Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Transfer fault diagnosis of bearing installed in different machines using enhanced deep auto-encoder
State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, China.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, China.ORCID-id: 0000-0002-8018-1774
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.ORCID-id: 0000-0002-7458-6820
State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, China.
Vise andre og tillknytning
2020 (engelsk)Inngår i: Measurement, ISSN 0263-2241, E-ISSN 1873-412X, Vol. 152, artikkel-id 107393Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The collected vibration data with labeled information from bearing is far insufficient in engineering practice, which is challenging for training an intelligent diagnosis model. For this purpose, enhanced deep transfer auto-encoder is proposed for fault diagnosis of bearing installed in different machines. First, scaled exponential linear unit is used to improve the quality of the mapped vibration data collected from bearing. Second, nonnegative constraint is adopted for modifying the loss function to improve reconstruction effect. Then, the parameter knowledge of the well-trained source model is transferred to the target model. Finally, target training samples with limited labeled information are adopted for fine-tuning the target model to match the characteristics of the target testing samples. The proposed approach is applied for analyzing the measured vibration signals of bearings installed in different machines. The analysis results show that the proposed approach holds better transfer diagnosis performance compared with the existing approaches.

sted, utgiver, år, opplag, sider
Elsevier, 2020. Vol. 152, artikkel-id 107393
Emneord [en]
Enhanced deep auto-encoder model, Transfer diagnosis, Limited labeled information, Bearing fault, Different machines
HSV kategori
Forskningsprogram
Drift och underhållsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-77569DOI: 10.1016/j.measurement.2019.107393ISI: 000508908600107Scopus ID: 2-s2.0-85076849611OAI: oai:DiVA.org:ltu-77569DiVA, id: diva2:1389911
Merknad

Validerad;2020;Nivå 2;2020-02-18 (johcin)

Tilgjengelig fra: 2020-01-30 Laget: 2020-01-30 Sist oppdatert: 2023-09-14bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Haidong, ShaoLin, Jing

Søk i DiVA

Av forfatter/redaktør
Haidong, ShaoLin, Jing
Av organisasjonen
I samme tidsskrift
Measurement

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 38 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf