Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Fast and Scalable Distributed Deep Convolutional Autoencoder for fMRI Big Data Analytics
Computer Science Department, University of Georgia, Athens, GA, USA.
School of Automation, Northwestern Polytechnical University, Xi'an, China.
Computer Science Department, University of Georgia, Athens, GA, USA.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.ORCID-id: 0000-0003-1902-9877
Vise andre og tillknytning
2019 (engelsk)Inngår i: Neurocomputing, ISSN 0925-2312, E-ISSN 1872-8286, Vol. 325, s. 20-30Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In recent years, analyzing task-based fMRI (tfMRI) data has become an essential tool for understanding brain function and networks. However, due to the sheer size of tfMRI data, its intrinsic complex structure, and lack of ground truth of underlying neural activities, modeling tfMRI data is hard and challenging. Previously proposed data modeling methods including Independent Component Analysis (ICA) and Sparse Dictionary Learning only provided shallow models based on blind source separation under the strong assumption that original fMRI signals could be linearly decomposed into time series components with corresponding spatial maps. Given the Convolutional Neural Network (CNN) successes in learning hierarchical abstractions from low-level data such as tfMRI time series, in this work we propose a novel scalable distributed deep CNN autoencoder model and apply it for fMRI big data analysis. This model aims to both learn the complex hierarchical structures of the tfMRI big data and to leverage the processing power of multiple GPUs in a distributed fashion. To deploy such a model, we have created an enhanced processing pipeline on the top of Apache Spark and Tensorflow, leveraging from a large cluster of GPU nodes over cloud. Experimental results from applying the model on the Human Connectome Project (HCP) data show that the proposed model is efficient and scalable toward tfMRI big data modeling and analytics, thus enabling data-driven extraction of hierarchical neuroscientific information from massive fMRI big data.

sted, utgiver, år, opplag, sider
Elsevier, 2019. Vol. 325, s. 20-30
Emneord [en]
Data mining, Neural networks, Distributed computing methodologies, Machine learning
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-71190DOI: 10.1016/j.neucom.2018.09.066ISI: 000449695000002PubMedID: 31354187Scopus ID: 2-s2.0-85055437227OAI: oai:DiVA.org:ltu-71190DiVA, id: diva2:1255524
Merknad

Validerad;2018;Nivå 2;2018-11-21 (johcin)

Tilgjengelig fra: 2018-10-12 Laget: 2018-10-12 Sist oppdatert: 2025-02-18bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Vasilakos, Athanasios

Søk i DiVA

Av forfatter/redaktør
Vasilakos, Athanasios
Av organisasjonen
I samme tidsskrift
Neurocomputing

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 910 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf