Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Deep transfer multi-wavelet auto-encoder for intelligent fault diagnosis of gearbox with few target training samples
State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University.ORCID-id: 0000-0002-8018-1774
AECC Hunan Aviation Powerplant Research Institute. AECC Key Laboratory of Aero-engine Vibration Technology.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.ORCID-id: 0000-0002-7458-6820
Vise andre og tillknytning
2020 (engelsk)Inngår i: Knowledge-Based Systems, ISSN 0950-7051, E-ISSN 1872-7409, Vol. 191, artikkel-id 105313Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Lack of typical fault samples remains a huge challenge for intelligent fault diagnosis of gearbox. In this paper, a novel approach named deep transfer multi-wavelet auto-encoder is presented for gearbox intelligent fault diagnosis with few training samples. Firstly, new-type deep multi-wavelet auto-encoder is designed for learning important features of the collected vibration signals of gearbox. Secondly, high-quality auxiliary samples are selected based on similarity measure to well pre-train a source model sharing similar characteristics with the target domain. Thirdly, parameter knowledge acquired from the source model is transferred to target model using very few target training samples. Transfer diagnosis cases for different fault severities and compound faults of gearbox confirm the feasibility of the proposed approach even if the working conditions have significant changes.

sted, utgiver, år, opplag, sider
Elsevier, 2020. Vol. 191, artikkel-id 105313
Emneord [en]
Deep transfer multi-wavelet auto-encode, Gearbox fault, Transfer diagnosis, Variable working conditions, Few target training samples
HSV kategori
Forskningsprogram
Drift och underhållsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-77568DOI: 10.1016/j.knosys.2019.105313ISI: 000517663200035Scopus ID: 2-s2.0-85076527537OAI: oai:DiVA.org:ltu-77568DiVA, id: diva2:1389904
Merknad

Validerad;2020;Nivå 2;2020-03-02 (alebob)

Tilgjengelig fra: 2020-01-30 Laget: 2020-01-30 Sist oppdatert: 2022-10-28bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Shao, HaidongLin, Jing (Janet)

Søk i DiVA

Av forfatter/redaktør
Shao, HaidongLin, Jing (Janet)
Av organisasjonen
I samme tidsskrift
Knowledge-Based Systems

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 111 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf