Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Identifying cross-depicted historical motifs
Document Image and Voice Analysis Group (DIVA), University of Fribourg, Switzerland.
Document Image and Voice Analysis Group (DIVA), University of Fribourg, Switzerland.
Staatsbibliothek zu Berlin, Preußischer Kulturbesitz, Berlin, Germany.
Document Image and Voice Analysis Group (DIVA), University of Fribourg, Switzerland.
Vise andre og tillknytning
2018 (engelsk)Inngår i: Proceedings of International Conference on Frontiers in Handwriting Recognition, ICFHR 2018, IEEE, 2018, s. 333-338, artikkel-id 8583783Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Cross-depiction is the problem of identifying the same object even when it is depicted in a variety of manners.This is a common problem in handwritten historical document image analysis, for instance when the same letter or motif is depicted in several different ways. It is a simple task for humans yet conventional computer vision methods struggle to cope with it. In this paper we address this problem using state-of-the-art deep learning techniques on a dataset of historical watermarks containing images created with different methods of reproduction, such as hand tracing, rubbing, and radiography.To study the robustness of deep learning based approaches to the cross-depiction problem, we measure their performance on two different tasks: Classification and similarity rankings. For the former we achieve a classification accuracy of 96 % using deep convolutional neural networks. For the latter we have a false positive rate at 95% recall of 0.11. These results outperform state-of-the-art methods by a significant margin

sted, utgiver, år, opplag, sider
IEEE, 2018. s. 333-338, artikkel-id 8583783
Serie
International Conference on Handwriting Recognition, ISSN 2167-6445
Emneord [en]
convolutional neural network, cross-depiction, deep learning, machine learning, watermarks
HSV kategori
Forskningsprogram
Maskininlärning
Identifikatorer
URN: urn:nbn:se:ltu:diva-72981DOI: 10.1109/ICFHR-2018.2018.00065ISI: 000454983200056Scopus ID: 2-s2.0-85060032898ISBN: 978-1-5386-5875-8 (tryckt)OAI: oai:DiVA.org:ltu-72981DiVA, id: diva2:1290886
Konferanse
16th International Conference on Frontiers in Handwriting Recognition, ICFHR 2018, 5- August 2018, Niagara Fall, United States
Tilgjengelig fra: 2019-02-21 Laget: 2019-02-21 Sist oppdatert: 2019-03-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Liwicki, Marcus

Søk i DiVA

Av forfatter/redaktør
Liwicki, Marcus
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 68 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf