Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
MyAQI: Context-aware Outdoor Air Pollution Monitoring System
Deakin University, Melbourne, Australia.
Deakin University, Melbourne, Australia.
Deakin University, Melbourne, Australia.
Swinburne University, Melbourne, Australia.
Vise andre og tillknytning
2019 (engelsk)Inngår i: IoT 2019: Proceedings of the 9th International Conference on the Internet of Things, Association for Computing Machinery (ACM), 2019, artikkel-id 13Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Air pollution is a growing global concern that affects the health and livelihood of millions of people worldwide. The advent of the Internet of Things (IoT) has made available a plethora of data sources that provide near real-time information on air pollution. Many studies and systems have taken advantage of data stemming from the IoT and have been dedicated to enhancing the monitoring and prediction of air quality, from a fairly analytical angle, often disregarding the user's perspective in processing and presenting this data. In this paper, we research and present a novel context-aware air quality monitoring and prediction system called My Air Quality Index (MyAQI). MyAQI takes into consideration user's context (e.g. health conditions, individual sensitivities and preferences) to tailor the visualisation and notifications. We propose a context model that is used to combine user's context with air pollution data to provide context-aware recommendations to the specific user. MyAQI also incorporates a prediction algorithm based on Long Short-Term Memory Neural Network (LSTM) to predict future air quality. MyAQI is implemented as a web-based application and has the capability to consume data from a wide range of data sources including IoT devices and open data sources (via Application Programming Interfaces (API)). We demonstrate the context-aware visualisation techniques implemented in MyAQI, which adapt to changing user's context, and validate the performance of the air quality prediction algorithm.

sted, utgiver, år, opplag, sider
Association for Computing Machinery (ACM), 2019. artikkel-id 13
Emneord [en]
Air Quality, Context-aware Computing, Internet of Things, Visualisation, Environmental Monitoring
HSV kategori
Forskningsprogram
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-76721DOI: 10.1145/3365871.3365884ISI: 000545971900013Scopus ID: 2-s2.0-85076162913OAI: oai:DiVA.org:ltu-76721DiVA, id: diva2:1370572
Konferanse
9th International Conference on the Internet of Things (IoT 2019), 22-25 October, 2019, Bilbao, Spain
Merknad

ISBN för värdpublikation: 978-1-4503-7207-7

Tilgjengelig fra: 2019-11-15 Laget: 2019-11-15 Sist oppdatert: 2025-02-18bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Mitra, KaranSaguna, Saguna

Søk i DiVA

Av forfatter/redaktør
Mitra, KaranSaguna, Saguna
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 75 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf