Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Towards MAV Navigation in Underground Mine Using Deep Learning
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0001-7631-002x
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0001-8870-6718
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0001-9701-4203
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0003-0126-1897
2018 (engelsk)Inngår i: IEEE ROBIO 2018, IEEE, 2018, s. 880-885Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The usage of Micro Aerial Vehicles (MAVs) is rapidly emerging in the mining industry to increase overall safety and productivity. However, the mine environment is especially challenging for the MAV's operation due to the lack of illumination, narrow passages, wind gusts, dust, and other factors that can affect the MAV's overall flying capability. This article presents a method to assist the navigation of MAVs by using a method from the field of Deep Learning (DL), while considering a low-cost platform without high-end sensor suits. The presented DL scheme can be further utilized as a supervised image classifier that has the ability to process the image frames from a single on-board camera and to provide mine tunnel wall collision prevention. The efficiency of the proposed scheme has been experimentally evaluated in two underground tunnel environments that were used for data collection, training, and corresponding testing under multiple flying scenarios with different cameras configurations and illuminations.

sted, utgiver, år, opplag, sider
IEEE, 2018. s. 880-885
Serie
IEEE International Conference on Robotics and Biomimetics
HSV kategori
Forskningsprogram
Reglerteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-76967DOI: 10.1109/ROBIO.2018.8665290ISI: 000468772200141Scopus ID: 2-s2.0-85064126417OAI: oai:DiVA.org:ltu-76967DiVA, id: diva2:1374232
Konferanse
2018 IEEE International Conference on Robotics and Biomimetics (ROBIO),12-15 December, 2018, Kuala Lumpur, Malaysia
Merknad

ISBN för värdpublikation: 978-1-7281-0377-8, 978-1-7281-0378-5

Tilgjengelig fra: 2019-11-29 Laget: 2019-11-29 Sist oppdatert: 2020-08-24bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Mansouri, Sina SharifKanellakis, ChristoforosGeorgoulas, GeorgeNikolakopoulos, George

Søk i DiVA

Av forfatter/redaktør
Mansouri, Sina SharifKanellakis, ChristoforosGeorgoulas, GeorgeNikolakopoulos, George
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 61 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf