Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Developing Electrolyte Perturbed-Chain Statistical Associating Fluid Theory Density Functional Theory for CO2 Separation by Confined Ionic Liquids
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. Jiangsu Provincial Engineering Laboratory for Advanced Materials of Salt Chemical Industry, Huaiyin Institute of Technology, Huaian.
Stockholm University, Arrhenius Laboratory, Department oft Materials & Environmental Chemistry.ORCID-id: 0000-0001-9783-4535
Key Laboratory of Material and Chemical Engineering, Nanjing Tech University, Nanjing .
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.ORCID-id: 0000-0002-0200-9960
2018 (engelsk)Inngår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 122, nr 27, s. 15464-15473Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The electrolyte perturbed-chain statistical associating fluid theory (ePC-SAFT) classical density functional theory (DFT) was developed to describe the behavior of pure ionic liquid (IL) and CO2/IL mixture confined in nanopores, in which a new ionic functional based on the ionic term from ePC-SAFT was proposed for electrostatic free-energy contribution. The developed model was verified by comparing the model prediction with molecular simulation results for ionic fluids, and the agreement shows that the model is reliable in representing the confined behavior of ionic fluids. The developed model was further used to study the behavior of pure IL and CO2/IL mixture in silica nanopores where the IL ions and CO2 were modeled as chains that consisted of spherical segments with the parameters taken from the bulk ePC-SAFT. The results reveal that the nanoconfinement can lead to an increased CO2 solubility, and the solubility increases with increasing pressure. The averaged density of pure IL and solubility of CO2 are strongly dependent on pore sizes and geometries. In addition, the choice of IL ions is very important for the CO2 solubility. Overall, the modeling results for silica-confined systems are consistent with available molecular simulation and experimental results.

sted, utgiver, år, opplag, sider
American Chemical Society (ACS), 2018. Vol. 122, nr 27, s. 15464-15473
HSV kategori
Forskningsprogram
Energiteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-70296DOI: 10.1021/acs.jpcc.8b04120ISI: 000439003600046Scopus ID: 2-s2.0-85048727169OAI: oai:DiVA.org:ltu-70296DiVA, id: diva2:1237557
Merknad

Validerad;2018;Nivå 2;2018-08-09 (andbra)

Tilgjengelig fra: 2018-08-09 Laget: 2018-08-09 Sist oppdatert: 2021-03-24bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Shen, GulouLaaksonen, AattoJi, Xiaoyan

Søk i DiVA

Av forfatter/redaktør
Shen, GulouLaaksonen, AattoJi, Xiaoyan
Av organisasjonen
I samme tidsskrift
The Journal of Physical Chemistry C

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 56 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf