Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Multiple Multi-Spectral Remote Sensing Data Fusion and Integration for Geological Mapping
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geovetenskap och miljöteknik.ORCID-id: 0000-0002-7271-9570
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geovetenskap och miljöteknik.ORCID-id: 0000-0002-1629-2920
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geovetenskap och miljöteknik.ORCID-id: 0000-0002-4136-9598
2019 (engelsk)Inngår i: 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), IEEE, 2019, s. 11-15Konferansepaper, Publicerat paper (Annet vitenskapelig)
Abstract [en]

This paper investigates spaceborne multiple multispectral data-fusion and blending to generate an integrated data with higher spatio-spectral resolution and spectral coverage in order to obtain improved geological mapping. A hybrid approach using Gram-Schmidt pan-sharpening and Inverse Distance Weighting (IDW) based downsampling technique is developed to generate integrated data from multiple multispectral data. In this study, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Landsat 8, and Sentinel-2 data have been used to evaluate the developed approach for lithological mapping. Liikavaara to Puoltikasvaara including Nautanen and nearby-mining area, in the Gällivare district of Norrbotten county, Sweden, is chosen as a case study. Lithological map of the study area is produced using Support Vector Machine (SVM) classifier. Bedrock geological map from the Geological Survey of Sweden (SGU) is used for classification accuracy assessment. The results show that integrated data produced better accuracy than original individual spaceborne multispectral data for lithological mapping of the study area.

sted, utgiver, år, opplag, sider
IEEE, 2019. s. 11-15
Serie
Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS, E-ISSN 2158-6276
Emneord [en]
Multispectral, spatial and spectral resolution, data fusion and integration, classification, geological mapping SVM
HSV kategori
Forskningsprogram
Prospekteringsgeofysik
Identifikatorer
URN: urn:nbn:se:ltu:diva-78657DOI: 10.1109/WHISPERS.2019.8921142ISI: 000521826000061Scopus ID: 2-s2.0-85077563314OAI: oai:DiVA.org:ltu-78657DiVA, id: diva2:1426295
Konferanse
2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS 2019), 24 – 26 September 2019, Amsterdam, Netherlands
Merknad

ISBN för värdpublikation: 978-1-7281-5294-3

Tilgjengelig fra: 2020-04-24 Laget: 2020-04-24 Sist oppdatert: 2024-03-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Pal, Mahendra K.Rasmussen, Thorkild M.Abdolmaleki, Mehdi

Søk i DiVA

Av forfatter/redaktør
Pal, Mahendra K.Rasmussen, Thorkild M.Abdolmaleki, Mehdi
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 152 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf