Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Performance Analysis of Anomaly Based Network Intrusion Detection Systems
University of Science and Technology, Chittagong.
University of Science and Technology Chittagong.
University of Science & Technology Chittagong.
University of Science and Technology Chittagong.
Vise andre og tillknytning
2018 (engelsk)Inngår i: Proveedings of the 43nd IEEE Conference on Local Computer Networks Workshops (LCN Workshops), Piscataway, NJ: IEEE Computer Society, 2018, s. 1-7Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Because of the increased popularity and fast expansion of the Internet as well as Internet of things, networks are growing rapidly in every corner of the society. As a result, huge amount of data is travelling across the computer networks that lead to the vulnerability of data integrity, confidentiality and reliability. So, network security is a burning issue to keep the integrity of systems and data. The traditional security guards such as firewalls with access control lists are not anymore enough to secure systems. To address the drawbacks of traditional Intrusion Detection Systems (IDSs), artificial intelligence and machine learning based models open up new opportunity to classify abnormal traffic as anomaly with a self-learning capability. Many supervised learning models have been adopted to detect anomaly from networks traffic. In quest to select a good learning model in terms of precision, recall, area under receiver operating curve, accuracy, F-score and model built time, this paper illustrates the performance comparison between Naïve Bayes, Multilayer Perceptron, J48, Naïve Bayes Tree, and Random Forest classification models. These models are trained and tested on three subsets of features derived from the original benchmark network intrusion detection dataset, NSL-KDD. The three subsets are derived by applying different attributes evaluator’s algorithms. The simulation is carried out by using the WEKA data mining tool.

sted, utgiver, år, opplag, sider
Piscataway, NJ: IEEE Computer Society, 2018. s. 1-7
Serie
Proceedings of the 43nd IEEE Conference on Local Computer Networks Workshops (LCN Workshops)
Emneord [en]
Intrusion detection systems, machine learning, NSL-KDD, feature selection, classification model, performance analysis
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-70317DOI: 10.1109/LCNW.2018.8628599ISI: 000461284400001Scopus ID: 2-s2.0-85062829453OAI: oai:DiVA.org:ltu-70317DiVA, id: diva2:1237757
Konferanse
43nd IEEE Conference on Local Computer Networks Workshops (LCN Workshops), Chicago, October 1-4, 2018
Prosjekter
A belief-rule-based DSS to assess flood risks by using wireless sensor networks
Forskningsfinansiär
Swedish Research Council, 2014-4251Tilgjengelig fra: 2018-08-09 Laget: 2018-08-09 Sist oppdatert: 2019-07-11bibliografisk kontrollert

Open Access i DiVA

fulltext(306 kB)254 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 306 kBChecksum SHA-512
8ef90cfbdcec312ec9a7e2508a685867de8b15faa003224968bdceb7a271cd0cda5683c32304b70e227c40635c60430211197174e01009a96836efe44d690012
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopushttp://ieeelcn.org

Personposter BETA

Andersson, Karl

Søk i DiVA

Av forfatter/redaktør
Hossain, Mohammad ShahadatAndersson, Karl
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 254 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1001 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf