Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An artificial neural network-based mathematical model for the prediction of blast-induced ground vibrations
Department of Mining Engineering, Federal University of Technology, Akure, Nigeria.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi. Department of Mining Engineering, Federal University of Technology, Akure, Nigeria.ORCID-id: 0000-0002-3838-8472
2020 (engelsk)Inngår i: International Journal of Environmental Studies, ISSN 0020-7233, E-ISSN 1029-0400, Vol. 77, nr 2, s. 318-334Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This paper presents an artificial neural network (ANN) based mathematical model for the prediction of blast-induced ground vibrations using the data obtained from the literature. A feed-forward back-propagation multi-layer perceptron (MLP) was adopted, and the Levenberg–Marquardt algorithm was used in training the network. The powder factor, the maximum charge per delay, and distance from blasting face to monitoring point are the input variables. The peak particle velocity (PPV) is the targeted output variable. The model was then formulated using the weights and biases output from the ANN simulation. Multilinear regression (MLR) analysis was also performed using the same number of datasets, as in the case of ANN. The quality of the proposed ANN-based model was also tested with another 14 datasets outside the one used in developing the models and compared with more classical models. The coefficient of the determination (R2) of the proposed ANN-based model was the highest.

sted, utgiver, år, opplag, sider
Taylor & Francis, 2020. Vol. 77, nr 2, s. 318-334
Emneord [en]
Blasting, ground vibration, PPV, ANN, MLR
HSV kategori
Forskningsprogram
Gruv- och berganläggningsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-75970DOI: 10.1080/00207233.2019.1662186Scopus ID: 2-s2.0-85071993178OAI: oai:DiVA.org:ltu-75970DiVA, id: diva2:1350672
Merknad

Validerad;2020;Nivå 1;2020-04-22 (alebob)

Tilgjengelig fra: 2019-09-12 Laget: 2019-09-12 Sist oppdatert: 2020-04-22bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Idris, Musa Adebayo

Søk i DiVA

Av forfatter/redaktør
Idris, Musa Adebayo
Av organisasjonen
I samme tidsskrift
International Journal of Environmental Studies

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 192 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf