, simulations of films growth are carried out at different temperatures using the REBO potential. Our results show that the rates of creation of new C-C and C-H bonds are higher at the beginning of the film growth when the substrate is still exposed, than when it is covered with polymeric chains, and these initial reaction rates are proportional to temperature. The analysis of the hybridization of carbon atoms in the films shows that the substrate temperature increase leads to the formation of coatings containing more carbon atoms in the sp2 and sp3 configurations and less in the sp configuration with sp2 becoming dominant at high temperatures. We establish a polymerization-connectivity formalism that describes the structural transformation of the film during the deposition on the basis of each atom hybridization and bonding. Within this formalism the evolution of the polymerization and the connection character of the polymers is observed and discussed.

sted, utgiver, år, opplag, sider
American Chemical Society (ACS), 2018. Vol. 122, nr 27, s. 15252-15263
HSV kategori
Forskningsprogram
Tillämpad fysik
Identifikatorer
URN: urn:nbn:se:ltu:diva-69295DOI: 10.1021/acs.jpcc.8b01334ISI: 000439003600024Scopus ID: 2-s2.0-85047535372OAI: oai:DiVA.org:ltu-69295DiVA, id: diva2:1216089
Merknad

Validerad;2018;Nivå 2;2018-08-02 (rokbeg)

Tilgjengelig fra: 2018-06-11 Laget: 2018-06-11 Sist oppdatert: 2018-08-09bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Czerwinski, Bartlomiej

Søk i DiVA

Av forfatter/redaktør
Czerwinski, Bartlomiej
Av organisasjonen
I samme tidsskrift
The Journal of Physical Chemistry C

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 51 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf