Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Static Hand Gesture Recognition using Convolutional Neural Network with Data Augmentation
Department of Computer Science and Engineering University of Chittagong, Bangladesh.
University of Chittagong, Bangladesh.ORCID-id: 0000-0002-7473-8185
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.ORCID-id: 0000-0002-3090-7645
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.ORCID-id: 0000-0003-0244-3561
2019 (engelsk)Inngår i: Proceedings of the Joint 2019 8th International Conference on Informatics, Electronics & Vision (ICIEV), IEEE, 2019Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Computer is a part and parcel in our day to day life and used in various fields. The interaction of human and computer is accomplished by traditional input devices like mouse, keyboard etc. Hand gestures can be a useful medium of human-computer interaction and can make the interaction easier. Gestures vary in orientation and shape from person to person. So, non-linearity exists in this problem. Recent research has proved the supremacy of Convolutional Neural Network (CNN) for image representation and classification. Since, CNN can learn complex and non-linear relationships among images, in this paper, a static hand gesture recognition method using CNN was proposed. Data augmentation like re-scaling, zooming, shearing, rotation, width and height shifting was applied to the dataset. The model was trained on 8000 images and tested on 1600 images which were divided into 10 classes. The model with augmented data achieved accuracy 97.12% which is nearly 4% higher than the model without augmentation (92.87%).

sted, utgiver, år, opplag, sider
IEEE, 2019.
Emneord [en]
Convolutional Neural Network, Static hand gestures recognition, Data augmentation.
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-73308OAI: oai:DiVA.org:ltu-73308DiVA, id: diva2:1299000
Konferanse
Joint 2019 8th International Conference on Informatics, Electronics & Vision (ICIEV), 26 - 29 April 2019, Spokane, United States
Prosjekter
A belief-rule-based DSS to assess flood risks by using wireless sensor networks
Forskningsfinansiär
Swedish Research Council, 2014-4251Tilgjengelig fra: 2019-03-25 Laget: 2019-03-25 Sist oppdatert: 2019-04-02bibliografisk kontrollert

Open Access i DiVA

fulltext(514 kB)59 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 514 kBChecksum SHA-512
fa2350e314278c10eadf4b7a24a0bd24f071b47f865133fc47137f154c5be04d93e622f113dec764ffc9b094a208771d72604e66ffbb218da0e623c9fa95bc5c
Type fulltextMimetype application/pdf

Personposter BETA

Islam, Raihan UlAndersson, Karl

Søk i DiVA

Av forfatter/redaktør
Hossain, Mohammad ShahadatIslam, Raihan UlAndersson, Karl
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 59 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 167 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf